blob: 202b459a6078f3823fc6d53bf6c620076cbf4d09 [file] [log] [blame]
//===- llvm-jitlink.cpp -- Command line interface/tester for llvm-jitlink -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This utility provides a simple command line interface to the llvm jitlink
// library, which makes relocatable object files executable in memory. Its
// primary function is as a testing utility for the jitlink library.
//
//===----------------------------------------------------------------------===//
#include "llvm-jitlink.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/ExecutionEngine/Orc/DebugObjectManagerPlugin.h"
#include "llvm/ExecutionEngine/Orc/DebuggerSupportPlugin.h"
#include "llvm/ExecutionEngine/Orc/ELFNixPlatform.h"
#include "llvm/ExecutionEngine/Orc/EPCDebugObjectRegistrar.h"
#include "llvm/ExecutionEngine/Orc/EPCDynamicLibrarySearchGenerator.h"
#include "llvm/ExecutionEngine/Orc/EPCEHFrameRegistrar.h"
#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/MachOPlatform.h"
#include "llvm/ExecutionEngine/Orc/TargetProcess/JITLoaderGDB.h"
#include "llvm/ExecutionEngine/Orc/TargetProcess/RegisterEHFrames.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/Timer.h"
#include <cstring>
#include <list>
#include <string>
#ifdef LLVM_ON_UNIX
#include <netdb.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <unistd.h>
#endif // LLVM_ON_UNIX
#define DEBUG_TYPE "llvm_jitlink"
using namespace llvm;
using namespace llvm::jitlink;
using namespace llvm::orc;
static cl::OptionCategory JITLinkCategory("JITLink Options");
static cl::list<std::string> InputFiles(cl::Positional, cl::OneOrMore,
cl::desc("input files"),
cl::cat(JITLinkCategory));
static cl::opt<bool> NoExec("noexec", cl::desc("Do not execute loaded code"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::list<std::string>
CheckFiles("check", cl::desc("File containing verifier checks"),
cl::ZeroOrMore, cl::cat(JITLinkCategory));
static cl::opt<std::string>
CheckName("check-name", cl::desc("Name of checks to match against"),
cl::init("jitlink-check"), cl::cat(JITLinkCategory));
static cl::opt<std::string>
EntryPointName("entry", cl::desc("Symbol to call as main entry point"),
cl::init(""), cl::cat(JITLinkCategory));
static cl::list<std::string> JITLinkDylibs(
"jld",
cl::desc("Specifies the JITDylib to be used for any subsequent "
"input file arguments"),
cl::cat(JITLinkCategory));
static cl::list<std::string>
Dylibs("dlopen", cl::desc("Dynamic libraries to load before linking"),
cl::ZeroOrMore, cl::cat(JITLinkCategory));
static cl::list<std::string> InputArgv("args", cl::Positional,
cl::desc("<program arguments>..."),
cl::ZeroOrMore, cl::PositionalEatsArgs,
cl::cat(JITLinkCategory));
static cl::opt<bool>
DebuggerSupport("debugger-support",
cl::desc("Enable debugger suppport (default = !-noexec)"),
cl::init(true), cl::Hidden, cl::cat(JITLinkCategory));
static cl::opt<bool>
NoProcessSymbols("no-process-syms",
cl::desc("Do not resolve to llvm-jitlink process symbols"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::list<std::string> AbsoluteDefs(
"define-abs",
cl::desc("Inject absolute symbol definitions (syntax: <name>=<addr>)"),
cl::ZeroOrMore, cl::cat(JITLinkCategory));
static cl::list<std::string> TestHarnesses("harness", cl::Positional,
cl::desc("Test harness files"),
cl::ZeroOrMore,
cl::PositionalEatsArgs,
cl::cat(JITLinkCategory));
static cl::opt<bool> ShowInitialExecutionSessionState(
"show-init-es",
cl::desc("Print ExecutionSession state before resolving entry point"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<bool> ShowAddrs(
"show-addrs",
cl::desc("Print registered symbol, section, got and stub addresses"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<bool> ShowLinkGraph(
"show-graph",
cl::desc("Print the link graph after fixups have been applied"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<bool> ShowSizes(
"show-sizes",
cl::desc("Show sizes pre- and post-dead stripping, and allocations"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<bool> ShowTimes("show-times",
cl::desc("Show times for llvm-jitlink phases"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<std::string> SlabAllocateSizeString(
"slab-allocate",
cl::desc("Allocate from a slab of the given size "
"(allowable suffixes: Kb, Mb, Gb. default = "
"Kb)"),
cl::init(""), cl::cat(JITLinkCategory));
static cl::opt<uint64_t> SlabAddress(
"slab-address",
cl::desc("Set slab target address (requires -slab-allocate and -noexec)"),
cl::init(~0ULL), cl::cat(JITLinkCategory));
static cl::opt<uint64_t> SlabPageSize(
"slab-page-size",
cl::desc("Set page size for slab (requires -slab-allocate and -noexec)"),
cl::init(0), cl::cat(JITLinkCategory));
static cl::opt<bool> ShowRelocatedSectionContents(
"show-relocated-section-contents",
cl::desc("show section contents after fixups have been applied"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<bool> PhonyExternals(
"phony-externals",
cl::desc("resolve all otherwise unresolved externals to null"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<std::string> OutOfProcessExecutor(
"oop-executor", cl::desc("Launch an out-of-process executor to run code"),
cl::ValueOptional, cl::cat(JITLinkCategory));
static cl::opt<std::string> OutOfProcessExecutorConnect(
"oop-executor-connect",
cl::desc("Connect to an out-of-process executor via TCP"),
cl::cat(JITLinkCategory));
static cl::opt<std::string>
OrcRuntime("orc-runtime", cl::desc("Use ORC runtime from given path"),
cl::init(""), cl::cat(JITLinkCategory));
static cl::opt<bool> AddSelfRelocations(
"add-self-relocations",
cl::desc("Add relocations to function pointers to the current function"),
cl::init(false), cl::cat(JITLinkCategory));
ExitOnError ExitOnErr;
LLVM_ATTRIBUTE_USED void linkComponents() {
errs() << (void *)&llvm_orc_registerEHFrameSectionWrapper
<< (void *)&llvm_orc_deregisterEHFrameSectionWrapper
<< (void *)&llvm_orc_registerJITLoaderGDBWrapper;
}
static bool UseTestResultOverride = false;
static int64_t TestResultOverride = 0;
extern "C" void llvm_jitlink_setTestResultOverride(int64_t Value) {
TestResultOverride = Value;
UseTestResultOverride = true;
}
static Error addSelfRelocations(LinkGraph &G);
namespace llvm {
static raw_ostream &
operator<<(raw_ostream &OS, const Session::MemoryRegionInfo &MRI) {
return OS << "target addr = "
<< format("0x%016" PRIx64, MRI.getTargetAddress())
<< ", content: " << (const void *)MRI.getContent().data() << " -- "
<< (const void *)(MRI.getContent().data() + MRI.getContent().size())
<< " (" << MRI.getContent().size() << " bytes)";
}
static raw_ostream &
operator<<(raw_ostream &OS, const Session::SymbolInfoMap &SIM) {
OS << "Symbols:\n";
for (auto &SKV : SIM)
OS << " \"" << SKV.first() << "\" " << SKV.second << "\n";
return OS;
}
static raw_ostream &
operator<<(raw_ostream &OS, const Session::FileInfo &FI) {
for (auto &SIKV : FI.SectionInfos)
OS << " Section \"" << SIKV.first() << "\": " << SIKV.second << "\n";
for (auto &GOTKV : FI.GOTEntryInfos)
OS << " GOT \"" << GOTKV.first() << "\": " << GOTKV.second << "\n";
for (auto &StubKV : FI.StubInfos)
OS << " Stub \"" << StubKV.first() << "\": " << StubKV.second << "\n";
return OS;
}
static raw_ostream &
operator<<(raw_ostream &OS, const Session::FileInfoMap &FIM) {
for (auto &FIKV : FIM)
OS << "File \"" << FIKV.first() << "\":\n" << FIKV.second;
return OS;
}
static Error applyHarnessPromotions(Session &S, LinkGraph &G) {
// If this graph is part of the test harness there's nothing to do.
