| //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tablegen backend emits information about intrinsic functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenIntrinsics.h" |
| #include "CodeGenTarget.h" |
| #include "SequenceToOffsetTable.h" |
| #include "TableGenBackends.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/TableGen/Error.h" |
| #include "llvm/TableGen/Record.h" |
| #include "llvm/TableGen/StringMatcher.h" |
| #include "llvm/TableGen/StringToOffsetTable.h" |
| #include "llvm/TableGen/TableGenBackend.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums"); |
| cl::opt<std::string> |
| IntrinsicPrefix("intrinsic-prefix", |
| cl::desc("Generate intrinsics with this target prefix"), |
| cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat)); |
| |
| namespace { |
| class IntrinsicEmitter { |
| RecordKeeper &Records; |
| |
| public: |
| IntrinsicEmitter(RecordKeeper &R) : Records(R) {} |
| |
| void run(raw_ostream &OS, bool Enums); |
| |
| void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); |
| void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); |
| void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints, |
| raw_ostream &OS); |
| void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints, |
| raw_ostream &OS); |
| void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); |
| void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); |
| void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC, |
| raw_ostream &OS); |
| }; |
| } // End anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // IntrinsicEmitter Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) { |
| emitSourceFileHeader("Intrinsic Function Source Fragment", OS); |
| |
| CodeGenIntrinsicTable Ints(Records); |
| |
| if (Enums) { |
| // Emit the enum information. |
| EmitEnumInfo(Ints, OS); |
| } else { |
| // Emit the target metadata. |
| EmitTargetInfo(Ints, OS); |
| |
| // Emit the intrinsic ID -> name table. |
| EmitIntrinsicToNameTable(Ints, OS); |
| |
| // Emit the intrinsic ID -> overload table. |
| EmitIntrinsicToOverloadTable(Ints, OS); |
| |
| // Emit the intrinsic declaration generator. |
| EmitGenerator(Ints, OS); |
| |
| // Emit the intrinsic parameter attributes. |
| EmitAttributes(Ints, OS); |
| |
| // Emit code to translate GCC builtins into LLVM intrinsics. |
| EmitIntrinsicToBuiltinMap(Ints, true, OS); |
| |
| // Emit code to translate MS builtins into LLVM intrinsics. |
| EmitIntrinsicToBuiltinMap(Ints, false, OS); |
| } |
| } |
| |
| void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints, |
| raw_ostream &OS) { |
| // Find the TargetSet for which to generate enums. There will be an initial |
| // set with an empty target prefix which will include target independent |
| // intrinsics like dbg.value. |
| const CodeGenIntrinsicTable::TargetSet *Set = nullptr; |
| for (const auto &Target : Ints.Targets) { |
| if (Target.Name == IntrinsicPrefix) { |
| Set = &Target; |
| break; |
| } |
| } |
| if (!Set) { |
| std::vector<std::string> KnownTargets; |
| for (const auto &Target : Ints.Targets) |
| if (!Target.Name.empty()) |
| KnownTargets.push_back(Target.Name); |
| PrintFatalError("tried to generate intrinsics for unknown target " + |
| IntrinsicPrefix + |
| "\nKnown targets are: " + join(KnownTargets, ", ") + "\n"); |
| } |
| |
| // Generate a complete header for target specific intrinsics. |
| if (!IntrinsicPrefix.empty()) { |
| std::string UpperPrefix = StringRef(IntrinsicPrefix).upper(); |
| OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n"; |
| OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n"; |
| OS << "namespace llvm {\n"; |
| OS << "namespace Intrinsic {\n"; |
| OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n"; |
| } |
| |
| OS << "// Enum values for intrinsics\n"; |
| for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) { |
