| //===-- Nearest integer floating-point operations ---------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIBC_SRC_SUPPORT_FPUTIL_NEAREST_INTEGER_OPERATIONS_H |
| #define LLVM_LIBC_SRC_SUPPORT_FPUTIL_NEAREST_INTEGER_OPERATIONS_H |
| |
| #include "FEnvUtils.h" |
| #include "FPBits.h" |
| |
| #include "src/__support/CPP/TypeTraits.h" |
| |
| #include <math.h> |
| #if math_errhandling & MATH_ERRNO |
| #include <errno.h> |
| #endif |
| |
| namespace __llvm_libc { |
| namespace fputil { |
| |
| template <typename T, |
| cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0> |
| static inline T trunc(T x) { |
| FPBits<T> bits(x); |
| |
| // If x is infinity or NaN, return it. |
| // If it is zero also we should return it as is, but the logic |
| // later in this function takes care of it. But not doing a zero |
| // check, we improve the run time of non-zero values. |
| if (bits.isInfOrNaN()) |
| return x; |
| |
| int exponent = bits.getExponent(); |
| |
| // If the exponent is greater than the most negative mantissa |
| // exponent, then x is already an integer. |
| if (exponent >= static_cast<int>(MantissaWidth<T>::value)) |
| return x; |
| |
| // If the exponent is such that abs(x) is less than 1, then return 0. |
| if (exponent <= -1) { |
| if (bits.getSign()) |
| return T(-0.0); |
| else |
| return T(0.0); |
| } |
| |
| int trimSize = MantissaWidth<T>::value - exponent; |
| bits.setMantissa((bits.getMantissa() >> trimSize) << trimSize); |
| return T(bits); |
| } |
| |
| template <typename T, |
| cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0> |
| static inline T ceil(T x) { |
| FPBits<T> bits(x); |
| |
| // If x is infinity NaN or zero, return it. |
| if (bits.isInfOrNaN() || bits.isZero()) |
| return x; |
| |
| bool isNeg = bits.getSign(); |
| int exponent = bits.getExponent(); |
| |
| // If the exponent is greater than the most negative mantissa |
| // exponent, then x is already an integer. |
| if (exponent >= static_cast<int>(MantissaWidth<T>::value)) |
| return x; |
| |
| if (exponent <= -1) { |
| if (isNeg) |
| return T(-0.0); |
| else |
| return T(1.0); |
| } |
| |
| uint32_t trimSize = MantissaWidth<T>::value - exponent; |
| bits.setMantissa((bits.getMantissa() >> trimSize) << trimSize); |
| T truncValue = T(bits); |
| |
| // If x is already an integer, return it. |
| if (truncValue == x) |
| return x; |
| |
| // If x is negative, the ceil operation is equivalent to the trunc operation. |
| if (isNeg) |
| return truncValue; |
| |
| return truncValue + T(1.0); |
| } |
| |
| template <typename T, |
| cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0> |
| static inline T floor(T x) { |
| FPBits<T> bits(x); |
| if (bits.getSign()) { |
| return -ceil(-x); |
| } else { |
| return trunc(x); |
| } |
| } |
| |
| template <typename T, |
| cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0> |
| static inline T round(T x) { |
| using UIntType = typename FPBits<T>::UIntType; |
| FPBits<T> bits(x); |
| |
| // If x is infinity NaN or zero, return it. |
| if (bits.isInfOrNaN() || bits.isZero()) |
| return x; |
| |
| bool isNeg = bits.getSign(); |
| int exponent = bits.getExponent(); |
| |
| // If the exponent is greater than the most negative mantissa |
| // exponent, then x is already an integer. |
| if (exponent >= static_cast<int>(MantissaWidth<T>::value)) |
| return x; |
| |
| if (exponent == -1) { |
| // Absolute value of x is greater than equal to 0.5 but less than 1. |
| if (isNeg) |
| return T(-1.0); |
| else |
| return T(1.0); |
| } |
| |
| if (exponent <= -2) { |
| // Absolute value of x is less than 0.5. |
| if (isNeg) |
| return T(-0.0); |
| else |
| return T(0.0); |
| } |
| |
| uint32_t trimSize = MantissaWidth<T>::value - exponent; |
| bool halfBitSet = bits.getMantissa() & (UIntType(1) << (trimSize - 1)); |
| bits.setMantissa((bits.getMantissa() >> trimSize) << trimSize); |
| T truncValue = T(bits); |
| |
| // If x is already an integer, return it. |
| if (truncValue == x) |
| return x; |
| |
| if (!halfBitSet) { |
| // Franctional part is less than 0.5 so round value is the |
| // same as the trunc value. |
| return truncValue; |
| } else { |
| return isNeg ? truncValue - T(1.0) : truncValue + T(1.0); |
| } |
| } |
| |
| template <typename T, |
| cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0> |
| static inline T roundUsingCurrentRoundingMode(T x) { |
| using UIntType = typename FPBits<T>::UIntType; |
| FPBits<T> bits(x); |