if (S.HarnessFiles.empty() || S.HarnessFiles.count(G.getName()))
return Error::success();
LLVM_DEBUG(dbgs() << "Appling promotions to graph " << G.getName() << "\n");
// If this graph is part of the test then promote any symbols referenced by
// the harness to default scope, remove all symbols that clash with harness
// definitions.
std::vector<Symbol *> DefinitionsToRemove;
for (auto *Sym : G.defined_symbols()) {
if (!Sym->hasName())
continue;
if (Sym->getLinkage() == Linkage::Weak) {
if (!S.CanonicalWeakDefs.count(Sym->getName()) ||
S.CanonicalWeakDefs[Sym->getName()] != G.getName()) {
LLVM_DEBUG({
dbgs() << " Externalizing weak symbol " << Sym->getName() << "\n";
});
DefinitionsToRemove.push_back(Sym);
} else {
LLVM_DEBUG({
dbgs() << " Making weak symbol " << Sym->getName() << " strong\n";
});
if (S.HarnessExternals.count(Sym->getName()))
Sym->setScope(Scope::Default);
else
Sym->setScope(Scope::Hidden);
Sym->setLinkage(Linkage::Strong);
}
} else if (S.HarnessExternals.count(Sym->getName())) {
LLVM_DEBUG(dbgs() << " Promoting " << Sym->getName() << "\n");
Sym->setScope(Scope::Default);
Sym->setLive(true);
continue;
} else if (S.HarnessDefinitions.count(Sym->getName())) {
LLVM_DEBUG(dbgs() << " Externalizing " << Sym->getName() << "\n");
DefinitionsToRemove.push_back(Sym);
}
}
for (auto *Sym : DefinitionsToRemove)
G.makeExternal(*Sym);
return Error::success();
}
static uint64_t computeTotalBlockSizes(LinkGraph &G) {
uint64_t TotalSize = 0;
for (auto *B : G.blocks())
TotalSize += B->getSize();
return TotalSize;
}
static void dumpSectionContents(raw_ostream &OS, LinkGraph &G) {
constexpr JITTargetAddress DumpWidth = 16;
static_assert(isPowerOf2_64(DumpWidth), "DumpWidth must be a power of two");
// Put sections in address order.
std::vector<Section *> Sections;
for (auto &S : G.sections())
Sections.push_back(&S);
llvm::sort(Sections, [](const Section *LHS, const Section *RHS) {
if (llvm::empty(LHS->symbols()) && llvm::empty(RHS->symbols()))
return false;
if (llvm::empty(LHS->symbols()))
return false;
if (llvm::empty(RHS->symbols()))
return true;
SectionRange LHSRange(*LHS);
SectionRange RHSRange(*RHS);
return LHSRange.getStart() < RHSRange.getStart();
});
for (auto *S : Sections) {
OS << S->getName() << " content:";
if (llvm::empty(S->symbols())) {
OS << "\n section empty\n";
continue;
}
// Sort symbols into order, then render.
std::vector<Symbol *> Syms(S->symbols().begin(), S->symbols().end());
llvm::sort(Syms, [](const Symbol *LHS, const Symbol *RHS) {
return LHS->getAddress() < RHS->getAddress();
});
JITTargetAddress NextAddr = Syms.front()->getAddress() & ~(DumpWidth - 1);
for (auto *Sym : Syms) {
bool IsZeroFill = Sym->getBlock().isZeroFill();
JITTargetAddress SymStart = Sym->getAddress();
JITTargetAddress SymSize = Sym->getSize();
JITTargetAddress SymEnd = SymStart + SymSize;
const uint8_t *SymData = IsZeroFill ? nullptr
: reinterpret_cast<const uint8_t *>(
Sym->getSymbolContent().data());
// Pad any space before the symbol starts.
while (NextAddr != SymStart) {
if (NextAddr % DumpWidth == 0)
OS << formatv("\n{0:x16}:", NextAddr);
OS << " ";
++NextAddr;
}
// Render the symbol content.
while (NextAddr != SymEnd) {
if (NextAddr % DumpWidth == 0)
OS << formatv("\n{0:x16}:", NextAddr);
if (IsZeroFill)
OS << " 00";
else
OS << formatv(" {0:x-2}", SymData[NextAddr - SymStart]);
++NextAddr;
}
}
OS << "\n";
}
}
class JITLinkSlabAllocator final : public JITLinkMemoryManager {
private:
struct FinalizedAllocInfo {
sys::MemoryBlock Mem;
std::vector<AllocActionCall> DeallocActions;
};
public:
static Expected<std::unique_ptr<JITLinkSlabAllocator>>
Create(uint64_t SlabSize) {
Error Err = Error::success();
std::unique_ptr<JITLinkSlabAllocator> Allocator(
new JITLinkSlabAllocator(SlabSize, Err));
if (Err)
return std::move(Err);
return std::move(Allocator);
}
void allocate(const JITLinkDylib *JD, LinkGraph &G,
OnAllocatedFunction OnAllocated) override {
// Local class for allocation.
class IPMMAlloc : public InFlightAlloc {
public:
IPMMAlloc(JITLinkSlabAllocator &Parent, BasicLayout BL,
sys::MemoryBlock StandardSegs, sys::MemoryBlock FinalizeSegs)
: Parent(Parent), BL(std::move(BL)),
StandardSegs(std::move(StandardSegs)),
FinalizeSegs(std::move(FinalizeSegs)) {}
void finalize(OnFinalizedFunction OnFinalized) override {
if (auto Err = applyProtections()) {
OnFinalized(std::move(Err));
return;
}
// FIXME: Run finalize actions.
