blob: 38e459cd5425bec246c044e3ea60cad990064088 [file] [log] [blame]
//===-- XCOFFDumper.cpp - XCOFF dumping utility -----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an XCOFF specific dumper for llvm-readobj.
//
//===----------------------------------------------------------------------===//
#include "ObjDumper.h"
#include "llvm-readobj.h"
#include "llvm/Object/XCOFFObjectFile.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/ScopedPrinter.h"
#include <stddef.h>
using namespace llvm;
using namespace object;
namespace {
class XCOFFDumper : public ObjDumper {
public:
XCOFFDumper(const XCOFFObjectFile &Obj, ScopedPrinter &Writer)
: ObjDumper(Writer, Obj.getFileName()), Obj(Obj) {}
void printFileHeaders() override;
void printAuxiliaryHeader() override;
void printSectionHeaders() override;
void printRelocations() override;
void printSymbols() override;
void printDynamicSymbols() override;
void printUnwindInfo() override;
void printStackMap() const override;
void printNeededLibraries() override;
void printStringTable() override;
private:
template <typename T> void printSectionHeaders(ArrayRef<T> Sections);
template <typename T> void printGenericSectionHeader(T &Sec) const;
template <typename T> void printOverflowSectionHeader(T &Sec) const;
void printFileAuxEnt(const XCOFFFileAuxEnt *AuxEntPtr);
void printCsectAuxEnt(XCOFFCsectAuxRef AuxEntRef);
void printSectAuxEntForStat(const XCOFFSectAuxEntForStat *AuxEntPtr);
void printSymbol(const SymbolRef &);
template <typename RelTy> void printRelocation(RelTy Reloc);
template <typename Shdr, typename RelTy>
void printRelocations(ArrayRef<Shdr> Sections);
void printAuxiliaryHeader(const XCOFFAuxiliaryHeader32 *AuxHeader);
void printAuxiliaryHeader(const XCOFFAuxiliaryHeader64 *AuxHeader);
const XCOFFObjectFile &Obj;
};
} // anonymous namespace
void XCOFFDumper::printFileHeaders() {
DictScope DS(W, "FileHeader");
W.printHex("Magic", Obj.getMagic());
W.printNumber("NumberOfSections", Obj.getNumberOfSections());
// Negative timestamp values are reserved for future use.
int32_t TimeStamp = Obj.getTimeStamp();
if (TimeStamp > 0) {
// This handling of the time stamp assumes that the host system's time_t is
// compatible with AIX time_t. If a platform is not compatible, the lit
// tests will let us know.
time_t TimeDate = TimeStamp;
char FormattedTime[21] = {};
size_t BytesWritten =
strftime(FormattedTime, 21, "%Y-%m-%dT%H:%M:%SZ", gmtime(&TimeDate));
if (BytesWritten)
W.printHex("TimeStamp", FormattedTime, TimeStamp);
else
W.printHex("Timestamp", TimeStamp);
} else {
W.printHex("TimeStamp", TimeStamp == 0 ? "None" : "Reserved Value",
TimeStamp);
}
// The number of symbol table entries is an unsigned value in 64-bit objects
// and a signed value (with negative values being 'reserved') in 32-bit
// objects.
if (Obj.is64Bit()) {
W.printHex("SymbolTableOffset", Obj.getSymbolTableOffset64());
W.printNumber("SymbolTableEntries", Obj.getNumberOfSymbolTableEntries64());
} else {
W.printHex("SymbolTableOffset", Obj.getSymbolTableOffset32());
int32_t SymTabEntries = Obj.getRawNumberOfSymbolTableEntries32();
if (SymTabEntries >= 0)
W.printNumber("SymbolTableEntries", SymTabEntries);
else
W.printHex("SymbolTableEntries", "Reserved Value", SymTabEntries);
}
W.printHex("OptionalHeaderSize", Obj.getOptionalHeaderSize());
W.printHex("Flags", Obj.getFlags());
// TODO FIXME Add support for the auxiliary header (if any) once
// XCOFFObjectFile has the necessary support.
