[Clang][Sema] Correctly transform dependent operands of overloaded binary operator& (#97596)

Currently, `TreeTransform::TransformCXXOperatorCallExpr` calls
`TreeTransform::TransformAddressOfOperand` to transform the first
operand of a `CXXOperatorCallExpr` when its `OverloadOperatorKind` is
`OO_Amp` -- regardless of arity. This results in the first operand of
binary `operator&` being incorrectly transformed as if it was the
operand of the address of operator in cases such as the following:
```
struct A {
  int x;
};

void operator&(A, A);

template<typename T>
struct B {
  int f() {
    return T::x & 1; // invalid reference to 'A::x' is not diagnosed because 'T::x' is incorrectly transformed as if it was the operand of unary operator&
  }
};

template struct B<A>;
```
Prior to #92318 we would build a `CXXDependentScopeMemberExpr` for
`T::x` (as with most dependent qualified names that were not member
qualified names). Since `TreeTransform::TransformAddressOfOperand` only
differs from `TransformExpr` for `DependentScopeDeclRefExpr` and
`UnresolvedLookupExpr` operands, `T::x` was transformed "correctly". Now
that we build a `DependentScopeDeclRefExpr` for `T::x`, it is
incorrectly transformed as if it was the operand of the address of
operator and we fail to diagnose the invalid reference to a non-static
data member. This patch fixes the issue by only calling
`TreeTransform::TransformAddressOfOperand` for `CXXOperatorCallExpr`s
with a single operand. This fixes #97483.
3 files changed
tree: 1837bca91ff82eea02a9baf47f61f23e0d110852
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. offload/
  21. openmp/
  22. polly/
  23. pstl/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitattributes
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. pyproject.toml
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.