| OS << " " << Ints[i].EnumName; |
| |
| // Assign a value to the first intrinsic in this target set so that all |
| // intrinsic ids are distinct. |
| if (i == Set->Offset) |
| OS << " = " << (Set->Offset + 1); |
| |
| OS << ", "; |
| if (Ints[i].EnumName.size() < 40) |
| OS.indent(40 - Ints[i].EnumName.size()); |
| OS << " // " << Ints[i].Name << "\n"; |
| } |
| |
| // Emit num_intrinsics into the target neutral enum. |
| if (IntrinsicPrefix.empty()) { |
| OS << " num_intrinsics = " << (Ints.size() + 1) << "\n"; |
| } else { |
| OS << "}; // enum\n"; |
| OS << "} // namespace Intrinsic\n"; |
| OS << "} // namespace llvm\n\n"; |
| OS << "#endif\n"; |
| } |
| } |
| |
| void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints, |
| raw_ostream &OS) { |
| OS << "// Target mapping\n"; |
| OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n"; |
| OS << "struct IntrinsicTargetInfo {\n" |
| << " llvm::StringLiteral Name;\n" |
| << " size_t Offset;\n" |
| << " size_t Count;\n" |
| << "};\n"; |
| OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n"; |
| for (auto Target : Ints.Targets) |
| OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset |
| << ", " << Target.Count << "},\n"; |
| OS << "};\n"; |
| OS << "#endif\n\n"; |
| } |
| |
| void IntrinsicEmitter::EmitIntrinsicToNameTable( |
| const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { |
| OS << "// Intrinsic ID to name table\n"; |
| OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; |
| OS << " // Note that entry #0 is the invalid intrinsic!\n"; |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) |
| OS << " \"" << Ints[i].Name << "\",\n"; |
| OS << "#endif\n\n"; |
| } |
| |
| void IntrinsicEmitter::EmitIntrinsicToOverloadTable( |
| const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { |
| OS << "// Intrinsic ID to overload bitset\n"; |
| OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; |
| OS << "static const uint8_t OTable[] = {\n"; |
| OS << " 0"; |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) { |
| // Add one to the index so we emit a null bit for the invalid #0 intrinsic. |
| if ((i+1)%8 == 0) |
| OS << ",\n 0"; |
| if (Ints[i].isOverloaded) |
| OS << " | (1<<" << (i+1)%8 << ')'; |
| } |
| OS << "\n};\n\n"; |
| // OTable contains a true bit at the position if the intrinsic is overloaded. |
| OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; |
| OS << "#endif\n\n"; |
| } |
| |
| |
| // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp! |
| enum IIT_Info { |
| // Common values should be encoded with 0-15. |
| IIT_Done = 0, |
| IIT_I1 = 1, |
| IIT_I8 = 2, |
| IIT_I16 = 3, |
| IIT_I32 = 4, |
| IIT_I64 = 5, |
| IIT_F16 = 6, |
| IIT_F32 = 7, |
| IIT_F64 = 8, |
| IIT_V2 = 9, |
| IIT_V4 = 10, |
| IIT_V8 = 11, |
| IIT_V16 = 12, |
| IIT_V32 = 13, |
| IIT_PTR = 14, |
| IIT_ARG = 15, |
| |
| // Values from 16+ are only encodable with the inefficient encoding. |
| IIT_V64 = 16, |
| IIT_MMX = 17, |
| IIT_TOKEN = 18, |
| IIT_METADATA = 19, |
| IIT_EMPTYSTRUCT = 20, |
| IIT_STRUCT2 = 21, |
| IIT_STRUCT3 = 22, |
| IIT_STRUCT4 = 23, |
| IIT_STRUCT5 = 24, |
| IIT_EXTEND_ARG = 25, |
| IIT_TRUNC_ARG = 26, |
| IIT_ANYPTR = 27, |
| IIT_V1 = 28, |
| IIT_VARARG = 29, |
| IIT_HALF_VEC_ARG = 30, |
| IIT_SAME_VEC_WIDTH_ARG = 31, |
| IIT_PTR_TO_ARG = 32, |
| IIT_PTR_TO_ELT = 33, |
| IIT_VEC_OF_ANYPTRS_TO_ELT = 34, |
| IIT_I128 = 35, |
| IIT_V512 = 36, |
| IIT_V1024 = 37, |
| IIT_STRUCT6 = 38, |
| IIT_STRUCT7 = 39, |
| IIT_STRUCT8 = 40, |
| IIT_F128 = 41, |
| IIT_VEC_ELEMENT = 42, |
| IIT_SCALABLE_VEC = 43, |
| IIT_SUBDIVIDE2_ARG = 44, |
| IIT_SUBDIVIDE4_ARG = 45, |
| IIT_VEC_OF_BITCASTS_TO_INT = 46, |
| IIT_V128 = 47, |
| IIT_BF16 = 48, |
| IIT_STRUCT9 = 49, |
| IIT_V256 = 50, |
| IIT_AMX = 51, |
| IIT_PPCF128 = 52 |
| }; |
| |
| static void EncodeFixedValueType(MVT::SimpleValueType VT, |