assert(BL.graphAllocActions().empty() &&
"Support function calls not supported yet");
OnFinalized(FinalizedAlloc(
pointerToJITTargetAddress(new FinalizedAllocInfo())));
}
void abandon(OnAbandonedFunction OnAbandoned) override {
OnAbandoned(joinErrors(Parent.freeBlock(StandardSegs),
Parent.freeBlock(FinalizeSegs)));
}
private:
Error applyProtections() {
for (auto &KV : BL.segments()) {
const auto &Group = KV.first;
auto &Seg = KV.second;
auto Prot = toSysMemoryProtectionFlags(Group.getMemProt());
uint64_t SegSize =
alignTo(Seg.ContentSize + Seg.ZeroFillSize, Parent.PageSize);
sys::MemoryBlock MB(Seg.WorkingMem, SegSize);
if (auto EC = sys::Memory::protectMappedMemory(MB, Prot))
return errorCodeToError(EC);
if (Prot & sys::Memory::MF_EXEC)
sys::Memory::InvalidateInstructionCache(MB.base(),
MB.allocatedSize());
}
return Error::success();
}
JITLinkSlabAllocator &Parent;
BasicLayout BL;
sys::MemoryBlock StandardSegs;
sys::MemoryBlock FinalizeSegs;
};
BasicLayout BL(G);
auto SegsSizes = BL.getContiguousPageBasedLayoutSizes(PageSize);
if (!SegsSizes) {
OnAllocated(SegsSizes.takeError());
return;
}
char *AllocBase = 0;
{
std::lock_guard<std::mutex> Lock(SlabMutex);
if (SegsSizes->total() > SlabRemaining.allocatedSize()) {
OnAllocated(make_error<StringError>(
"Slab allocator out of memory: request for " +
formatv("{0:x}", SegsSizes->total()) +
" bytes exceeds remaining capacity of " +
formatv("{0:x}", SlabRemaining.allocatedSize()) + " bytes",
inconvertibleErrorCode()));
return;
}
AllocBase = reinterpret_cast<char *>(SlabRemaining.base());
SlabRemaining =
sys::MemoryBlock(AllocBase + SegsSizes->total(),
SlabRemaining.allocatedSize() - SegsSizes->total());
}
sys::MemoryBlock StandardSegs(AllocBase, SegsSizes->StandardSegs);
sys::MemoryBlock FinalizeSegs(AllocBase + SegsSizes->StandardSegs,
SegsSizes->FinalizeSegs);
auto NextStandardSegAddr = pointerToJITTargetAddress(StandardSegs.base());
auto NextFinalizeSegAddr = pointerToJITTargetAddress(FinalizeSegs.base());
LLVM_DEBUG({
dbgs() << "JITLinkSlabAllocator allocated:\n";
if (SegsSizes->StandardSegs)
dbgs() << formatv(" [ {0:x16} -- {1:x16} ]", NextStandardSegAddr,
NextStandardSegAddr + StandardSegs.allocatedSize())
<< " to stardard segs\n";
else
dbgs() << " no standard segs\n";
if (SegsSizes->FinalizeSegs)
dbgs() << formatv(" [ {0:x16} -- {1:x16} ]", NextFinalizeSegAddr,
NextFinalizeSegAddr + FinalizeSegs.allocatedSize())
<< " to finalize segs\n";
else
dbgs() << " no finalize segs\n";
});
for (auto &KV : BL.segments()) {
auto &Group = KV.first;
auto &Seg = KV.second;
auto &SegAddr =
(Group.getMemDeallocPolicy() == MemDeallocPolicy::Standard)
? NextStandardSegAddr
: NextFinalizeSegAddr;
LLVM_DEBUG({
dbgs() << " " << Group << " -> " << formatv("{0:x16}", SegAddr)
<< "\n";
});
Seg.WorkingMem = jitTargetAddressToPointer<char *>(SegAddr);
Seg.Addr = SegAddr + NextSlabDelta;
SegAddr += alignTo(Seg.ContentSize + Seg.ZeroFillSize, PageSize);
// Zero out the zero-fill memory.
if (Seg.ZeroFillSize != 0)
memset(Seg.WorkingMem + Seg.ContentSize, 0, Seg.ZeroFillSize);
}
NextSlabDelta += SegsSizes->total();
if (auto Err = BL.apply()) {
OnAllocated(std::move(Err));
return;
}
OnAllocated(std::unique_ptr<InProcessMemoryManager::InFlightAlloc>(
new IPMMAlloc(*this, std::move(BL), std::move(StandardSegs),
std::move(FinalizeSegs))));
}
void deallocate(std::vector<FinalizedAlloc> FinalizedAllocs,
OnDeallocatedFunction OnDeallocated) override {
Error Err = Error::success();
for (auto &FA : FinalizedAllocs) {
std::unique_ptr<FinalizedAllocInfo> FAI(
jitTargetAddressToPointer<FinalizedAllocInfo *>(FA.release()));
// FIXME: Run dealloc actions.
Err = joinErrors(std::move(Err), freeBlock(FAI->Mem));
}
OnDeallocated(std::move(Err));
}
private:
JITLinkSlabAllocator(uint64_t SlabSize, Error &Err) {
ErrorAsOutParameter _(&Err);
if (!SlabPageSize) {
if (auto PageSizeOrErr = sys::Process::getPageSize())
PageSize = *PageSizeOrErr;
else {
Err = PageSizeOrErr.takeError();
return;
}
if (PageSize == 0) {
Err = make_error<StringError>("Page size is zero",
inconvertibleErrorCode());
return;
}
} else
PageSize = SlabPageSize;
if (!isPowerOf2_64(PageSize)) {
Err = make_error<StringError>("Page size is not a power of 2",
inconvertibleErrorCode());
return;
}
// Round slab request up to page size.
SlabSize = (SlabSize + PageSize - 1) & ~(PageSize - 1);
const sys::Memory::ProtectionFlags ReadWrite =
static_cast<sys::Memory::ProtectionFlags>(sys::Memory::MF_READ |
sys::Memory::MF_WRITE);
std::error_code EC;
SlabRemaining =
sys::Memory::allocateMappedMemory(SlabSize, nullptr, ReadWrite, EC);
if (EC) {
Err = errorCodeToError(EC);
return;
}
// Calculate the target address delta to link as-if slab were at
// SlabAddress.
if (SlabAddress != ~0ULL)
NextSlabDelta =
SlabAddress - pointerToJITTargetAddress(SlabRemaining.base());
}
Error freeBlock(sys::MemoryBlock MB) {
// FIXME: Return memory to slab.
