blob: 0dd611df0a5140df0fef67c52d7bc66fe676d3dd [file] [log] [blame]
//===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Convert sparse tensor primitives to calls into a runtime support library.
// Note that this is a current implementation choice to keep the conversion
// simple. In principle, these primitives could also be converted to actual
// elaborate IR code that implements the primitives on the selected sparse
// tensor storage schemes.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/ExecutionEngine/SparseTensorUtils.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Generates a constant zero of the given type.
inline static Value constantZero(ConversionPatternRewriter &rewriter,
Location loc, Type t) {
return rewriter.create<arith::ConstantOp>(loc, t, rewriter.getZeroAttr(t));
}
/// Generates a constant of `index` type.
inline static Value constantIndex(ConversionPatternRewriter &rewriter,
Location loc, int64_t i) {
return rewriter.create<arith::ConstantIndexOp>(loc, i);
}
/// Generates a constant of `i32` type.
inline static Value constantI32(ConversionPatternRewriter &rewriter,
Location loc, int32_t i) {
return rewriter.create<arith::ConstantIntOp>(loc, i, 32);
}
/// Generates a constant of `i8` type.
inline static Value constantI8(ConversionPatternRewriter &rewriter,
Location loc, int8_t i) {
return rewriter.create<arith::ConstantIntOp>(loc, i, 8);
}
/// Generates a constant of the given `Action`.
static Value constantAction(ConversionPatternRewriter &rewriter, Location loc,
Action action) {
return constantI32(rewriter, loc, static_cast<uint32_t>(action));
}
/// Generates a constant of the internal type encoding for overhead storage.
static Value constantOverheadTypeEncoding(ConversionPatternRewriter &rewriter,
Location loc, unsigned width) {
OverheadType sec;
switch (width) {
default:
sec = OverheadType::kU64;
break;
case 32:
sec = OverheadType::kU32;
break;
case 16:
sec = OverheadType::kU16;
break;
case 8:
sec = OverheadType::kU8;
break;
}
return constantI32(rewriter, loc, static_cast<uint32_t>(sec));
}
/// Generates a constant of the internal type encoding for pointer
/// overhead storage.
static Value constantPointerTypeEncoding(ConversionPatternRewriter &rewriter,
Location loc,
SparseTensorEncodingAttr &enc) {
return constantOverheadTypeEncoding(rewriter, loc, enc.getPointerBitWidth());
}
/// Generates a constant of the internal type encoding for index overhead
/// storage.
static Value constantIndexTypeEncoding(ConversionPatternRewriter &rewriter,
Location loc,
SparseTensorEncodingAttr &enc) {
return constantOverheadTypeEncoding(rewriter, loc, enc.getIndexBitWidth());
}
/// Generates a constant of the internal type encoding for primary storage.
static Value constantPrimaryTypeEncoding(ConversionPatternRewriter &rewriter,
Location loc, Type tp) {
PrimaryType primary;
if (tp.isF64())
primary = PrimaryType::kF64;
else if (tp.isF32())
primary = PrimaryType::kF32;
else if (tp.isInteger(64))
primary = PrimaryType::kI64;
else if (tp.isInteger(32))
primary = PrimaryType::kI32;
else if (tp.isInteger(16))
primary = PrimaryType::kI16;
else if (tp.isInteger(8))
primary = PrimaryType::kI8;
else
llvm_unreachable("Unknown element type");
return constantI32(rewriter, loc, static_cast<uint32_t>(primary));
}
/// Generates a constant of the internal dimension level type encoding.
static Value
constantDimLevelTypeEncoding(ConversionPatternRewriter &rewriter, Location loc,
SparseTensorEncodingAttr::DimLevelType dlt) {
DimLevelType dlt2;
switch (dlt) {
case SparseTensorEncodingAttr::DimLevelType::Dense:
dlt2 = DimLevelType::kDense;
break;
case SparseTensorEncodingAttr::DimLevelType::Compressed:
dlt2 = DimLevelType::kCompressed;
break;
case SparseTensorEncodingAttr::DimLevelType::Singleton:
dlt2 = DimLevelType::kSingleton;
break;
}
return constantI8(rewriter, loc, static_cast<uint8_t>(dlt2));
}
/// Returns a function reference (first hit also inserts into module). Sets
/// the "_emit_c_interface" on the function declaration when requested,
/// so that LLVM lowering generates a wrapper function that takes care
/// of ABI complications with passing in and returning MemRefs to C functions.