}
void XCOFFDumper::printAuxiliaryHeader() {
if (Obj.is64Bit())
printAuxiliaryHeader(Obj.auxiliaryHeader64());
else
printAuxiliaryHeader(Obj.auxiliaryHeader32());
}
void XCOFFDumper::printSectionHeaders() {
if (Obj.is64Bit())
printSectionHeaders(Obj.sections64());
else
printSectionHeaders(Obj.sections32());
}
void XCOFFDumper::printRelocations() {
if (Obj.is64Bit())
printRelocations<XCOFFSectionHeader64, XCOFFRelocation64>(Obj.sections64());
else
printRelocations<XCOFFSectionHeader32, XCOFFRelocation32>(Obj.sections32());
}
const EnumEntry<XCOFF::RelocationType> RelocationTypeNameclass[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(R_POS), ECase(R_RL), ECase(R_RLA), ECase(R_NEG),
ECase(R_REL), ECase(R_TOC), ECase(R_TRL), ECase(R_TRLA),
ECase(R_GL), ECase(R_TCL), ECase(R_REF), ECase(R_BA),
ECase(R_BR), ECase(R_RBA), ECase(R_RBR), ECase(R_TLS),
ECase(R_TLS_IE), ECase(R_TLS_LD), ECase(R_TLS_LE), ECase(R_TLSM),
ECase(R_TLSML), ECase(R_TOCU), ECase(R_TOCL)
#undef ECase
};
template <typename RelTy> void XCOFFDumper::printRelocation(RelTy Reloc) {
Expected<StringRef> ErrOrSymbolName =
Obj.getSymbolNameByIndex(Reloc.SymbolIndex);
if (Error E = ErrOrSymbolName.takeError()) {
reportUniqueWarning(std::move(E));
return;
}
StringRef SymbolName = *ErrOrSymbolName;
StringRef RelocName = XCOFF::getRelocationTypeString(Reloc.Type);
if (opts::ExpandRelocs) {
DictScope Group(W, "Relocation");
W.printHex("Virtual Address", Reloc.VirtualAddress);
W.printNumber("Symbol", SymbolName, Reloc.SymbolIndex);
W.printString("IsSigned", Reloc.isRelocationSigned() ? "Yes" : "No");
W.printNumber("FixupBitValue", Reloc.isFixupIndicated() ? 1 : 0);
W.printNumber("Length", Reloc.getRelocatedLength());
W.printEnum("Type", (uint8_t)Reloc.Type,
makeArrayRef(RelocationTypeNameclass));
} else {
raw_ostream &OS = W.startLine();
OS << W.hex(Reloc.VirtualAddress) << " " << RelocName << " " << SymbolName
<< "(" << Reloc.SymbolIndex << ") " << W.hex(Reloc.Info) << "\n";
}
}
template <typename Shdr, typename RelTy>
void XCOFFDumper::printRelocations(ArrayRef<Shdr> Sections) {
ListScope LS(W, "Relocations");
uint16_t Index = 0;
for (const Shdr &Sec : Sections) {
++Index;
// Only the .text, .data, .tdata, and STYP_DWARF sections have relocation.
if (Sec.Flags != XCOFF::STYP_TEXT && Sec.Flags != XCOFF::STYP_DATA &&
Sec.Flags != XCOFF::STYP_TDATA && Sec.Flags != XCOFF::STYP_DWARF)
continue;
Expected<ArrayRef<RelTy>> ErrOrRelocations = Obj.relocations<Shdr, RelTy>(Sec);
if (Error E = ErrOrRelocations.takeError()) {
reportUniqueWarning(std::move(E));
continue;
}
const ArrayRef<RelTy> Relocations = *ErrOrRelocations;
if (Relocations.empty())
continue;
W.startLine() << "Section (index: " << Index << ") " << Sec.getName()
<< " {\n";
W.indent();
for (const RelTy Reloc : Relocations)
printRelocation(Reloc);
W.unindent();
W.startLine() << "}\n";
}
}
const EnumEntry<XCOFF::CFileStringType> FileStringType[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(XFT_FN), ECase(XFT_CT), ECase(XFT_CV), ECase(XFT_CD)
#undef ECase
};