return Error::success();
}
std::mutex SlabMutex;
sys::MemoryBlock SlabRemaining;
uint64_t PageSize = 0;
int64_t NextSlabDelta = 0;
};
Expected<uint64_t> getSlabAllocSize(StringRef SizeString) {
SizeString = SizeString.trim();
uint64_t Units = 1024;
if (SizeString.endswith_insensitive("kb"))
SizeString = SizeString.drop_back(2).rtrim();
else if (SizeString.endswith_insensitive("mb")) {
Units = 1024 * 1024;
SizeString = SizeString.drop_back(2).rtrim();
} else if (SizeString.endswith_insensitive("gb")) {
Units = 1024 * 1024 * 1024;
SizeString = SizeString.drop_back(2).rtrim();
}
uint64_t SlabSize = 0;
if (SizeString.getAsInteger(10, SlabSize))
return make_error<StringError>("Invalid numeric format for slab size",
inconvertibleErrorCode());
return SlabSize * Units;
}
static std::unique_ptr<JITLinkMemoryManager> createMemoryManager() {
if (!SlabAllocateSizeString.empty()) {
auto SlabSize = ExitOnErr(getSlabAllocSize(SlabAllocateSizeString));
return ExitOnErr(JITLinkSlabAllocator::Create(SlabSize));
}
return ExitOnErr(InProcessMemoryManager::Create());
}
LLVMJITLinkObjectLinkingLayer::LLVMJITLinkObjectLinkingLayer(
Session &S, JITLinkMemoryManager &MemMgr)
: ObjectLinkingLayer(S.ES, MemMgr), S(S) {}
Error LLVMJITLinkObjectLinkingLayer::add(ResourceTrackerSP RT,
std::unique_ptr<MemoryBuffer> O) {
if (S.HarnessFiles.empty() || S.HarnessFiles.count(O->getBufferIdentifier()))
return ObjectLinkingLayer::add(std::move(RT), std::move(O));
// Use getObjectSymbolInfo to compute the init symbol, but ignore
// the symbols field. We'll handle that manually to include promotion.
auto ObjSymInfo =
getObjectSymbolInfo(getExecutionSession(), O->getMemBufferRef());
if (!ObjSymInfo)
return ObjSymInfo.takeError();
auto &InitSymbol = ObjSymInfo->second;
// If creating an object file was going to fail it would have happened above,
// so we can 'cantFail' this.
auto Obj =
cantFail(object::ObjectFile::createObjectFile(O->getMemBufferRef()));
SymbolFlagsMap SymbolFlags;
// The init symbol must be included in the SymbolFlags map if present.
if (InitSymbol)
SymbolFlags[InitSymbol] = JITSymbolFlags::MaterializationSideEffectsOnly;
for (auto &Sym : Obj->symbols()) {
Expected<uint32_t> SymFlagsOrErr = Sym.getFlags();
if (!SymFlagsOrErr)
// TODO: Test this error.
return SymFlagsOrErr.takeError();
// Skip symbols not defined in this object file.
if ((*SymFlagsOrErr & object::BasicSymbolRef::SF_Undefined))
continue;
auto Name = Sym.getName();
if (!Name)
return Name.takeError();
// Skip symbols that have type SF_File.
if (auto SymType = Sym.getType()) {
if (*SymType == object::SymbolRef::ST_File)
continue;
} else
return SymType.takeError();
auto SymFlags = JITSymbolFlags::fromObjectSymbol(Sym);
if (!SymFlags)
return SymFlags.takeError();
if (SymFlags->isWeak()) {
// If this is a weak symbol that's not defined in the harness then we
// need to either mark it as strong (if this is the first definition
// that we've seen) or discard it.
if (S.HarnessDefinitions.count(*Name) || S.CanonicalWeakDefs.count(*Name))
continue;
S.CanonicalWeakDefs[*Name] = O->getBufferIdentifier();
*SymFlags &= ~JITSymbolFlags::Weak;
if (!S.HarnessExternals.count(*Name))
*SymFlags &= ~JITSymbolFlags::Exported;
} else if (S.HarnessExternals.count(*Name)) {
*SymFlags |= JITSymbolFlags::Exported;
} else if (S.HarnessDefinitions.count(*Name) ||
!(*SymFlagsOrErr & object::BasicSymbolRef::SF_Global))
continue;
auto InternedName = S.ES.intern(*Name);
SymbolFlags[InternedName] = std::move(*SymFlags);
}
auto MU = std::make_unique<BasicObjectLayerMaterializationUnit>(
*this, std::move(O), std::move(SymbolFlags), std::move(InitSymbol));
auto &JD = RT->getJITDylib();
return JD.define(std::move(MU), std::move(RT));
}
static Error loadProcessSymbols(Session &S) {
auto FilterMainEntryPoint =
[EPName = S.ES.intern(EntryPointName)](SymbolStringPtr Name) {
return Name != EPName;
};
S.MainJD->addGenerator(
ExitOnErr(orc::EPCDynamicLibrarySearchGenerator::GetForTargetProcess(
S.ES, std::move(FilterMainEntryPoint))));
return Error::success();
}
static Error loadDylibs(Session &S) {
LLVM_DEBUG(dbgs() << "Loading dylibs...\n");
for (const auto &Dylib : Dylibs) {
LLVM_DEBUG(dbgs() << " " << Dylib << "\n");
auto G = orc::EPCDynamicLibrarySearchGenerator::Load(S.ES, Dylib.c_str());
if (!G)
return G.takeError();
S.MainJD->addGenerator(std::move(*G));
}
return Error::success();
}
static Expected<std::unique_ptr<ExecutorProcessControl>> launchExecutor() {
#ifndef LLVM_ON_UNIX
// FIXME: Add support for Windows.
return make_error<StringError>("-" + OutOfProcessExecutor.ArgStr +
" not supported on non-unix platforms",
inconvertibleErrorCode());
#elif !LLVM_ENABLE_THREADS
// Out of process mode using SimpleRemoteEPC depends on threads.
return make_error<StringError>(
"-" + OutOfProcessExecutor.ArgStr +
" requires threads, but LLVM was built with "
"LLVM_ENABLE_THREADS=Off",
inconvertibleErrorCode());
#else
constexpr int ReadEnd = 0;
constexpr int WriteEnd = 1;
// Pipe FDs.
int ToExecutor[2];
int FromExecutor[2];
pid_t ChildPID;
// Create pipes to/from the executor..
if (pipe(ToExecutor) != 0 || pipe(FromExecutor) != 0)
return make_error<StringError>("Unable to create pipe for executor",
inconvertibleErrorCode());
ChildPID = fork();
if (ChildPID == 0) {
// In the child...