| std::vector<unsigned char> &Sig) { |
| if (MVT(VT).isInteger()) { |
| unsigned BitWidth = MVT(VT).getFixedSizeInBits(); |
| switch (BitWidth) { |
| default: PrintFatalError("unhandled integer type width in intrinsic!"); |
| case 1: return Sig.push_back(IIT_I1); |
| case 8: return Sig.push_back(IIT_I8); |
| case 16: return Sig.push_back(IIT_I16); |
| case 32: return Sig.push_back(IIT_I32); |
| case 64: return Sig.push_back(IIT_I64); |
| case 128: return Sig.push_back(IIT_I128); |
| } |
| } |
| |
| switch (VT) { |
| default: PrintFatalError("unhandled MVT in intrinsic!"); |
| case MVT::f16: return Sig.push_back(IIT_F16); |
| case MVT::bf16: return Sig.push_back(IIT_BF16); |
| case MVT::f32: return Sig.push_back(IIT_F32); |
| case MVT::f64: return Sig.push_back(IIT_F64); |
| case MVT::f128: return Sig.push_back(IIT_F128); |
| case MVT::ppcf128: return Sig.push_back(IIT_PPCF128); |
| case MVT::token: return Sig.push_back(IIT_TOKEN); |
| case MVT::Metadata: return Sig.push_back(IIT_METADATA); |
| case MVT::x86mmx: return Sig.push_back(IIT_MMX); |
| case MVT::x86amx: return Sig.push_back(IIT_AMX); |
| // MVT::OtherVT is used to mean the empty struct type here. |
| case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT); |
| // MVT::isVoid is used to represent varargs here. |
| case MVT::isVoid: return Sig.push_back(IIT_VARARG); |
| } |
| } |
| |
| #if defined(_MSC_VER) && !defined(__clang__) |
| #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function. |
| #endif |
| |
| static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes, |
| unsigned &NextArgCode, |
| std::vector<unsigned char> &Sig, |
| ArrayRef<unsigned char> Mapping) { |
| |
| if (R->isSubClassOf("LLVMMatchType")) { |
| unsigned Number = Mapping[R->getValueAsInt("Number")]; |
| assert(Number < ArgCodes.size() && "Invalid matching number!"); |
| if (R->isSubClassOf("LLVMExtendedType")) |
| Sig.push_back(IIT_EXTEND_ARG); |
| else if (R->isSubClassOf("LLVMTruncatedType")) |
| Sig.push_back(IIT_TRUNC_ARG); |
| else if (R->isSubClassOf("LLVMHalfElementsVectorType")) |
| Sig.push_back(IIT_HALF_VEC_ARG); |
| else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) { |
| Sig.push_back(IIT_SAME_VEC_WIDTH_ARG); |
| Sig.push_back((Number << 3) | ArgCodes[Number]); |
| MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy")); |
| EncodeFixedValueType(VT, Sig); |
| return; |
| } |
| else if (R->isSubClassOf("LLVMPointerTo")) |
| Sig.push_back(IIT_PTR_TO_ARG); |
| else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { |
| Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT); |
| // Encode overloaded ArgNo |
| Sig.push_back(NextArgCode++); |
| // Encode LLVMMatchType<Number> ArgNo |
| Sig.push_back(Number); |
| return; |
| } else if (R->isSubClassOf("LLVMPointerToElt")) |
| Sig.push_back(IIT_PTR_TO_ELT); |
| else if (R->isSubClassOf("LLVMVectorElementType")) |
| Sig.push_back(IIT_VEC_ELEMENT); |
| else if (R->isSubClassOf("LLVMSubdivide2VectorType")) |
| Sig.push_back(IIT_SUBDIVIDE2_ARG); |
| else if (R->isSubClassOf("LLVMSubdivide4VectorType")) |
| Sig.push_back(IIT_SUBDIVIDE4_ARG); |
| else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt")) |
| Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT); |
| else |
| Sig.push_back(IIT_ARG); |
| return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/); |
| } |
| |
| MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT")); |
| |
| unsigned Tmp = 0; |
| switch (VT) { |
| default: break; |
| case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH; |
| case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH; |
| case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH; |
| case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH; |
| case MVT::Any: { |
| // If this is an "any" valuetype, then the type is the type of the next |
| // type in the list specified to getIntrinsic(). |