static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
TypeRange resultType, ValueRange operands,
bool emitCInterface = false) {
MLIRContext *context = op->getContext();
auto module = op->getParentOfType<ModuleOp>();
auto result = SymbolRefAttr::get(context, name);
auto func = module.lookupSymbol<FuncOp>(result.getAttr());
if (!func) {
OpBuilder moduleBuilder(module.getBodyRegion());
func = moduleBuilder.create<FuncOp>(
op->getLoc(), name,
FunctionType::get(context, operands.getTypes(), resultType));
func.setPrivate();
if (emitCInterface)
func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
}
return result;
}
/// Generates dimension size call.
static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
SparseTensorEncodingAttr &enc, Value src,
int64_t idx) {
// Permute the index according to an optional dimension ordering.
if (AffineMap p = enc.getDimOrdering())
idx = p.getPermutedPosition(idx);
// Generate the call.
Location loc = op->getLoc();
StringRef name = "sparseDimSize";
SmallVector<Value, 2> params;
params.push_back(src);
params.push_back(constantIndex(rewriter, loc, idx));
Type iTp = rewriter.getIndexType();
auto fn = getFunc(op, name, iTp, params);
return rewriter.create<CallOp>(loc, iTp, fn, params).getResult(0);
}
/// Generates a call into the "swiss army knife" method of the sparse runtime
/// support library for materializing sparse tensors into the computation.
static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
ArrayRef<Value> params) {
Location loc = op->getLoc();
StringRef name = "newSparseTensor";
Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
auto fn = getFunc(op, name, pTp, params, /*emitCInterface=*/true);
auto call = rewriter.create<CallOp>(loc, pTp, fn, params);
return call.getResult(0);
}
/// Populates given sizes array from type.
static void sizesFromType(ConversionPatternRewriter &rewriter,
SmallVector<Value, 4> &sizes, Location loc,
ShapedType stp) {
auto shape = stp.getShape();
for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
sizes.push_back(constantIndex(rewriter, loc, s));
}
}
/// Populates given sizes array from source.
static void sizesFromSrc(ConversionPatternRewriter &rewriter,
SmallVector<Value, 4> &sizes, Location loc,
Value src) {
ShapedType stp = src.getType().cast<ShapedType>();
for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
}
/// Populates given sizes array from type (for static sizes) and from
/// an already converted into opague pointer source (for dynamic sizes).
static void sizesFromPtr(ConversionPatternRewriter &rewriter,
SmallVector<Value, 4> &sizes, Operation *op,
SparseTensorEncodingAttr &enc, ShapedType stp,
Value src) {
auto shape = stp.getShape();
for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
if (shape[i] == ShapedType::kDynamicSize)
sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
else
sizes.push_back(constantIndex(rewriter, op->getLoc(), shape[i]));
}
/// Generates an uninitialized temporary buffer of the given size and
/// type, but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`).
static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
unsigned sz, Type tp) {
auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
Value a = constantIndex(rewriter, loc, sz);
return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{a});
}
/// Generates an uninitialized temporary buffer with room for one value
/// of the given type, and returns the `memref<$tp>`.
static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
Type tp) {
return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
}
/// Generates a temporary buffer of the given type and given contents.
static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
ArrayRef<Value> values) {
unsigned sz = values.size();
assert(sz >= 1);
Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
for (unsigned i = 0; i < sz; i++) {
Value idx = constantIndex(rewriter, loc, i);
rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
}
return buffer;
}
/// Populates parameters required to call the "swiss army knife" method of the
/// sparse runtime support library for materializing sparse tensors into the
/// computation.
static void newParams(ConversionPatternRewriter &rewriter,
SmallVector<Value, 8> &params, Operation *op,
SparseTensorEncodingAttr &enc, Action action,
ValueRange szs, Value ptr = Value()) {
Location loc = op->getLoc();
ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
unsigned sz = dlt.size();
// Sparsity annotations.
SmallVector<Value, 4> attrs;
for (unsigned i = 0; i < sz; i++)
attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
params.push_back(genBuffer(rewriter, loc, attrs));
// Dimension sizes array of the enveloping tensor. Useful for either
// verification of external data, or for construction of internal data.