// Close the parent ends of the pipes
close(ToExecutor[WriteEnd]);
close(FromExecutor[ReadEnd]);
// Execute the child process.
std::unique_ptr<char[]> ExecutorPath, FDSpecifier;
{
ExecutorPath = std::make_unique<char[]>(OutOfProcessExecutor.size() + 1);
strcpy(ExecutorPath.get(), OutOfProcessExecutor.data());
std::string FDSpecifierStr("filedescs=");
FDSpecifierStr += utostr(ToExecutor[ReadEnd]);
FDSpecifierStr += ',';
FDSpecifierStr += utostr(FromExecutor[WriteEnd]);
FDSpecifier = std::make_unique<char[]>(FDSpecifierStr.size() + 1);
strcpy(FDSpecifier.get(), FDSpecifierStr.c_str());
}
char *const Args[] = {ExecutorPath.get(), FDSpecifier.get(), nullptr};
int RC = execvp(ExecutorPath.get(), Args);
if (RC != 0) {
errs() << "unable to launch out-of-process executor \""
<< ExecutorPath.get() << "\"\n";
exit(1);
}
}
// else we're the parent...
// Close the child ends of the pipes
close(ToExecutor[ReadEnd]);
close(FromExecutor[WriteEnd]);
return SimpleRemoteEPC::Create<FDSimpleRemoteEPCTransport>(
std::make_unique<DynamicThreadPoolTaskDispatcher>(),
SimpleRemoteEPC::Setup(), FromExecutor[ReadEnd], ToExecutor[WriteEnd]);
#endif
}
#if LLVM_ON_UNIX && LLVM_ENABLE_THREADS
static Error createTCPSocketError(Twine Details) {
return make_error<StringError>(
formatv("Failed to connect TCP socket '{0}': {1}",
OutOfProcessExecutorConnect, Details),
inconvertibleErrorCode());
}
static Expected<int> connectTCPSocket(std::string Host, std::string PortStr) {
addrinfo *AI;
addrinfo Hints{};
Hints.ai_family = AF_INET;
Hints.ai_socktype = SOCK_STREAM;
Hints.ai_flags = AI_NUMERICSERV;
if (int EC = getaddrinfo(Host.c_str(), PortStr.c_str(), &Hints, &AI))
return createTCPSocketError("Address resolution failed (" +
StringRef(gai_strerror(EC)) + ")");
// Cycle through the returned addrinfo structures and connect to the first
// reachable endpoint.
int SockFD;
addrinfo *Server;
for (Server = AI; Server != nullptr; Server = Server->ai_next) {
// socket might fail, e.g. if the address family is not supported. Skip to
// the next addrinfo structure in such a case.
if ((SockFD = socket(AI->ai_family, AI->ai_socktype, AI->ai_protocol)) < 0)
continue;
// If connect returns null, we exit the loop with a working socket.
if (connect(SockFD, Server->ai_addr, Server->ai_addrlen) == 0)
break;
close(SockFD);
}
freeaddrinfo(AI);
// If we reached the end of the loop without connecting to a valid endpoint,
// dump the last error that was logged in socket() or connect().
if (Server == nullptr)
return createTCPSocketError(std::strerror(errno));
return SockFD;
}
#endif
static Expected<std::unique_ptr<ExecutorProcessControl>> connectToExecutor() {
#ifndef LLVM_ON_UNIX
// FIXME: Add TCP support for Windows.
return make_error<StringError>("-" + OutOfProcessExecutorConnect.ArgStr +
" not supported on non-unix platforms",
inconvertibleErrorCode());
#elif !LLVM_ENABLE_THREADS
// Out of process mode using SimpleRemoteEPC depends on threads.
return make_error<StringError>(
"-" + OutOfProcessExecutorConnect.ArgStr +
" requires threads, but LLVM was built with "
"LLVM_ENABLE_THREADS=Off",
inconvertibleErrorCode());
#else
StringRef Host, PortStr;
std::tie(Host, PortStr) = StringRef(OutOfProcessExecutorConnect).split(':');
if (Host.empty())
return createTCPSocketError("Host name for -" +
OutOfProcessExecutorConnect.ArgStr +
" can not be empty");
if (PortStr.empty())
return createTCPSocketError("Port number in -" +
OutOfProcessExecutorConnect.ArgStr +
" can not be empty");
int Port = 0;
if (PortStr.getAsInteger(10, Port))
return createTCPSocketError("Port number '" + PortStr +
"' is not a valid integer");
Expected<int> SockFD = connectTCPSocket(Host.str(), PortStr.str());
if (!SockFD)
return SockFD.takeError();
return SimpleRemoteEPC::Create<FDSimpleRemoteEPCTransport>(
std::make_unique<DynamicThreadPoolTaskDispatcher>(),
SimpleRemoteEPC::Setup(), *SockFD, *SockFD);
#endif
}
class PhonyExternalsGenerator : public DefinitionGenerator {
public:
Error tryToGenerate(LookupState &LS, LookupKind K, JITDylib &JD,
JITDylibLookupFlags JDLookupFlags,
const SymbolLookupSet &LookupSet) override {
SymbolMap PhonySymbols;
for (auto &KV : LookupSet)
PhonySymbols[KV.first] = JITEvaluatedSymbol(0, JITSymbolFlags::Exported);
return JD.define(absoluteSymbols(std::move(PhonySymbols)));
}
};
Expected<std::unique_ptr<Session>> Session::Create(Triple TT) {
std::unique_ptr<ExecutorProcessControl> EPC;
if (OutOfProcessExecutor.getNumOccurrences()) {
/// If -oop-executor is passed then launch the executor.
if (auto REPC = launchExecutor())
EPC = std::move(*REPC);
else
return REPC.takeError();
} else if (OutOfProcessExecutorConnect.getNumOccurrences()) {
/// If -oop-executor-connect is passed then connect to the executor.
if (auto REPC = connectToExecutor())
EPC = std::move(*REPC);
else
return REPC.takeError();
} else {
/// Otherwise use SelfExecutorProcessControl to target the current process.
auto PageSize = sys::Process::getPageSize();
if (!PageSize)
return PageSize.takeError();
EPC = std::make_unique<SelfExecutorProcessControl>(
std::make_shared<SymbolStringPool>(),
std::make_unique<InPlaceTaskDispatcher>(), std::move(TT), *PageSize,
createMemoryManager());
}
Error Err = Error::success();
std::unique_ptr<Session> S(new Session(std::move(EPC), Err));
if (Err)
return std::move(Err);
return std::move(S);
}
Session::~Session() {
if (auto Err = ES.endSession())
ES.reportError(std::move(Err));
}
Session::Session(std::unique_ptr<ExecutorProcessControl> EPC, Error &Err)
: ES(std::move(EPC)),
ObjLayer(*this, ES.getExecutorProcessControl().getMemMgr()) {
/// Local ObjectLinkingLayer::Plugin class to forward modifyPassConfig to the
/// Session.