const EnumEntry<XCOFF::SymbolAuxType> SymAuxType[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(AUX_EXCEPT), ECase(AUX_FCN), ECase(AUX_SYM), ECase(AUX_FILE),
ECase(AUX_CSECT), ECase(AUX_SECT)
#undef ECase
};
void XCOFFDumper::printFileAuxEnt(const XCOFFFileAuxEnt *AuxEntPtr) {
assert((!Obj.is64Bit() || AuxEntPtr->AuxType == XCOFF::AUX_FILE) &&
"Mismatched auxiliary type!");
StringRef FileName =
unwrapOrError(Obj.getFileName(), Obj.getCFileName(AuxEntPtr));
DictScope SymDs(W, "File Auxiliary Entry");
W.printNumber("Index",
Obj.getSymbolIndex(reinterpret_cast<uintptr_t>(AuxEntPtr)));
W.printString("Name", FileName);
W.printEnum("Type", static_cast<uint8_t>(AuxEntPtr->Type),
makeArrayRef(FileStringType));
if (Obj.is64Bit()) {
W.printEnum("Auxiliary Type", static_cast<uint8_t>(AuxEntPtr->AuxType),
makeArrayRef(SymAuxType));
}
}
static const EnumEntry<XCOFF::StorageMappingClass> CsectStorageMappingClass[] =
{
#define ECase(X) \
{ #X, XCOFF::X }
ECase(XMC_PR), ECase(XMC_RO), ECase(XMC_DB), ECase(XMC_GL),
ECase(XMC_XO), ECase(XMC_SV), ECase(XMC_SV64), ECase(XMC_SV3264),
ECase(XMC_TI), ECase(XMC_TB), ECase(XMC_RW), ECase(XMC_TC0),
ECase(XMC_TC), ECase(XMC_TD), ECase(XMC_DS), ECase(XMC_UA),
ECase(XMC_BS), ECase(XMC_UC), ECase(XMC_TL), ECase(XMC_UL),
ECase(XMC_TE)
#undef ECase
};
const EnumEntry<XCOFF::SymbolType> CsectSymbolTypeClass[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(XTY_ER), ECase(XTY_SD), ECase(XTY_LD), ECase(XTY_CM)
#undef ECase
};
void XCOFFDumper::printCsectAuxEnt(XCOFFCsectAuxRef AuxEntRef) {
assert((!Obj.is64Bit() || AuxEntRef.getAuxType64() == XCOFF::AUX_CSECT) &&
"Mismatched auxiliary type!");
DictScope SymDs(W, "CSECT Auxiliary Entry");
W.printNumber("Index", Obj.getSymbolIndex(AuxEntRef.getEntryAddress()));
W.printNumber(AuxEntRef.isLabel() ? "ContainingCsectSymbolIndex"
: "SectionLen",
AuxEntRef.getSectionOrLength());
W.printHex("ParameterHashIndex", AuxEntRef.getParameterHashIndex());
W.printHex("TypeChkSectNum", AuxEntRef.getTypeChkSectNum());
// Print out symbol alignment and type.
W.printNumber("SymbolAlignmentLog2", AuxEntRef.getAlignmentLog2());
W.printEnum("SymbolType", AuxEntRef.getSymbolType(),
makeArrayRef(CsectSymbolTypeClass));
W.printEnum("StorageMappingClass",
static_cast<uint8_t>(AuxEntRef.getStorageMappingClass()),
makeArrayRef(CsectStorageMappingClass));
if (Obj.is64Bit()) {
W.printEnum("Auxiliary Type", static_cast<uint8_t>(XCOFF::AUX_CSECT),
makeArrayRef(SymAuxType));
} else {
W.printHex("StabInfoIndex", AuxEntRef.getStabInfoIndex32());
W.printHex("StabSectNum", AuxEntRef.getStabSectNum32());
}
}
void XCOFFDumper::printSectAuxEntForStat(
const XCOFFSectAuxEntForStat *AuxEntPtr) {
assert(!Obj.is64Bit() && "32-bit interface called on 64-bit object file.");
DictScope SymDs(W, "Sect Auxiliary Entry For Stat");
W.printNumber("Index",
Obj.getSymbolIndex(reinterpret_cast<uintptr_t>(AuxEntPtr)));
W.printNumber("SectionLength", AuxEntPtr->SectionLength);
// Unlike the corresponding fields in the section header, NumberOfRelocEnt
// and NumberOfLineNum do not handle values greater than 65535.