| Sig.push_back(IIT_ARG); |
| |
| // Figure out what arg # this is consuming, and remember what kind it was. |
| assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp && |
| "Invalid or no ArgCode associated with overloaded VT!"); |
| unsigned ArgNo = NextArgCode++; |
| |
| // Encode what sort of argument it must be in the low 3 bits of the ArgNo. |
| return Sig.push_back((ArgNo << 3) | Tmp); |
| } |
| |
| case MVT::iPTR: { |
| unsigned AddrSpace = 0; |
| if (R->isSubClassOf("LLVMQualPointerType")) { |
| AddrSpace = R->getValueAsInt("AddrSpace"); |
| assert(AddrSpace < 256 && "Address space exceeds 255"); |
| } |
| if (AddrSpace) { |
| Sig.push_back(IIT_ANYPTR); |
| Sig.push_back(AddrSpace); |
| } else { |
| Sig.push_back(IIT_PTR); |
| } |
| return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig, |
| Mapping); |
| } |
| } |
| |
| if (MVT(VT).isVector()) { |
| MVT VVT = VT; |
| if (VVT.isScalableVector()) |
| Sig.push_back(IIT_SCALABLE_VEC); |
| switch (VVT.getVectorMinNumElements()) { |
| default: PrintFatalError("unhandled vector type width in intrinsic!"); |
| case 1: Sig.push_back(IIT_V1); break; |
| case 2: Sig.push_back(IIT_V2); break; |
| case 4: Sig.push_back(IIT_V4); break; |
| case 8: Sig.push_back(IIT_V8); break; |
| case 16: Sig.push_back(IIT_V16); break; |
| case 32: Sig.push_back(IIT_V32); break; |
| case 64: Sig.push_back(IIT_V64); break; |
| case 128: Sig.push_back(IIT_V128); break; |
| case 256: Sig.push_back(IIT_V256); break; |
| case 512: Sig.push_back(IIT_V512); break; |
| case 1024: Sig.push_back(IIT_V1024); break; |
| } |
| |
| return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig); |
| } |
| |
| EncodeFixedValueType(VT, Sig); |
| } |
| |
| static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes, |
| unsigned int &NumInserted, |
| SmallVectorImpl<unsigned char> &Mapping) { |
| if (R->isSubClassOf("LLVMMatchType")) { |
| if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { |
| ArgCodes.push_back(3 /*vAny*/); |
| ++NumInserted; |
| } |
| return; |
| } |
| |
| unsigned Tmp = 0; |
| switch (getValueType(R->getValueAsDef("VT"))) { |
| default: break; |
| case MVT::iPTR: |
| UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping); |
| break; |
| case MVT::iPTRAny: |
| ++Tmp; |
| LLVM_FALLTHROUGH; |
| case MVT::vAny: |
| ++Tmp; |
| LLVM_FALLTHROUGH; |
| case MVT::fAny: |
| ++Tmp; |
| LLVM_FALLTHROUGH; |
| case MVT::iAny: |
| ++Tmp; |
| LLVM_FALLTHROUGH; |
| case MVT::Any: |
| unsigned OriginalIdx = ArgCodes.size() - NumInserted; |
| assert(OriginalIdx >= Mapping.size()); |
| Mapping.resize(OriginalIdx+1); |
| Mapping[OriginalIdx] = ArgCodes.size(); |
| ArgCodes.push_back(Tmp); |
| break; |
| } |
| } |
| |
| #if defined(_MSC_VER) && !defined(__clang__) |
| #pragma optimize("",on) |
| #endif |
| |
| /// ComputeFixedEncoding - If we can encode the type signature for this |
| /// intrinsic into 32 bits, return it. If not, return ~0U. |
| static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, |
| std::vector<unsigned char> &TypeSig) { |
| std::vector<unsigned char> ArgCodes; |
| |
| // Add codes for any overloaded result VTs. |
| unsigned int NumInserted = 0; |
| SmallVector<unsigned char, 8> ArgMapping; |
| for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) |
| UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping); |
| |
| // Add codes for any overloaded operand VTs. |
| for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) |
| UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping); |
| |
| unsigned NextArgCode = 0; |
| if (Int.IS.RetVTs.empty()) |
| TypeSig.push_back(IIT_Done); |
| else if (Int.IS.RetVTs.size() == 1 && |
| Int.IS.RetVTs[0] == MVT::isVoid) |
| TypeSig.push_back(IIT_Done); |
| else { |
| switch (Int.IS.RetVTs.size()) { |
| case 1: break; |
| case 2: TypeSig.push_back(IIT_STRUCT2); break; |