SmallVector<Value, 4> sizes;
for (Value s : szs)
sizes.push_back(s);
params.push_back(genBuffer(rewriter, loc, sizes));
// Dimension order permutation array. This is the "identity" permutation by
// default, or otherwise the "reverse" permutation of a given ordering, so
// that indices can be mapped quickly to the right position.
SmallVector<Value, 4> rev(sz);
if (AffineMap p = enc.getDimOrdering()) {
for (unsigned i = 0; i < sz; i++)
rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
} else {
for (unsigned i = 0; i < sz; i++)
rev[i] = constantIndex(rewriter, loc, i);
}
params.push_back(genBuffer(rewriter, loc, rev));
// Secondary and primary types encoding.
ShapedType resType = op->getResult(0).getType().cast<ShapedType>();
params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
params.push_back(
constantPrimaryTypeEncoding(rewriter, loc, resType.getElementType()));
// User action and pointer.
Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
if (!ptr)
ptr = rewriter.create<LLVM::NullOp>(loc, pTp);
params.push_back(constantAction(rewriter, loc, action));
params.push_back(ptr);
}
/// Generates the comparison `v != 0` where `v` is of numeric type `t`.
/// For floating types, we use the "unordered" comparator (i.e., returns
/// true if `v` is NaN).
static Value genIsNonzero(ConversionPatternRewriter &rewriter, Location loc,
Value v) {
Type t = v.getType();
Value zero = constantZero(rewriter, loc, t);
if (t.isa<FloatType>())
return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNE, v,
zero);
if (t.isIntOrIndex())
return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, v,
zero);
llvm_unreachable("Unknown element type");
}
/// Generates the code to read the value from tensor[ivs], and conditionally
/// stores the indices ivs to the memory in ind. The generated code looks like
/// the following and the insertion point after this routine is inside the
/// if-then branch behind the assignment to ind. This is to ensure that the
/// addEltX call generated after is inside the if-then branch.
/// if (tensor[ivs]!=0) {
/// ind = ivs
static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
Location loc, Value tensor, Value ind,
ValueRange ivs) {
Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
Value cond = genIsNonzero(rewriter, loc, val);
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
unsigned i = 0;
for (auto iv : ivs) {
Value idx = constantIndex(rewriter, loc, i++);
rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
}
return val;
}
/// Generates a call that adds one element to a coordinate scheme.
/// In particular, this generates code like the following:
/// val = a[i1,..,ik];
/// if val != 0
/// t->add(val, [i1,..,ik], [p1,..,pk]);
static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
Type eltType, Value ptr, Value val, Value ind,
Value perm) {
Location loc = op->getLoc();
StringRef name;
if (eltType.isF64())
name = "addEltF64";
else if (eltType.isF32())
name = "addEltF32";
else if (eltType.isInteger(64))
name = "addEltI64";
else if (eltType.isInteger(32))
name = "addEltI32";
else if (eltType.isInteger(16))
name = "addEltI16";
else if (eltType.isInteger(8))
name = "addEltI8";
else
llvm_unreachable("Unknown element type");
SmallVector<Value, 8> params;
params.push_back(ptr);
params.push_back(val);
params.push_back(ind);
params.push_back(perm);
Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
auto fn = getFunc(op, name, pTp, params, /*emitCInterface=*/true);
rewriter.create<CallOp>(loc, pTp, fn, params);
}
/// Generates a call to `iter->getNext()`. If there is a next element,
/// then it is copied into the out-parameters `ind` and `elemPtr`,
/// and the return value is true. If there isn't a next element, then
/// the memory for `iter` is freed and the return value is false.
static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
Value iter, Value ind, Value elemPtr) {
Location loc = op->getLoc();
Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
StringRef name;
if (elemTp.isF64())
name = "getNextF64";
else if (elemTp.isF32())
name = "getNextF32";
else if (elemTp.isInteger(64))
name = "getNextI64";
else if (elemTp.isInteger(32))
name = "getNextI32";
else if (elemTp.isInteger(16))
name = "getNextI16";
else if (elemTp.isInteger(8))
name = "getNextI8";
else
llvm_unreachable("Unknown element type");
SmallVector<Value, 3> params;
params.push_back(iter);
params.push_back(ind);
params.push_back(elemPtr);
Type i1 = rewriter.getI1Type();
auto fn = getFunc(op, name, i1, params, /*emitCInterface=*/true);
auto call = rewriter.create<CallOp>(loc, i1, fn, params);
return call.getResult(0);
}
/// If the tensor is a sparse constant, generates and returns the pair of
/// the constants for the indices and the values.