W.printNumber("NumberOfRelocEnt", AuxEntPtr->NumberOfRelocEnt);
W.printNumber("NumberOfLineNum", AuxEntPtr->NumberOfLineNum);
}
const EnumEntry<XCOFF::StorageClass> SymStorageClass[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(C_NULL), ECase(C_AUTO), ECase(C_EXT), ECase(C_STAT),
ECase(C_REG), ECase(C_EXTDEF), ECase(C_LABEL), ECase(C_ULABEL),
ECase(C_MOS), ECase(C_ARG), ECase(C_STRTAG), ECase(C_MOU),
ECase(C_UNTAG), ECase(C_TPDEF), ECase(C_USTATIC), ECase(C_ENTAG),
ECase(C_MOE), ECase(C_REGPARM), ECase(C_FIELD), ECase(C_BLOCK),
ECase(C_FCN), ECase(C_EOS), ECase(C_FILE), ECase(C_LINE),
ECase(C_ALIAS), ECase(C_HIDDEN), ECase(C_HIDEXT), ECase(C_BINCL),
ECase(C_EINCL), ECase(C_INFO), ECase(C_WEAKEXT), ECase(C_DWARF),
ECase(C_GSYM), ECase(C_LSYM), ECase(C_PSYM), ECase(C_RSYM),
ECase(C_RPSYM), ECase(C_STSYM), ECase(C_TCSYM), ECase(C_BCOMM),
ECase(C_ECOML), ECase(C_ECOMM), ECase(C_DECL), ECase(C_ENTRY),
ECase(C_FUN), ECase(C_BSTAT), ECase(C_ESTAT), ECase(C_GTLS),
ECase(C_STTLS), ECase(C_EFCN)
#undef ECase
};
static StringRef GetSymbolValueName(XCOFF::StorageClass SC) {
switch (SC) {
case XCOFF::C_EXT:
case XCOFF::C_WEAKEXT:
case XCOFF::C_HIDEXT:
case XCOFF::C_STAT:
return "Value (RelocatableAddress)";
case XCOFF::C_FILE:
return "Value (SymbolTableIndex)";
case XCOFF::C_FCN:
case XCOFF::C_BLOCK:
case XCOFF::C_FUN:
case XCOFF::C_STSYM:
case XCOFF::C_BINCL:
case XCOFF::C_EINCL:
case XCOFF::C_INFO:
case XCOFF::C_BSTAT:
case XCOFF::C_LSYM:
case XCOFF::C_PSYM:
case XCOFF::C_RPSYM:
case XCOFF::C_RSYM:
case XCOFF::C_ECOML:
case XCOFF::C_DWARF:
assert(false && "This StorageClass for the symbol is not yet implemented.");
return "";
default:
return "Value";
}
}
const EnumEntry<XCOFF::CFileLangId> CFileLangIdClass[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(TB_C), ECase(TB_CPLUSPLUS)
#undef ECase
};
const EnumEntry<XCOFF::CFileCpuId> CFileCpuIdClass[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(TCPU_PPC64), ECase(TCPU_COM), ECase(TCPU_970)
#undef ECase
};
void XCOFFDumper::printSymbol(const SymbolRef &S) {
DataRefImpl SymbolDRI = S.getRawDataRefImpl();
XCOFFSymbolRef SymbolEntRef = Obj.toSymbolRef(SymbolDRI);
uint8_t NumberOfAuxEntries = SymbolEntRef.getNumberOfAuxEntries();
DictScope SymDs(W, "Symbol");
StringRef SymbolName =
unwrapOrError(Obj.getFileName(), SymbolEntRef.getName());
W.printNumber("Index", Obj.getSymbolIndex(SymbolEntRef.getEntryAddress()));
W.printString("Name", SymbolName);
W.printHex(GetSymbolValueName(SymbolEntRef.getStorageClass()),
SymbolEntRef.getValue());
StringRef SectionName =
unwrapOrError(Obj.getFileName(), Obj.getSymbolSectionName(SymbolEntRef));
W.printString("Section", SectionName);
if (SymbolEntRef.getStorageClass() == XCOFF::C_FILE) {
W.printEnum("Source Language ID", SymbolEntRef.getLanguageIdForCFile(),
makeArrayRef(CFileLangIdClass));
W.printEnum("CPU Version ID", SymbolEntRef.getCPUTypeIddForCFile(),
makeArrayRef(CFileCpuIdClass));
} else
W.printHex("Type", SymbolEntRef.getSymbolType());
W.printEnum("StorageClass",
static_cast<uint8_t>(SymbolEntRef.getStorageClass()),
makeArrayRef(SymStorageClass));
W.printNumber("NumberOfAuxEntries", NumberOfAuxEntries);
if (NumberOfAuxEntries == 0)
return;
switch (SymbolEntRef.getStorageClass()) {
case XCOFF::C_FILE:
// If the symbol is C_FILE and has auxiliary entries...
for (int I = 1; I <= NumberOfAuxEntries; I++) {
uintptr_t AuxAddress = XCOFFObjectFile::getAdvancedSymbolEntryAddress(
SymbolEntRef.getEntryAddress(), I);
if (Obj.is64Bit() &&
*Obj.getSymbolAuxType(AuxAddress) != XCOFF::SymbolAuxType::AUX_FILE) {
W.startLine() << "!Unexpected raw auxiliary entry data:\n";
W.startLine() << format_bytes(
ArrayRef<uint8_t>(
reinterpret_cast<const uint8_t *>(AuxAddress),
XCOFF::SymbolTableEntrySize),
0, XCOFF::SymbolTableEntrySize)
<< "\n";
continue;
}
const XCOFFFileAuxEnt *FileAuxEntPtr =
reinterpret_cast<const XCOFFFileAuxEnt *>(AuxAddress);
#ifndef NDEBUG
Obj.checkSymbolEntryPointer(reinterpret_cast<uintptr_t>(FileAuxEntPtr));
#endif
printFileAuxEnt(FileAuxEntPtr);
}
break;
case XCOFF::C_EXT:
case XCOFF::C_WEAKEXT:
case XCOFF::C_HIDEXT: {
// If the symbol is for a function, and it has more than 1 auxiliary entry,
// then one of them must be function auxiliary entry which we do not
// support yet.
if (SymbolEntRef.isFunction() && NumberOfAuxEntries >= 2)
report_fatal_error("Function auxiliary entry printing is unimplemented.");
// If there is more than 1 auxiliary entry, instead of printing out
// error information, print out the raw Auxiliary entry.