| case 3: TypeSig.push_back(IIT_STRUCT3); break; |
| case 4: TypeSig.push_back(IIT_STRUCT4); break; |
| case 5: TypeSig.push_back(IIT_STRUCT5); break; |
| case 6: TypeSig.push_back(IIT_STRUCT6); break; |
| case 7: TypeSig.push_back(IIT_STRUCT7); break; |
| case 8: TypeSig.push_back(IIT_STRUCT8); break; |
| case 9: TypeSig.push_back(IIT_STRUCT9); break; |
| default: llvm_unreachable("Unhandled case in struct"); |
| } |
| |
| for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) |
| EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig, |
| ArgMapping); |
| } |
| |
| for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) |
| EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig, |
| ArgMapping); |
| } |
| |
| static void printIITEntry(raw_ostream &OS, unsigned char X) { |
| OS << (unsigned)X; |
| } |
| |
| void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints, |
| raw_ostream &OS) { |
| // If we can compute a 32-bit fixed encoding for this intrinsic, do so and |
| // capture it in this vector, otherwise store a ~0U. |
| std::vector<unsigned> FixedEncodings; |
| |
| SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable; |
| |
| std::vector<unsigned char> TypeSig; |
| |
| // Compute the unique argument type info. |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) { |
| // Get the signature for the intrinsic. |
| TypeSig.clear(); |
| ComputeFixedEncoding(Ints[i], TypeSig); |
| |
| // Check to see if we can encode it into a 32-bit word. We can only encode |
| // 8 nibbles into a 32-bit word. |
| if (TypeSig.size() <= 8) { |
| bool Failed = false; |
| unsigned Result = 0; |
| for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { |
| // If we had an unencodable argument, bail out. |
| if (TypeSig[i] > 15) { |
| Failed = true; |
| break; |
| } |
| Result = (Result << 4) | TypeSig[e-i-1]; |
| } |
| |
| // If this could be encoded into a 31-bit word, return it. |
| if (!Failed && (Result >> 31) == 0) { |
| FixedEncodings.push_back(Result); |
| continue; |
| } |
| } |
| |
| // Otherwise, we're going to unique the sequence into the |
| // LongEncodingTable, and use its offset in the 32-bit table instead. |
| LongEncodingTable.add(TypeSig); |
| |
| // This is a placehold that we'll replace after the table is laid out. |
| FixedEncodings.push_back(~0U); |
| } |
| |
| LongEncodingTable.layout(); |
| |
| OS << "// Global intrinsic function declaration type table.\n"; |
| OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; |
| |
| OS << "static const unsigned IIT_Table[] = {\n "; |
| |
| for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { |
| if ((i & 7) == 7) |
| OS << "\n "; |
| |
| // If the entry fit in the table, just emit it. |
| if (FixedEncodings[i] != ~0U) { |
| OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", "; |
| continue; |
| } |
| |
| TypeSig.clear(); |
| ComputeFixedEncoding(Ints[i], TypeSig); |
| |
| |
| // Otherwise, emit the offset into the long encoding table. We emit it this |
| // way so that it is easier to read the offset in the .def file. |
| OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; |
| } |
| |
| OS << "0\n};\n\n"; |
| |
| // Emit the shared table of register lists. |
| OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; |
| if (!LongEncodingTable.empty()) |
| LongEncodingTable.emit(OS, printIITEntry); |
| OS << " 255\n};\n\n"; |
| |
| OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL |
| } |
| |
| namespace { |
| struct AttributeComparator { |
| bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { |
| // Sort throwing intrinsics after non-throwing intrinsics. |
| if (L->canThrow != R->canThrow) |
| return R->canThrow; |
| |
| if (L->isNoDuplicate != R->isNoDuplicate) |
| return R->isNoDuplicate; |
| |
| if (L->isNoMerge != R->isNoMerge) |
| return R->isNoMerge; |
| |
| if (L->isNoReturn != R->isNoReturn) |