class JITLinkSessionPlugin : public ObjectLinkingLayer::Plugin {
public:
JITLinkSessionPlugin(Session &S) : S(S) {}
void modifyPassConfig(MaterializationResponsibility &MR, LinkGraph &G,
PassConfiguration &PassConfig) override {
S.modifyPassConfig(G.getTargetTriple(), PassConfig);
}
Error notifyFailed(MaterializationResponsibility &MR) override {
return Error::success();
}
Error notifyRemovingResources(ResourceKey K) override {
return Error::success();
}
void notifyTransferringResources(ResourceKey DstKey,
ResourceKey SrcKey) override {}
private:
Session &S;
};
ErrorAsOutParameter _(&Err);
if (auto MainJDOrErr = ES.createJITDylib("main"))
MainJD = &*MainJDOrErr;
else {
Err = MainJDOrErr.takeError();
return;
}
if (!NoProcessSymbols)
ExitOnErr(loadProcessSymbols(*this));
ExitOnErr(loadDylibs(*this));
auto &TT = ES.getExecutorProcessControl().getTargetTriple();
if (DebuggerSupport && TT.isOSBinFormatMachO())
ObjLayer.addPlugin(ExitOnErr(
GDBJITDebugInfoRegistrationPlugin::Create(this->ES, *MainJD, TT)));
// Set up the platform.
if (TT.isOSBinFormatMachO() && !OrcRuntime.empty()) {
if (auto P =
MachOPlatform::Create(ES, ObjLayer, *MainJD, OrcRuntime.c_str()))
ES.setPlatform(std::move(*P));
else {
Err = P.takeError();
return;
}
} else if (TT.isOSBinFormatELF() && !OrcRuntime.empty()) {
if (auto P =
ELFNixPlatform::Create(ES, ObjLayer, *MainJD, OrcRuntime.c_str()))
ES.setPlatform(std::move(*P));
else {
Err = P.takeError();
return;
}
} else if (!TT.isOSWindows() && !TT.isOSBinFormatMachO()) {
if (!NoExec)
ObjLayer.addPlugin(std::make_unique<EHFrameRegistrationPlugin>(
ES, ExitOnErr(EPCEHFrameRegistrar::Create(this->ES))));
if (DebuggerSupport)
ObjLayer.addPlugin(std::make_unique<DebugObjectManagerPlugin>(
ES, ExitOnErr(createJITLoaderGDBRegistrar(this->ES))));
}
ObjLayer.addPlugin(std::make_unique<JITLinkSessionPlugin>(*this));
// Process any harness files.
for (auto &HarnessFile : TestHarnesses) {
HarnessFiles.insert(HarnessFile);
auto ObjBuffer =
ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(HarnessFile)));
auto ObjSymbolInfo =
ExitOnErr(getObjectSymbolInfo(ES, ObjBuffer->getMemBufferRef()));
for (auto &KV : ObjSymbolInfo.first)
HarnessDefinitions.insert(*KV.first);
auto Obj = ExitOnErr(
object::ObjectFile::createObjectFile(ObjBuffer->getMemBufferRef()));
for (auto &Sym : Obj->symbols()) {
uint32_t SymFlags = ExitOnErr(Sym.getFlags());
auto Name = ExitOnErr(Sym.getName());
if (Name.empty())
continue;
if (SymFlags & object::BasicSymbolRef::SF_Undefined)
HarnessExternals.insert(Name);
}
}
// If a name is defined by some harness file then it's a definition, not an
// external.
for (auto &DefName : HarnessDefinitions)
HarnessExternals.erase(DefName.getKey());
}
void Session::dumpSessionInfo(raw_ostream &OS) {
OS << "Registered addresses:\n" << SymbolInfos << FileInfos;
}
void Session::modifyPassConfig(const Triple &TT,
PassConfiguration &PassConfig) {
if (!CheckFiles.empty())
PassConfig.PostFixupPasses.push_back([this](LinkGraph &G) {
auto &EPC = ES.getExecutorProcessControl();
if (EPC.getTargetTriple().getObjectFormat() == Triple::ELF)
return registerELFGraphInfo(*this, G);
if (EPC.getTargetTriple().getObjectFormat() == Triple::MachO)
return registerMachOGraphInfo(*this, G);
return make_error<StringError>("Unsupported object format for GOT/stub "
"registration",
inconvertibleErrorCode());
});
if (ShowLinkGraph)
PassConfig.PostFixupPasses.push_back([](LinkGraph &G) -> Error {
outs() << "Link graph \"" << G.getName() << "\" post-fixup:\n";
G.dump(outs());
return Error::success();
});
PassConfig.PrePrunePasses.push_back(
[this](LinkGraph &G) { return applyHarnessPromotions(*this, G); });
if (ShowSizes) {
PassConfig.PrePrunePasses.push_back([this](LinkGraph &G) -> Error {
SizeBeforePruning += computeTotalBlockSizes(G);
return Error::success();
});
PassConfig.PostFixupPasses.push_back([this](LinkGraph &G) -> Error {
SizeAfterFixups += computeTotalBlockSizes(G);
return Error::success();
});
}
if (ShowRelocatedSectionContents)
PassConfig.PostFixupPasses.push_back([](LinkGraph &G) -> Error {
outs() << "Relocated section contents for " << G.getName() << ":\n";
dumpSectionContents(outs(), G);
return Error::success();
});
if (AddSelfRelocations)
PassConfig.PostPrunePasses.push_back(addSelfRelocations);
}
Expected<Session::FileInfo &> Session::findFileInfo(StringRef FileName) {
auto FileInfoItr = FileInfos.find(FileName);
if (FileInfoItr == FileInfos.end())
return make_error<StringError>("file \"" + FileName + "\" not recognized",
inconvertibleErrorCode());
return FileInfoItr->second;
}
Expected<Session::MemoryRegionInfo &>
Session::findSectionInfo(StringRef FileName, StringRef SectionName) {
auto FI = findFileInfo(FileName);
if (!FI)
return FI.takeError();
auto SecInfoItr = FI->SectionInfos.find(SectionName);
if (SecInfoItr == FI->SectionInfos.end())
return make_error<StringError>("no section \"" + SectionName +
"\" registered for file \"" + FileName +
"\"",
inconvertibleErrorCode());
return SecInfoItr->second;
}
Expected<Session::MemoryRegionInfo &>
Session::findStubInfo(StringRef FileName, StringRef TargetName) {
auto FI = findFileInfo(FileName);
if (!FI)
return FI.takeError();
auto StubInfoItr = FI->StubInfos.find(TargetName);
if (StubInfoItr == FI->StubInfos.end())
return make_error<StringError>("no stub for \"" + TargetName +
"\" registered for file \"" + FileName +
"\"",
inconvertibleErrorCode());
return StubInfoItr->second;
}
Expected<Session::MemoryRegionInfo &>
Session::findGOTEntryInfo(StringRef FileName, StringRef TargetName) {
auto FI = findFileInfo(FileName);
if (!FI)
return FI.takeError();
auto GOTInfoItr = FI->GOTEntryInfos.find(TargetName);
if (GOTInfoItr == FI->GOTEntryInfos.end())
return make_error<StringError>("no GOT entry for \"" + TargetName +
"\" registered for file \"" + FileName +
"\"",
inconvertibleErrorCode());
return GOTInfoItr->second;
}
bool Session::isSymbolRegistered(StringRef SymbolName) {
return SymbolInfos.count(SymbolName);
}
Expected<Session::MemoryRegionInfo &>
Session::findSymbolInfo(StringRef SymbolName, Twine ErrorMsgStem) {
auto SymInfoItr = SymbolInfos.find(SymbolName);
if (SymInfoItr == SymbolInfos.end())
return make_error<StringError>(ErrorMsgStem + ": symbol " + SymbolName +
" not found",
inconvertibleErrorCode());
return SymInfoItr->second;
}
} // end namespace llvm
static Triple getFirstFileTriple() {
static Triple FirstTT = []() {
assert(!InputFiles.empty() && "InputFiles can not be empty");
for (auto InputFile : InputFiles) {
auto ObjBuffer =
ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(InputFile)));
switch (identify_magic(ObjBuffer->getBuffer())) {
case file_magic::elf_relocatable:
case file_magic::macho_object:
case file_magic::coff_object: {
auto Obj = ExitOnErr(
object::ObjectFile::createObjectFile(ObjBuffer->getMemBufferRef()));
return Obj->makeTriple();
}
default:
break;
}
}
return Triple();
}();
return FirstTT;
}
static Error sanitizeArguments(const Triple &TT, const char *ArgV0) {
// -noexec and --args should not be used together.