// For 32-bit object, print from first to the last - 1. The last one must be
// a CSECT Auxiliary Entry.
// For 64-bit object, print from first to last and skips if SymbolAuxType is
// AUX_CSECT.
for (int I = 1; I <= NumberOfAuxEntries; I++) {
if (I == NumberOfAuxEntries && !Obj.is64Bit())
break;
uintptr_t AuxAddress = XCOFFObjectFile::getAdvancedSymbolEntryAddress(
SymbolEntRef.getEntryAddress(), I);
if (Obj.is64Bit() &&
*Obj.getSymbolAuxType(AuxAddress) == XCOFF::SymbolAuxType::AUX_CSECT)
continue;
W.startLine() << "!Unexpected raw auxiliary entry data:\n";
W.startLine() << format_bytes(
ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(AuxAddress),
XCOFF::SymbolTableEntrySize));
}
auto ErrOrCsectAuxRef = SymbolEntRef.getXCOFFCsectAuxRef();
if (!ErrOrCsectAuxRef)
reportUniqueWarning(ErrOrCsectAuxRef.takeError());
else
printCsectAuxEnt(*ErrOrCsectAuxRef);
break;
}
case XCOFF::C_STAT:
if (NumberOfAuxEntries > 1)
report_fatal_error(
"C_STAT symbol should not have more than 1 auxiliary entry.");
const XCOFFSectAuxEntForStat *StatAuxEntPtr;
StatAuxEntPtr = reinterpret_cast<const XCOFFSectAuxEntForStat *>(
XCOFFObjectFile::getAdvancedSymbolEntryAddress(
SymbolEntRef.getEntryAddress(), 1));
#ifndef NDEBUG
Obj.checkSymbolEntryPointer(reinterpret_cast<uintptr_t>(StatAuxEntPtr));
#endif
printSectAuxEntForStat(StatAuxEntPtr);
break;
case XCOFF::C_DWARF:
case XCOFF::C_BLOCK:
case XCOFF::C_FCN:
report_fatal_error("Symbol table entry printing for this storage class "
"type is unimplemented.");
break;
default:
for (int i = 1; i <= NumberOfAuxEntries; i++) {
W.startLine() << "!Unexpected raw auxiliary entry data:\n";
W.startLine() << format_bytes(
ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(
XCOFFObjectFile::getAdvancedSymbolEntryAddress(
SymbolEntRef.getEntryAddress(), i)),
XCOFF::SymbolTableEntrySize));
}
break;
}
}
void XCOFFDumper::printSymbols() {
ListScope Group(W, "Symbols");
for (const SymbolRef &S : Obj.symbols())
printSymbol(S);
}
void XCOFFDumper::printStringTable() {
DictScope DS(W, "StringTable");
StringRef StrTable = Obj.getStringTable();
uint32_t StrTabSize = StrTable.size();
W.printNumber("Length", StrTabSize);
// Print strings from the fifth byte, since the first four bytes contain the
// length (in bytes) of the string table (including the length field).
if (StrTabSize > 4)
printAsStringList(StrTable, 4);
}
void XCOFFDumper::printDynamicSymbols() {
llvm_unreachable("Unimplemented functionality for XCOFFDumper");
}
void XCOFFDumper::printUnwindInfo() {
llvm_unreachable("Unimplemented functionality for XCOFFDumper");
}
void XCOFFDumper::printStackMap() const {
llvm_unreachable("Unimplemented functionality for XCOFFDumper");
}
void XCOFFDumper::printNeededLibraries() {
ListScope D(W, "NeededLibraries");
auto ImportFilesOrError = Obj.getImportFileTable();
if (!ImportFilesOrError) {
reportUniqueWarning(ImportFilesOrError.takeError());
return;
}
StringRef ImportFileTable = ImportFilesOrError.get();
const char *CurrentStr = ImportFileTable.data();
const char *TableEnd = ImportFileTable.end();
// Default column width for names is 13 even if no names are that long.
size_t BaseWidth = 13;
// Get the max width of BASE columns.
for (size_t StrIndex = 0; CurrentStr < TableEnd; ++StrIndex) {
size_t CurrentLen = strlen(CurrentStr);
CurrentStr += strlen(CurrentStr) + 1;
if (StrIndex % 3 == 1)
BaseWidth = std::max(BaseWidth, CurrentLen);
}
auto &OS = static_cast<formatted_raw_ostream &>(W.startLine());
// Each entry consists of 3 strings: the path_name, base_name and
// archive_member_name. The first entry is a default LIBPATH value and other
// entries have no path_name. We just dump the base_name and
// archive_member_name here.