| return R->isNoReturn; |
| |
| if (L->isNoSync != R->isNoSync) |
| return R->isNoSync; |
| |
| if (L->isNoFree != R->isNoFree) |
| return R->isNoFree; |
| |
| if (L->isWillReturn != R->isWillReturn) |
| return R->isWillReturn; |
| |
| if (L->isCold != R->isCold) |
| return R->isCold; |
| |
| if (L->isConvergent != R->isConvergent) |
| return R->isConvergent; |
| |
| if (L->isSpeculatable != R->isSpeculatable) |
| return R->isSpeculatable; |
| |
| if (L->hasSideEffects != R->hasSideEffects) |
| return R->hasSideEffects; |
| |
| // Try to order by readonly/readnone attribute. |
| CodeGenIntrinsic::ModRefBehavior LK = L->ModRef; |
| CodeGenIntrinsic::ModRefBehavior RK = R->ModRef; |
| if (LK != RK) return (LK > RK); |
| // Order by argument attributes. |
| // This is reliable because each side is already sorted internally. |
| return (L->ArgumentAttributes < R->ArgumentAttributes); |
| } |
| }; |
| } // End anonymous namespace |
| |
| /// EmitAttributes - This emits the Intrinsic::getAttributes method. |
| void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints, |
| raw_ostream &OS) { |
| OS << "// Add parameter attributes that are not common to all intrinsics.\n"; |
| OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; |
| OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n"; |
| |
| // Compute the maximum number of attribute arguments and the map |
| typedef std::map<const CodeGenIntrinsic*, unsigned, |
| AttributeComparator> UniqAttrMapTy; |
| UniqAttrMapTy UniqAttributes; |
| unsigned maxArgAttrs = 0; |
| unsigned AttrNum = 0; |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) { |
| const CodeGenIntrinsic &intrinsic = Ints[i]; |
| maxArgAttrs = |
| std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); |
| unsigned &N = UniqAttributes[&intrinsic]; |
| if (N) continue; |
| N = ++AttrNum; |
| assert(N < 65536 && "Too many unique attributes for table!"); |
| } |
| |
| // Emit an array of AttributeList. Most intrinsics will have at least one |
| // entry, for the function itself (index ~1), which is usually nounwind. |
| OS << " static const uint16_t IntrinsicsToAttributesMap[] = {\n"; |
| |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) { |
| const CodeGenIntrinsic &intrinsic = Ints[i]; |
| |
| OS << " " << UniqAttributes[&intrinsic] << ", // " |
| << intrinsic.Name << "\n"; |
| } |
| OS << " };\n\n"; |
| |
| OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n"; |
| OS << " unsigned NumAttrs = 0;\n"; |
| OS << " if (id != 0) {\n"; |
| OS << " switch(IntrinsicsToAttributesMap[id - 1]) {\n"; |
| OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; |
| for (auto UniqAttribute : UniqAttributes) { |
| OS << " case " << UniqAttribute.second << ": {\n"; |
| |
| const CodeGenIntrinsic &Intrinsic = *(UniqAttribute.first); |
| |
| // Keep track of the number of attributes we're writing out. |
| unsigned numAttrs = 0; |
| |
| // The argument attributes are alreadys sorted by argument index. |
| unsigned Ai = 0, Ae = Intrinsic.ArgumentAttributes.size(); |
| if (Ae) { |
| while (Ai != Ae) { |
| unsigned AttrIdx = Intrinsic.ArgumentAttributes[Ai].Index; |
| |
| OS << " const Attribute::AttrKind AttrParam" << AttrIdx << "[]= {"; |
| ListSeparator LS(","); |
| |
| bool AllValuesAreZero = true; |
| SmallVector<uint64_t, 8> Values; |
| do { |
| switch (Intrinsic.ArgumentAttributes[Ai].Kind) { |
| case CodeGenIntrinsic::NoCapture: |
| OS << LS << "Attribute::NoCapture"; |
| break; |
| case CodeGenIntrinsic::NoAlias: |
| OS << LS << "Attribute::NoAlias"; |
| break; |
| case CodeGenIntrinsic::NoUndef: |
| OS << LS << "Attribute::NoUndef"; |
| break; |
| case CodeGenIntrinsic::Returned: |
| OS << LS << "Attribute::Returned"; |
| break; |
| case CodeGenIntrinsic::ReadOnly: |
| OS << LS << "Attribute::ReadOnly"; |
| break; |
| case CodeGenIntrinsic::WriteOnly: |