static Optional<std::pair<Value, Value>>
genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
Value tensor) {
if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
DenseElementsAttr indicesAttr = attr.getIndices();
Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
DenseElementsAttr valuesAttr = attr.getValues();
Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
return std::make_pair(indices, values);
}
}
return {};
}
/// Generates the code to copy the index at indices[ivs] to ind, and return
/// the value at value[ivs].
static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
Location loc, Value indices,
Value values, Value ind, ValueRange ivs,
unsigned rank) {
for (unsigned i = 0; i < rank; i++) {
Value idx = constantIndex(rewriter, loc, i);
Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
ValueRange{ivs[0], idx});
val =
rewriter.create<arith::IndexCastOp>(loc, val, rewriter.getIndexType());
rewriter.create<memref::StoreOp>(loc, val, ind, idx);
}
return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
}
/// Generates code to allocate a tensor of the given type, and zero
/// initialize it. If the tensor type has any dynamic sizes, then the
/// `sizes` parameter should be as filled by sizesFromPtr(); that way
/// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
RankedTensorType tensorTp, ValueRange sizes) {
Type elemTp = tensorTp.getElementType();
auto shape = tensorTp.getShape();
auto memTp = MemRefType::get(shape, elemTp);
SmallVector<Value> dynamicSizes;
for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
if (shape[i] == ShapedType::kDynamicSize)
dynamicSizes.push_back(sizes[i]);
}
Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
Value zero = constantZero(rewriter, loc, elemTp);
rewriter.create<linalg::FillOp>(loc, zero, mem).result();
return mem;
}
/// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
/// the tensor created by allocDenseTensor(). The `rank` is the rank
/// of the `tensor` and the length of `ind`.
static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
Location loc, Value elemPtr,
Value tensor, unsigned rank,
Value ind) {
SmallVector<Value, 4> ivs;
ivs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
Value idx = constantIndex(rewriter, loc, i);
ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
}
Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
}
//===----------------------------------------------------------------------===//
// Conversion rules.
//===----------------------------------------------------------------------===//
/// Sparse conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for dimension accesses.
class SparseTensorToDimSizeConverter
: public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite annotated DimOp with constant index.
auto enc = getSparseTensorEncoding(op.source().getType());
if (!enc)
return failure();
Optional<int64_t> index = op.getConstantIndex();
if (!index.hasValue())
return failure();
// Generate the call.
Value src = adaptor.getOperands()[0];
int64_t idx = index.getValue();
rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
return success();
}
};
/// Sparse conversion rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.source().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for the new operator.
class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
auto enc = getSparseTensorEncoding(resType);
if (!enc)
return failure();
// Generate the call to construct tensor from ptr. The sizes are
// inferred from the result type of the new operator.
SmallVector<Value, 4> sizes;
SmallVector<Value, 8> params;
sizesFromType(rewriter, sizes, op.getLoc(), resType.cast<ShapedType>());
Value ptr = adaptor.getOperands()[0];
newParams(rewriter, params, op, enc, Action::kFromFile, sizes, ptr);
rewriter.replaceOp(op, genNewCall(rewriter, op, params));
return success();
}
};
/// Sparse conversion rule for the init operator.
class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(InitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
auto enc = getSparseTensorEncoding(resType);
if (!enc)
return failure();
// Generate the call to construct empty tensor. The sizes are
// explicitly defined by the arguments to the init operator.