OS << left_justify("BASE", BaseWidth) << " MEMBER\n";
CurrentStr = ImportFileTable.data();
for (size_t StrIndex = 0; CurrentStr < TableEnd;
++StrIndex, CurrentStr += strlen(CurrentStr) + 1) {
if (StrIndex >= 3 && StrIndex % 3 != 0) {
if (StrIndex % 3 == 1)
OS << " " << left_justify(CurrentStr, BaseWidth) << " ";
else
OS << CurrentStr << "\n";
}
}
}
const EnumEntry<XCOFF::SectionTypeFlags> SectionTypeFlagsNames[] = {
#define ECase(X) \
{ #X, XCOFF::X }
ECase(STYP_PAD), ECase(STYP_DWARF), ECase(STYP_TEXT),
ECase(STYP_DATA), ECase(STYP_BSS), ECase(STYP_EXCEPT),
ECase(STYP_INFO), ECase(STYP_TDATA), ECase(STYP_TBSS),
ECase(STYP_LOADER), ECase(STYP_DEBUG), ECase(STYP_TYPCHK),
ECase(STYP_OVRFLO)
#undef ECase
};
template <typename T>
void XCOFFDumper::printOverflowSectionHeader(T &Sec) const {
if (Obj.is64Bit()) {
reportWarning(make_error<StringError>("An 64-bit XCOFF object file may not "
"contain an overflow section header.",
object_error::parse_failed),
Obj.getFileName());
}
W.printString("Name", Sec.getName());
W.printNumber("NumberOfRelocations", Sec.PhysicalAddress);
W.printNumber("NumberOfLineNumbers", Sec.VirtualAddress);
W.printHex("Size", Sec.SectionSize);
W.printHex("RawDataOffset", Sec.FileOffsetToRawData);
W.printHex("RelocationPointer", Sec.FileOffsetToRelocationInfo);
W.printHex("LineNumberPointer", Sec.FileOffsetToLineNumberInfo);
W.printNumber("IndexOfSectionOverflowed", Sec.NumberOfRelocations);
W.printNumber("IndexOfSectionOverflowed", Sec.NumberOfLineNumbers);
}
template <typename T>
void XCOFFDumper::printGenericSectionHeader(T &Sec) const {
W.printString("Name", Sec.getName());
W.printHex("PhysicalAddress", Sec.PhysicalAddress);
W.printHex("VirtualAddress", Sec.VirtualAddress);
W.printHex("Size", Sec.SectionSize);
W.printHex("RawDataOffset", Sec.FileOffsetToRawData);
W.printHex("RelocationPointer", Sec.FileOffsetToRelocationInfo);
W.printHex("LineNumberPointer", Sec.FileOffsetToLineNumberInfo);
W.printNumber("NumberOfRelocations", Sec.NumberOfRelocations);
W.printNumber("NumberOfLineNumbers", Sec.NumberOfLineNumbers);
}
void XCOFFDumper::printAuxiliaryHeader(
const XCOFFAuxiliaryHeader32 *AuxHeader) {
if (AuxHeader == nullptr)
return;
uint16_t AuxSize = Obj.getOptionalHeaderSize();
uint16_t PartialFieldOffset = AuxSize;
const char *PartialFieldName = nullptr;
DictScope DS(W, "AuxiliaryHeader");
#define PrintAuxMember32(H, S, T) \
if (offsetof(XCOFFAuxiliaryHeader32, T) + \
sizeof(XCOFFAuxiliaryHeader32::T) <= \
AuxSize) \
W.print##H(S, AuxHeader->T); \
else if (offsetof(XCOFFAuxiliaryHeader32, T) < AuxSize) { \
PartialFieldOffset = offsetof(XCOFFAuxiliaryHeader32, T); \
PartialFieldName = S; \
}
PrintAuxMember32(Hex, "Magic", AuxMagic);
PrintAuxMember32(Hex, "Version", Version);
PrintAuxMember32(Hex, "Size of .text section", TextSize);
PrintAuxMember32(Hex, "Size of .data section", InitDataSize);
PrintAuxMember32(Hex, "Size of .bss section", BssDataSize);
PrintAuxMember32(Hex, "Entry point address", EntryPointAddr);
PrintAuxMember32(Hex, ".text section start address", TextStartAddr);
PrintAuxMember32(Hex, ".data section start address", DataStartAddr);
PrintAuxMember32(Hex, "TOC anchor address", TOCAnchorAddr);
PrintAuxMember32(Number, "Section number of entryPoint", SecNumOfEntryPoint);
PrintAuxMember32(Number, "Section number of .text", SecNumOfText);
PrintAuxMember32(Number, "Section number of .data", SecNumOfData);