| OS << LS << "Attribute::WriteOnly"; |
| break; |
| case CodeGenIntrinsic::ReadNone: |
| OS << LS << "Attribute::ReadNone"; |
| break; |
| case CodeGenIntrinsic::ImmArg: |
| OS << LS << "Attribute::ImmArg"; |
| break; |
| case CodeGenIntrinsic::Alignment: |
| OS << LS << "Attribute::Alignment"; |
| break; |
| } |
| uint64_t V = Intrinsic.ArgumentAttributes[Ai].Value; |
| Values.push_back(V); |
| AllValuesAreZero &= (V == 0); |
| |
| ++Ai; |
| } while (Ai != Ae && Intrinsic.ArgumentAttributes[Ai].Index == AttrIdx); |
| OS << "};\n"; |
| |
| // Generate attribute value array if not all attribute values are zero. |
| if (!AllValuesAreZero) { |
| OS << " const uint64_t AttrValParam" << AttrIdx << "[]= {"; |
| ListSeparator LSV(","); |
| for (const auto V : Values) |
| OS << LSV << V; |
| OS << "};\n"; |
| } |
| |
| OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " |
| << AttrIdx << ", AttrParam" << AttrIdx; |
| if (!AllValuesAreZero) |
| OS << ", AttrValParam" << AttrIdx; |
| OS << ");\n"; |
| } |
| } |
| |
| if (!Intrinsic.canThrow || |
| (Intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem && |
| !Intrinsic.hasSideEffects) || |
| Intrinsic.isNoReturn || Intrinsic.isNoSync || Intrinsic.isNoFree || |
| Intrinsic.isWillReturn || Intrinsic.isCold || Intrinsic.isNoDuplicate || |
| Intrinsic.isNoMerge || Intrinsic.isConvergent || |
| Intrinsic.isSpeculatable) { |
| OS << " const Attribute::AttrKind Atts[] = {"; |
| ListSeparator LS(","); |
| if (!Intrinsic.canThrow) |
| OS << LS << "Attribute::NoUnwind"; |
| if (Intrinsic.isNoReturn) |
| OS << LS << "Attribute::NoReturn"; |
| if (Intrinsic.isNoSync) |
| OS << LS << "Attribute::NoSync"; |
| if (Intrinsic.isNoFree) |
| OS << LS << "Attribute::NoFree"; |
| if (Intrinsic.isWillReturn) |
| OS << LS << "Attribute::WillReturn"; |
| if (Intrinsic.isCold) |
| OS << LS << "Attribute::Cold"; |
| if (Intrinsic.isNoDuplicate) |
| OS << LS << "Attribute::NoDuplicate"; |
| if (Intrinsic.isNoMerge) |
| OS << LS << "Attribute::NoMerge"; |
| if (Intrinsic.isConvergent) |
| OS << LS << "Attribute::Convergent"; |
| if (Intrinsic.isSpeculatable) |
| OS << LS << "Attribute::Speculatable"; |
| |
| switch (Intrinsic.ModRef) { |
| case CodeGenIntrinsic::NoMem: |
| if (Intrinsic.hasSideEffects) |
| break; |
| OS << LS; |
| OS << "Attribute::ReadNone"; |
| break; |
| case CodeGenIntrinsic::ReadArgMem: |
| OS << LS; |
| OS << "Attribute::ReadOnly,"; |
| OS << "Attribute::ArgMemOnly"; |
| break; |
| case CodeGenIntrinsic::ReadMem: |
| OS << LS; |
| OS << "Attribute::ReadOnly"; |
| break; |
| case CodeGenIntrinsic::ReadInaccessibleMem: |
| OS << LS; |
| OS << "Attribute::ReadOnly,"; |
| OS << "Attribute::InaccessibleMemOnly"; |
| break; |
| case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem: |
| OS << LS; |
| OS << "Attribute::ReadOnly,"; |
| OS << "Attribute::InaccessibleMemOrArgMemOnly"; |
| break; |
| case CodeGenIntrinsic::WriteArgMem: |
| OS << LS; |
| OS << "Attribute::WriteOnly,"; |
| OS << "Attribute::ArgMemOnly"; |
| break; |
| case CodeGenIntrinsic::WriteMem: |
| OS << LS; |
| OS << "Attribute::WriteOnly"; |
| break; |
| case CodeGenIntrinsic::WriteInaccessibleMem: |
| OS << LS; |
| OS << "Attribute::WriteOnly,"; |
| OS << "Attribute::InaccessibleMemOnly"; |
| break; |
| case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem: |
| OS << LS; |
| OS << "Attribute::WriteOnly,"; |
| OS << "Attribute::InaccessibleMemOrArgMemOnly"; |
| break; |
| case CodeGenIntrinsic::ReadWriteArgMem: |
| OS << LS; |
| OS << "Attribute::ArgMemOnly"; |
| break; |
| case CodeGenIntrinsic::ReadWriteInaccessibleMem: |
| OS << LS; |
| OS << "Attribute::InaccessibleMemOnly"; |
| break; |
| case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem: |
| OS << LS; |
| OS << "Attribute::InaccessibleMemOrArgMemOnly"; |
| break; |
| case CodeGenIntrinsic::ReadWriteMem: |
| break; |
| } |