if (NoExec && !InputArgv.empty())
errs() << "Warning: --args passed to -noexec run will be ignored.\n";
// Set the entry point name if not specified.
if (EntryPointName.empty())
EntryPointName = TT.getObjectFormat() == Triple::MachO ? "_main" : "main";
// Disable debugger support by default in noexec tests.
if (DebuggerSupport.getNumOccurrences() == 0 && NoExec)
DebuggerSupport = false;
// If -slab-allocate is passed, check that we're not trying to use it in
// -oop-executor or -oop-executor-connect mode.
//
// FIXME: Remove once we enable remote slab allocation.
if (SlabAllocateSizeString != "") {
if (OutOfProcessExecutor.getNumOccurrences() ||
OutOfProcessExecutorConnect.getNumOccurrences())
return make_error<StringError>(
"-slab-allocate cannot be used with -oop-executor or "
"-oop-executor-connect",
inconvertibleErrorCode());
}
// If -slab-address is passed, require -slab-allocate and -noexec
if (SlabAddress != ~0ULL) {
if (SlabAllocateSizeString == "" || !NoExec)
return make_error<StringError>(
"-slab-address requires -slab-allocate and -noexec",
inconvertibleErrorCode());
if (SlabPageSize == 0)
errs() << "Warning: -slab-address used without -slab-page-size.\n";
}
if (SlabPageSize != 0) {
// -slab-page-size requires slab alloc.
if (SlabAllocateSizeString == "")
return make_error<StringError>("-slab-page-size requires -slab-allocate",
inconvertibleErrorCode());
// Check -slab-page-size / -noexec interactions.
if (!NoExec) {
if (auto RealPageSize = sys::Process::getPageSize()) {
if (SlabPageSize % *RealPageSize)
return make_error<StringError>(
"-slab-page-size must be a multiple of real page size for exec "
"tests (did you mean to use -noexec ?)\n",
inconvertibleErrorCode());
} else {
errs() << "Could not retrieve process page size:\n";
logAllUnhandledErrors(RealPageSize.takeError(), errs(), "");
errs() << "Executing with slab page size = "
<< formatv("{0:x}", SlabPageSize) << ".\n"
<< "Tool may crash if " << formatv("{0:x}", SlabPageSize)
<< " is not a multiple of the real process page size.\n"
<< "(did you mean to use -noexec ?)";
}
}
}
// Only one of -oop-executor and -oop-executor-connect can be used.
if (!!OutOfProcessExecutor.getNumOccurrences() &&
!!OutOfProcessExecutorConnect.getNumOccurrences())
return make_error<StringError>(
"Only one of -" + OutOfProcessExecutor.ArgStr + " and -" +
OutOfProcessExecutorConnect.ArgStr + " can be specified",
inconvertibleErrorCode());
// If -oop-executor was used but no value was specified then use a sensible
// default.
if (!!OutOfProcessExecutor.getNumOccurrences() &&
OutOfProcessExecutor.empty()) {
SmallString<256> OOPExecutorPath(sys::fs::getMainExecutable(
ArgV0, reinterpret_cast<void *>(&sanitizeArguments)));
sys::path::remove_filename(OOPExecutorPath);
sys::path::append(OOPExecutorPath, "llvm-jitlink-executor");
OutOfProcessExecutor = OOPExecutorPath.str().str();
}
return Error::success();
}
static void addPhonyExternalsGenerator(Session &S) {
S.MainJD->addGenerator(std::make_unique<PhonyExternalsGenerator>());
}
static Error loadObjects(Session &S) {
std::map<unsigned, JITDylib *> IdxToJLD;
// First, set up JITDylibs.
LLVM_DEBUG(dbgs() << "Creating JITDylibs...\n");
{
// Create a "main" JITLinkDylib.
IdxToJLD[0] = S.MainJD;
S.JDSearchOrder.push_back(S.MainJD);
LLVM_DEBUG(dbgs() << " 0: " << S.MainJD->getName() << "\n");
// Add any extra JITLinkDylibs from the command line.
std::string JDNamePrefix("lib");
for (auto JLDItr = JITLinkDylibs.begin(), JLDEnd = JITLinkDylibs.end();
JLDItr != JLDEnd; ++JLDItr) {
auto JD = S.ES.createJITDylib(JDNamePrefix + *JLDItr);
if (!JD)
return JD.takeError();
unsigned JDIdx =
JITLinkDylibs.getPosition(JLDItr - JITLinkDylibs.begin());
IdxToJLD[JDIdx] = &*JD;
S.JDSearchOrder.push_back(&*JD);
LLVM_DEBUG(dbgs() << " " << JDIdx << ": " << JD->getName() << "\n");
}
// Set every dylib to link against every other, in command line order.
for (auto *JD : S.JDSearchOrder) {
auto LookupFlags = JITDylibLookupFlags::MatchExportedSymbolsOnly;
JITDylibSearchOrder LinkOrder;
for (auto *JD2 : S.JDSearchOrder) {
if (JD2 == JD)
continue;
LinkOrder.push_back(std::make_pair(JD2, LookupFlags));
}
JD->setLinkOrder(std::move(LinkOrder));
}
}
LLVM_DEBUG(dbgs() << "Adding test harness objects...\n");
for (auto HarnessFile : TestHarnesses) {
LLVM_DEBUG(dbgs() << " " << HarnessFile << "\n");
auto ObjBuffer =
ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(HarnessFile)));
ExitOnErr(S.ObjLayer.add(*S.MainJD, std::move(ObjBuffer)));
}
// Load each object into the corresponding JITDylib..