PrintAuxMember32(Number, "Section number of TOC", SecNumOfTOC);
PrintAuxMember32(Number, "Section number of loader data", SecNumOfLoader);
PrintAuxMember32(Number, "Section number of .bss", SecNumOfBSS);
PrintAuxMember32(Hex, "Maxium alignment of .text", MaxAlignOfText);
PrintAuxMember32(Hex, "Maxium alignment of .data", MaxAlignOfData);
PrintAuxMember32(Hex, "Module type", ModuleType);
PrintAuxMember32(Hex, "CPU type of objects", CpuFlag);
PrintAuxMember32(Hex, "(Reserved)", CpuType);
PrintAuxMember32(Hex, "Maximum stack size", MaxStackSize);
PrintAuxMember32(Hex, "Maximum data size", MaxDataSize);
PrintAuxMember32(Hex, "Reserved for debugger", ReservedForDebugger);
PrintAuxMember32(Hex, "Text page size", TextPageSize);
PrintAuxMember32(Hex, "Data page size", DataPageSize);
PrintAuxMember32(Hex, "Stack page size", StackPageSize);
if (offsetof(XCOFFAuxiliaryHeader32, FlagAndTDataAlignment) +
sizeof(XCOFFAuxiliaryHeader32::FlagAndTDataAlignment) <=
AuxSize) {
W.printHex("Flag", AuxHeader->getFlag());
W.printHex("Alignment of thread-local storage",
AuxHeader->getTDataAlignment());
}
PrintAuxMember32(Number, "Section number for .tdata", SecNumOfTData);
PrintAuxMember32(Number, "Section number for .tbss", SecNumOfTBSS);
// Deal with error.
if (PartialFieldOffset < AuxSize) {
std::string ErrInfo;
llvm::raw_string_ostream StringOS(ErrInfo);
StringOS << "Only partial field for " << PartialFieldName << " at offset ("
<< PartialFieldOffset << ").";
StringOS.flush();
reportWarning(
make_error<GenericBinaryError>(ErrInfo, object_error::parse_failed),
"-");
W.printBinary(
"Raw data", "",
ArrayRef<uint8_t>((const uint8_t *)(AuxHeader) + PartialFieldOffset,
AuxSize - PartialFieldOffset));
} else if (sizeof(XCOFFAuxiliaryHeader32) < AuxSize) {
reportWarning(make_error<GenericBinaryError>(
"There are extra data beyond auxiliary header",
object_error::parse_failed),
"-");
W.printBinary("Extra raw data", "",
ArrayRef<uint8_t>((const uint8_t *)(AuxHeader) +
sizeof(XCOFFAuxiliaryHeader32),
AuxSize - sizeof(XCOFFAuxiliaryHeader32)));
}
#undef PrintAuxMember32
}
void XCOFFDumper::printAuxiliaryHeader(
const XCOFFAuxiliaryHeader64 *AuxHeader) {
if (AuxHeader == nullptr)
return;
uint16_t AuxSize = Obj.getOptionalHeaderSize();
uint16_t PartialFieldOffset = AuxSize;
const char *PartialFieldName = nullptr;
DictScope DS(W, "AuxiliaryHeader");
#define PrintAuxMember64(H, S, T) \
if (offsetof(XCOFFAuxiliaryHeader64, T) + \
sizeof(XCOFFAuxiliaryHeader64::T) <= \
AuxSize) \
W.print##H(S, AuxHeader->T); \
else if (offsetof(XCOFFAuxiliaryHeader64, T) < AuxSize) { \
PartialFieldOffset = offsetof(XCOFFAuxiliaryHeader64, T); \
PartialFieldName = S; \
}
PrintAuxMember64(Hex, "Magic", AuxMagic);
PrintAuxMember64(Hex, "Version", Version);
PrintAuxMember64(Hex, "Reserved for debugger", ReservedForDebugger);
PrintAuxMember64(Hex, ".text section start address", TextStartAddr);
PrintAuxMember64(Hex, ".data section start address", DataStartAddr);
PrintAuxMember64(Hex, "TOC anchor address", TOCAnchorAddr);
PrintAuxMember64(Number, "Section number of entryPoint", SecNumOfEntryPoint);
PrintAuxMember64(Number, "Section number of .text", SecNumOfText);
PrintAuxMember64(Number, "Section number of .data", SecNumOfData);
PrintAuxMember64(Number, "Section number of TOC", SecNumOfTOC);
PrintAuxMember64(Number, "Section number of loader data", SecNumOfLoader);
PrintAuxMember64(Number, "Section number of .bss", SecNumOfBSS);