| |
| // If x is infinity NaN or zero, return it. |
| if (bits.isInfOrNaN() || bits.isZero()) |
| return x; |
| |
| bool isNeg = bits.getSign(); |
| int exponent = bits.getExponent(); |
| int roundingMode = getRound(); |
| |
| // If the exponent is greater than the most negative mantissa |
| // exponent, then x is already an integer. |
| if (exponent >= static_cast<int>(MantissaWidth<T>::value)) |
| return x; |
| |
| if (exponent <= -1) { |
| switch (roundingMode) { |
| case FE_DOWNWARD: |
| return isNeg ? T(-1.0) : T(0.0); |
| case FE_UPWARD: |
| return isNeg ? T(-0.0) : T(1.0); |
| case FE_TOWARDZERO: |
| return isNeg ? T(-0.0) : T(0.0); |
| case FE_TONEAREST: |
| if (exponent <= -2 || bits.getMantissa() == 0) |
| return isNeg ? T(-0.0) : T(0.0); // abs(x) <= 0.5 |
| else |
| return isNeg ? T(-1.0) : T(1.0); // abs(x) > 0.5 |
| default: |
| __builtin_unreachable(); |
| } |
| } |
| |
| uint32_t trimSize = MantissaWidth<T>::value - exponent; |
| FPBits<T> newBits = bits; |
| newBits.setMantissa((bits.getMantissa() >> trimSize) << trimSize); |
| T truncValue = T(newBits); |
| |
| // If x is already an integer, return it. |
| if (truncValue == x) |
| return x; |
| |
| UIntType trimValue = bits.getMantissa() & ((UIntType(1) << trimSize) - 1); |
| UIntType halfValue = (UIntType(1) << (trimSize - 1)); |
| // If exponent is 0, trimSize will be equal to the mantissa width, and |
| // truncIsOdd` will not be correct. So, we handle it as a special case |
| // below. |
| UIntType truncIsOdd = newBits.getMantissa() & (UIntType(1) << trimSize); |
| |
| switch (roundingMode) { |
| case FE_DOWNWARD: |
| return isNeg ? truncValue - T(1.0) : truncValue; |
| case FE_UPWARD: |
| return isNeg ? truncValue : truncValue + T(1.0); |
| case FE_TOWARDZERO: |
| return truncValue; |
| case FE_TONEAREST: |
| if (trimValue > halfValue) { |
| return isNeg ? truncValue - T(1.0) : truncValue + T(1.0); |
| } else if (trimValue == halfValue) { |
| if (exponent == 0) |
| return isNeg ? T(-2.0) : T(2.0); |
| if (truncIsOdd) |
| return isNeg ? truncValue - T(1.0) : truncValue + T(1.0); |
| else |
| return truncValue; |
| } else { |
| return truncValue; |
| } |
| default: |
| __builtin_unreachable(); |
| } |
| } |
| |
| namespace internal { |
| |
| template <typename F, typename I, |
| cpp::EnableIfType<cpp::IsFloatingPointType<F>::Value && |
| cpp::IsIntegral<I>::Value, |
| int> = 0> |
| static inline I roundedFloatToSignedInteger(F x) { |
| constexpr I IntegerMin = (I(1) << (sizeof(I) * 8 - 1)); |
| constexpr I IntegerMax = -(IntegerMin + 1); |
| FPBits<F> bits(x); |
| auto setDomainErrorAndRaiseInvalid = []() { |
| #if math_errhandling & MATH_ERRNO |
| errno = EDOM; |
| #endif |
| #if math_errhandling & MATH_ERREXCEPT |
| raiseExcept(FE_INVALID); |
| #endif |
| }; |
| |
| if (bits.isInfOrNaN()) { |
| setDomainErrorAndRaiseInvalid(); |
| return bits.getSign() ? IntegerMin : IntegerMax; |
| } |
| |
| int exponent = bits.getExponent(); |
| constexpr int exponentLimit = sizeof(I) * 8 - 1; |
| if (exponent > exponentLimit) { |
| setDomainErrorAndRaiseInvalid(); |
| return bits.getSign() ? IntegerMin : IntegerMax; |
| } else if (exponent == exponentLimit) { |
| if (bits.getSign() == 0 || bits.getMantissa() != 0) { |
| setDomainErrorAndRaiseInvalid(); |
| return bits.getSign() ? IntegerMin : IntegerMax; |
| } |
| // If the control reaches here, then it means that the rounded |
| // value is the most negative number for the signed integer type I. |
| } |
| |
| // For all other cases, if `x` can fit in the integer type `I`, |
| // we just return `x`. Implicit conversion will convert the |
| // floating point value to the exact integer value. |
| return x; |
| } |
| |
| } // namespace internal |
| |
| template <typename F, typename I, |
| cpp::EnableIfType<cpp::IsFloatingPointType<F>::Value && |
| cpp::IsIntegral<I>::Value, |
| int> = 0> |
| static inline I roundToSignedInteger(F x) { |
| return internal::roundedFloatToSignedInteger<F, I>(round(x)); |
| } |
| |
| template <typename F, typename I, |
| cpp::EnableIfType<cpp::IsFloatingPointType<F>::Value && |
| cpp::IsIntegral<I>::Value, |
| int> = 0> |
| static inline I roundToSignedIntegerUsingCurrentRoundingMode(F x) { |
| return internal::roundedFloatToSignedInteger<F, I>( |
| roundUsingCurrentRoundingMode(x)); |
| } |
| |
| } // namespace fputil |
| } // namespace __llvm_libc |
| |
| #endif // LLVM_LIBC_SRC_SUPPORT_FPUTIL_NEAREST_INTEGER_OPERATIONS_H |