| OS << "};\n"; |
| OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " |
| << "AttributeList::FunctionIndex, Atts);\n"; |
| } |
| |
| if (numAttrs) { |
| OS << " NumAttrs = " << numAttrs << ";\n"; |
| OS << " break;\n"; |
| OS << " }\n"; |
| } else { |
| OS << " return AttributeList();\n"; |
| OS << " }\n"; |
| } |
| } |
| |
| OS << " }\n"; |
| OS << " }\n"; |
| OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n"; |
| OS << "}\n"; |
| OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; |
| } |
| |
| void IntrinsicEmitter::EmitIntrinsicToBuiltinMap( |
| const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) { |
| StringRef CompilerName = (IsGCC ? "GCC" : "MS"); |
| typedef std::map<std::string, std::map<std::string, std::string>> BIMTy; |
| BIMTy BuiltinMap; |
| StringToOffsetTable Table; |
| for (unsigned i = 0, e = Ints.size(); i != e; ++i) { |
| const std::string &BuiltinName = |
| IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName; |
| if (!BuiltinName.empty()) { |
| // Get the map for this target prefix. |
| std::map<std::string, std::string> &BIM = |
| BuiltinMap[Ints[i].TargetPrefix]; |
| |
| if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second) |
| PrintFatalError(Ints[i].TheDef->getLoc(), |
| "Intrinsic '" + Ints[i].TheDef->getName() + |
| "': duplicate " + CompilerName + " builtin name!"); |
| Table.GetOrAddStringOffset(BuiltinName); |
| } |
| } |
| |
| OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n"; |
| OS << "// This is used by the C front-end. The builtin name is passed\n"; |
| OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; |
| OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; |
| OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n"; |
| |
| OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName |
| << "Builtin(const char " |
| << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n"; |
| |
| if (Table.Empty()) { |
| OS << " return Intrinsic::not_intrinsic;\n"; |
| OS << "}\n"; |
| OS << "#endif\n\n"; |
| return; |
| } |
| |
| OS << " static const char BuiltinNames[] = {\n"; |
| Table.EmitCharArray(OS); |
| OS << " };\n\n"; |
| |
| OS << " struct BuiltinEntry {\n"; |
| OS << " Intrinsic::ID IntrinID;\n"; |
| OS << " unsigned StrTabOffset;\n"; |
| OS << " const char *getName() const {\n"; |
| OS << " return &BuiltinNames[StrTabOffset];\n"; |
| OS << " }\n"; |
| OS << " bool operator<(StringRef RHS) const {\n"; |
| OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n"; |
| OS << " }\n"; |
| OS << " };\n"; |
| |
| OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; |
| |
| // Note: this could emit significantly better code if we cared. |
| for (auto &I : BuiltinMap) { |
| OS << " "; |
| if (!I.first.empty()) |
| OS << "if (TargetPrefix == \"" << I.first << "\") "; |
| else |
| OS << "/* Target Independent Builtins */ "; |
| OS << "{\n"; |
| |
| // Emit the comparisons for this target prefix. |
| OS << " static const BuiltinEntry " << I.first << "Names[] = {\n"; |
| for (const auto &P : I.second) { |
| OS << " {Intrinsic::" << P.second << ", " |
| << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n"; |
| } |
| OS << " };\n"; |
| OS << " auto I = std::lower_bound(std::begin(" << I.first << "Names),\n"; |
| OS << " std::end(" << I.first << "Names),\n"; |
| OS << " BuiltinNameStr);\n"; |
| OS << " if (I != std::end(" << I.first << "Names) &&\n"; |
| OS << " I->getName() == BuiltinNameStr)\n"; |
| OS << " return I->IntrinID;\n"; |
| OS << " }\n"; |
| } |
| OS << " return "; |
| OS << "Intrinsic::not_intrinsic;\n"; |
| OS << "}\n"; |
| OS << "#endif\n\n"; |
| } |
| |
| void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) { |
| IntrinsicEmitter(RK).run(OS, /*Enums=*/true); |
| } |
| |
| void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) { |
| IntrinsicEmitter(RK).run(OS, /*Enums=*/false); |
| } |