SmallVector<Value, 8> params;
newParams(rewriter, params, op, enc, Action::kEmpty, adaptor.getOperands());
rewriter.replaceOp(op, genNewCall(rewriter, op, params));
return success();
}
};
/// Sparse conversion rule for the convert operator.
class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Type resType = op.getType();
Type srcType = op.source().getType();
auto encDst = getSparseTensorEncoding(resType);
auto encSrc = getSparseTensorEncoding(srcType);
Value src = adaptor.getOperands()[0];
if (encDst && encSrc) {
// This is a sparse => sparse conversion, which is handled as follows:
// t = src->toCOO(); ; src to COO in dst order
// dst = newSparseTensor(t)
// Using the coordinate scheme as an intermediate does not always
// yield the fastest conversion but avoids the need for a full
// O(N^2) conversion matrix.
if (encDst == encSrc) {
rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
return success();
}
SmallVector<Value, 4> sizes;
SmallVector<Value, 8> params;
sizesFromPtr(rewriter, sizes, op, encSrc, srcType.cast<ShapedType>(),
src);
// Set up encoding with right mix of src and dst so that the two
// method calls can share most parameters, while still providing
// the correct sparsity information to either of them.
auto enc = SparseTensorEncodingAttr::get(
op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
newParams(rewriter, params, op, enc, Action::kToCOO, sizes, src);
Value coo = genNewCall(rewriter, op, params);
params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
params[6] = constantAction(rewriter, loc, Action::kFromCOO);
params[7] = coo;
rewriter.replaceOp(op, genNewCall(rewriter, op, params));
return success();
}
if (!encDst && encSrc) {
// This is sparse => dense conversion, which is handled as follows:
// dst = new Tensor(0);
// iter = src->toCOO();
// iter->startIterator();
// while (elem = iter->getNext()) {
// dst[elem.indices] = elem.value;
// }
RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
unsigned rank = dstTensorTp.getRank();
Type elemTp = dstTensorTp.getElementType();
// Fabricate a no-permutation encoding for newParams().
// The pointer/index types must be those of `src`.
// The dimLevelTypes aren't actually used by Action::kToIterator.
encDst = SparseTensorEncodingAttr::get(
op->getContext(),
SmallVector<SparseTensorEncodingAttr::DimLevelType>(
rank, SparseTensorEncodingAttr::DimLevelType::Dense),
AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
SmallVector<Value, 4> sizes;
SmallVector<Value, 8> params;
sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
newParams(rewriter, params, op, encDst, Action::kToIterator, sizes, src);
Value iter = genNewCall(rewriter, op, params);
Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
SmallVector<Value> noArgs;
SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.before(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
Block *after = rewriter.createBlock(&whileOp.after(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
rewriter.create<scf::YieldOp>(loc);
rewriter.setInsertionPointAfter(whileOp);
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
return success();
}
if (!encDst && !encSrc) {
// dense => dense
return failure();
}
// This is a dense => sparse conversion or a sparse constant in COO =>
// sparse conversion, which is handled as follows:
// t = newSparseCOO()
// ...code to fill the COO tensor t...
// s = newSparseTensor(t)
//
// To fill the COO tensor from a dense tensor:
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// t->add(val, [i1,..,ik], [p1,..,pk])
//
// To fill the COO tensor from a sparse constant in COO format:
// for i in range(NNZ)
// val = values[i]
// [i1,..,ik] = indices[i]
// t->add(val, [i1,..,ik], [p1,..,pk])
//
// Note that the dense tensor traversal code is actually implemented
// using MLIR IR to avoid having to expose too much low-level
// memref traversal details to the runtime support library.
// Also note that the code below only generates the "new" ops and
// the loop-nest per se; whereas the entire body of the innermost
// loop is generated by genAddElt().
ShapedType stp = resType.cast<ShapedType>();
unsigned rank = stp.getRank();
SmallVector<Value, 4> sizes;
SmallVector<Value, 8> params;
sizesFromSrc(rewriter, sizes, loc, src);
newParams(rewriter, params, op, encDst, Action::kEmptyCOO, sizes);
Value ptr = genNewCall(rewriter, op, params);
Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
Value perm = params[2];
SmallVector<Value> lo;
SmallVector<Value> hi;
SmallVector<Value> st;
Value zero = constantIndex(rewriter, loc, 0);
Value one = constantIndex(rewriter, loc, 1);
auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
bool isCOOConstant = indicesValues.hasValue();
Value indices;
Value values;
if (isCOOConstant) {
indices = indicesValues->first;
values = indicesValues->second;
lo.push_back(zero);
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
st.push_back(one);
} else {
for (unsigned i = 0; i < rank; i++) {
lo.push_back(zero);
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
st.push_back(one);
}
}
Type eltType = stp.getElementType();
scf::buildLoopNest(
rewriter, op.getLoc(), lo, hi, st, {},
[&](OpBuilder &builder, Location loc, ValueRange ivs,
ValueRange args) -> scf::ValueVector {
Value val;
if (isCOOConstant)
val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
ivs, rank);
else
val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
return {};
});
// Final call to construct sparse tensor storage.
