[mlir][emitc] mark `emitc.load` with `CExpression` (#130802)

Follow the `call` and `call_opaque` operations, as well as `apply`,
which already are marked as `CExpression` even though they have side
effects.

Even though `emitc.load` can be included inside the `emitc.expression`,
the inlining and `--form-expression` pass won't actually inline them
inside other expression due to it having a side effect, thus unless the
user manually writes the `emitc.load` inside the `emitc.expression` it
won't appear there.

--

It was brought
https://github.com/llvm/llvm-project/pull/91475#issuecomment-2302529428
and while there was some opposition due to `load` having a side effect,
`emitc` already allows all the rest operations that have it, so for
consistency reasons, enabling it doesn't really hurt from my point of
view. Especially given that `--form-expression` doesn't allow
it to really inline inside other expressions, which makes sense, since
if the users want such behavior, they should explicitly opt-in.
4 files changed
tree: fe753d942e923334f1d71ac7243369298099e249
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. pstl/
  25. runtimes/
  26. third-party/
  27. utils/
  28. .clang-format
  29. .clang-format-ignore
  30. .clang-tidy
  31. .git-blame-ignore-revs
  32. .gitattributes
  33. .gitignore
  34. .mailmap
  35. CODE_OF_CONDUCT.md
  36. CONTRIBUTING.md
  37. LICENSE.TXT
  38. pyproject.toml
  39. README.md
  40. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.