PrintAuxMember64(Hex, "Maxium alignment of .text", MaxAlignOfText);
PrintAuxMember64(Hex, "Maxium alignment of .data", MaxAlignOfData);
PrintAuxMember64(Hex, "Module type", ModuleType);
PrintAuxMember64(Hex, "CPU type of objects", CpuFlag);
PrintAuxMember64(Hex, "(Reserved)", CpuType);
PrintAuxMember64(Hex, "Text page size", TextPageSize);
PrintAuxMember64(Hex, "Data page size", DataPageSize);
PrintAuxMember64(Hex, "Stack page size", StackPageSize);
if (offsetof(XCOFFAuxiliaryHeader64, FlagAndTDataAlignment) +
sizeof(XCOFFAuxiliaryHeader64::FlagAndTDataAlignment) <=
AuxSize) {
W.printHex("Flag", AuxHeader->getFlag());
W.printHex("Alignment of thread-local storage",
AuxHeader->getTDataAlignment());
}
PrintAuxMember64(Hex, "Size of .text section", TextSize);
PrintAuxMember64(Hex, "Size of .data section", InitDataSize);
PrintAuxMember64(Hex, "Size of .bss section", BssDataSize);
PrintAuxMember64(Hex, "Entry point address", EntryPointAddr);
PrintAuxMember64(Hex, "Maximum stack size", MaxStackSize);
PrintAuxMember64(Hex, "Maximum data size", MaxDataSize);
PrintAuxMember64(Number, "Section number for .tdata", SecNumOfTData);
PrintAuxMember64(Number, "Section number for .tbss", SecNumOfTBSS);
PrintAuxMember64(Hex, "Additional flags 64-bit XCOFF", XCOFF64Flag);
if (PartialFieldOffset < AuxSize) {
std::string ErrInfo;
llvm::raw_string_ostream StringOS(ErrInfo);
StringOS << "Only partial field for " << PartialFieldName << " at offset ("
<< PartialFieldOffset << ").";
StringOS.flush();
reportWarning(
make_error<GenericBinaryError>(ErrInfo, object_error::parse_failed),
"-");
;
W.printBinary(
"Raw data", "",
ArrayRef<uint8_t>((const uint8_t *)(AuxHeader) + PartialFieldOffset,
AuxSize - PartialFieldOffset));
} else if (sizeof(XCOFFAuxiliaryHeader64) < AuxSize) {
reportWarning(make_error<GenericBinaryError>(
"There are extra data beyond auxiliary header",
object_error::parse_failed),
"-");
W.printBinary("Extra raw data", "",
ArrayRef<uint8_t>((const uint8_t *)(AuxHeader) +
sizeof(XCOFFAuxiliaryHeader64),
AuxSize - sizeof(XCOFFAuxiliaryHeader64)));
}
#undef PrintAuxMember64
}
template <typename T>
void XCOFFDumper::printSectionHeaders(ArrayRef<T> Sections) {
ListScope Group(W, "Sections");
uint16_t Index = 1;
for (const T &Sec : Sections) {
DictScope SecDS(W, "Section");
W.printNumber("Index", Index++);
uint16_t SectionType = Sec.getSectionType();
switch (SectionType) {
case XCOFF::STYP_OVRFLO:
printOverflowSectionHeader(Sec);
break;
case XCOFF::STYP_LOADER:
case XCOFF::STYP_EXCEPT:
case XCOFF::STYP_TYPCHK:
// TODO The interpretation of loader, exception and type check section
// headers are different from that of generic section headers. We will
// implement them later. We interpret them as generic section headers for
// now.
default:
printGenericSectionHeader(Sec);
break;
}
if (Sec.isReservedSectionType())
W.printHex("Flags", "Reserved", SectionType);
else
W.printEnum("Type", SectionType, makeArrayRef(SectionTypeFlagsNames));
}
if (opts::SectionRelocations)
report_fatal_error("Dumping section relocations is unimplemented");
if (opts::SectionSymbols)
report_fatal_error("Dumping symbols is unimplemented");
if (opts::SectionData)
report_fatal_error("Dumping section data is unimplemented");
}
namespace llvm {
std::unique_ptr<ObjDumper>
createXCOFFDumper(const object::XCOFFObjectFile &XObj, ScopedPrinter &Writer) {
return std::make_unique<XCOFFDumper>(XObj, Writer);
}
} // namespace llvm