params[6] = constantAction(rewriter, loc, Action::kFromCOO);
params[7] = ptr;
rewriter.replaceOp(op, genNewCall(rewriter, op, params));
return success();
}
};
/// Sparse conversion rule for the release operator.
class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
StringRef name = "delSparseTensor";
TypeRange none;
auto fn = getFunc(op, name, none, adaptor.getOperands());
rewriter.create<CallOp>(op.getLoc(), none, fn, adaptor.getOperands());
rewriter.eraseOp(op);
return success();
}
};
/// Sparse conversion rule for pointer accesses.
class SparseTensorToPointersConverter
: public OpConversionPattern<ToPointersOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type eltType = resType.cast<ShapedType>().getElementType();
StringRef name;
if (eltType.isIndex())
name = "sparsePointers";
else if (eltType.isInteger(64))
name = "sparsePointers64";
else if (eltType.isInteger(32))
name = "sparsePointers32";
else if (eltType.isInteger(16))
name = "sparsePointers16";
else if (eltType.isInteger(8))
name = "sparsePointers8";
else
return failure();
auto fn = getFunc(op, name, resType, adaptor.getOperands(),
/*emitCInterface=*/true);
rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for index accesses.
class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type eltType = resType.cast<ShapedType>().getElementType();
StringRef name;
if (eltType.isIndex())
name = "sparseIndices";
else if (eltType.isInteger(64))
name = "sparseIndices64";
else if (eltType.isInteger(32))
name = "sparseIndices32";
else if (eltType.isInteger(16))
name = "sparseIndices16";
else if (eltType.isInteger(8))
name = "sparseIndices8";
else
return failure();
auto fn = getFunc(op, name, resType, adaptor.getOperands(),
/*emitCInterface=*/true);
rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for value accesses.
class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type eltType = resType.cast<ShapedType>().getElementType();
StringRef name;
if (eltType.isF64())
name = "sparseValuesF64";
else if (eltType.isF32())
name = "sparseValuesF32";
else if (eltType.isInteger(64))
name = "sparseValuesI64";
else if (eltType.isInteger(32))
name = "sparseValuesI32";
else if (eltType.isInteger(16))
name = "sparseValuesI16";
else if (eltType.isInteger(8))
name = "sparseValuesI8";
else
return failure();
auto fn = getFunc(op, name, resType, adaptor.getOperands(),
/*emitCInterface=*/true);
rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.hasInserts()) {
// Finalize any pending insertions.
StringRef name = "endInsert";
TypeRange noTp;
auto fn = getFunc(op, name, noTp, adaptor.getOperands());
rewriter.create<CallOp>(op.getLoc(), noTp, fn, adaptor.getOperands());
}
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for inserting in lexicographic index order.
class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type srcType = op.tensor().getType();
Type eltType = srcType.cast<ShapedType>().getElementType();
StringRef name;
if (eltType.isF64())
name = "lexInsertF64";
else if (eltType.isF32())
name = "lexInsertF32";
else if (eltType.isInteger(64))
name = "lexInsertI64";
else if (eltType.isInteger(32))
name = "lexInsertI32";
else if (eltType.isInteger(16))
name = "lexInsertI16";
else if (eltType.isInteger(8))
name = "lexInsertI8";
else
llvm_unreachable("Unknown element type");
TypeRange noTp;
auto fn =
getFunc(op, name, noTp, adaptor.getOperands(), /*emitCInterface=*/true);
rewriter.replaceOpWithNewOp<CallOp>(op, noTp, fn, adaptor.getOperands());
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
SparseCastConverter, SparseTensorNewConverter,
SparseTensorInitConverter, SparseTensorConvertConverter,
SparseTensorReleaseConverter, SparseTensorToPointersConverter,
SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
SparseTensorLoadConverter, SparseTensorLexInsertConverter>(
typeConverter, patterns.getContext());
}