LLVM_DEBUG(dbgs() << "Adding objects...\n");
for (auto InputFileItr = InputFiles.begin(), InputFileEnd = InputFiles.end();
InputFileItr != InputFileEnd; ++InputFileItr) {
unsigned InputFileArgIdx =
InputFiles.getPosition(InputFileItr - InputFiles.begin());
const std::string &InputFile = *InputFileItr;
auto &JD = *std::prev(IdxToJLD.lower_bound(InputFileArgIdx))->second;
LLVM_DEBUG(dbgs() << " " << InputFileArgIdx << ": \"" << InputFile
<< "\" to " << JD.getName() << "\n";);
auto ObjBuffer =
ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(InputFile)));
auto Magic = identify_magic(ObjBuffer->getBuffer());
if (Magic == file_magic::archive ||
Magic == file_magic::macho_universal_binary)
JD.addGenerator(ExitOnErr(StaticLibraryDefinitionGenerator::Load(
S.ObjLayer, InputFile.c_str(),
S.ES.getExecutorProcessControl().getTargetTriple())));
else
ExitOnErr(S.ObjLayer.add(JD, std::move(ObjBuffer)));
}
// Define absolute symbols.
LLVM_DEBUG(dbgs() << "Defining absolute symbols...\n");
for (auto AbsDefItr = AbsoluteDefs.begin(), AbsDefEnd = AbsoluteDefs.end();
AbsDefItr != AbsDefEnd; ++AbsDefItr) {
unsigned AbsDefArgIdx =
AbsoluteDefs.getPosition(AbsDefItr - AbsoluteDefs.begin());
auto &JD = *std::prev(IdxToJLD.lower_bound(AbsDefArgIdx))->second;
StringRef AbsDefStmt = *AbsDefItr;
size_t EqIdx = AbsDefStmt.find_first_of('=');
if (EqIdx == StringRef::npos)
return make_error<StringError>("Invalid absolute define \"" + AbsDefStmt +
"\". Syntax: <name>=<addr>",
inconvertibleErrorCode());
StringRef Name = AbsDefStmt.substr(0, EqIdx).trim();
StringRef AddrStr = AbsDefStmt.substr(EqIdx + 1).trim();
uint64_t Addr;
if (AddrStr.getAsInteger(0, Addr))
return make_error<StringError>("Invalid address expression \"" + AddrStr +
"\" in absolute define \"" + AbsDefStmt +
"\"",
inconvertibleErrorCode());
JITEvaluatedSymbol AbsDef(Addr, JITSymbolFlags::Exported);
if (auto Err = JD.define(absoluteSymbols({{S.ES.intern(Name), AbsDef}})))
return Err;
// Register the absolute symbol with the session symbol infos.
S.SymbolInfos[Name] = {ArrayRef<char>(), Addr};
}
LLVM_DEBUG({
dbgs() << "Dylib search order is [ ";
for (auto *JD : S.JDSearchOrder)
dbgs() << JD->getName() << " ";
dbgs() << "]\n";
});
return Error::success();
}
namespace {
struct TargetInfo {
const Target *TheTarget;
std::unique_ptr<MCSubtargetInfo> STI;
std::unique_ptr<MCRegisterInfo> MRI;
std::unique_ptr<MCAsmInfo> MAI;
std::unique_ptr<MCContext> Ctx;
std::unique_ptr<MCDisassembler> Disassembler;
std::unique_ptr<MCInstrInfo> MII;
std::unique_ptr<MCInstrAnalysis> MIA;
std::unique_ptr<MCInstPrinter> InstPrinter;
};
} // anonymous namespace
static TargetInfo getTargetInfo(const Triple &TT) {
auto TripleName = TT.str();
std::string ErrorStr;
const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, ErrorStr);
if (!TheTarget)
ExitOnErr(make_error<StringError>("Error accessing target '" + TripleName +
"': " + ErrorStr,
inconvertibleErrorCode()));
std::unique_ptr<MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, "", ""));
if (!STI)
ExitOnErr(
make_error<StringError>("Unable to create subtarget for " + TripleName,
inconvertibleErrorCode()));
std::unique_ptr<MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
if (!MRI)
ExitOnErr(make_error<StringError>("Unable to create target register info "
"for " +
TripleName,
inconvertibleErrorCode()));
MCTargetOptions MCOptions;
std::unique_ptr<MCAsmInfo> MAI(
TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
if (!MAI)
ExitOnErr(make_error<StringError>("Unable to create target asm info " +
TripleName,
inconvertibleErrorCode()));
auto Ctx = std::make_unique<MCContext>(Triple(TripleName), MAI.get(),
MRI.get(), STI.get());
std::unique_ptr<MCDisassembler> Disassembler(
TheTarget->createMCDisassembler(*STI, *Ctx));
if (!Disassembler)
ExitOnErr(make_error<StringError>("Unable to create disassembler for " +
TripleName,
inconvertibleErrorCode()));
std::unique_ptr<MCInstrInfo> MII(TheTarget->createMCInstrInfo());
if (!MII)
ExitOnErr(make_error<StringError>("Unable to create instruction info for" +
TripleName,
inconvertibleErrorCode()));
std::unique_ptr<MCInstrAnalysis> MIA(
TheTarget->createMCInstrAnalysis(MII.get()));
if (!MIA)
ExitOnErr(make_error<StringError>(
"Unable to create instruction analysis for" + TripleName,
inconvertibleErrorCode()));
std::unique_ptr<MCInstPrinter> InstPrinter(
TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI));
if (!InstPrinter)
ExitOnErr(make_error<StringError>(
"Unable to create instruction printer for" + TripleName,
inconvertibleErrorCode()));
return {TheTarget, std::move(STI), std::move(MRI),
std::move(MAI), std::move(Ctx), std::move(Disassembler),
std::move(MII), std::move(MIA), std::move(InstPrinter)};
}
static Error runChecks(Session &S) {
const auto &TT = S.ES.getExecutorProcessControl().getTargetTriple();
if (CheckFiles.empty())
return Error::success();
LLVM_DEBUG(dbgs() << "Running checks...\n");
auto TI = getTargetInfo(TT);
auto IsSymbolValid = [&S](StringRef Symbol) {
return S.isSymbolRegistered(Symbol);
};
auto GetSymbolInfo = [&S](StringRef Symbol) {
return S.findSymbolInfo(Symbol, "Can not get symbol info");
};
auto GetSectionInfo = [&S](StringRef FileName, StringRef SectionName) {
return S.findSectionInfo(FileName, SectionName);
};
auto GetStubInfo = [&S](StringRef FileName, StringRef SectionName) {
return S.findStubInfo(FileName, SectionName);
};
auto GetGOTInfo = [&S](StringRef FileName, StringRef SectionName) {
return S.findGOTEntryInfo(FileName, SectionName);
};
RuntimeDyldChecker Checker(
IsSymbolValid, GetSymbolInfo, GetSectionInfo, GetStubInfo, GetGOTInfo,
TT.isLittleEndian() ? support::little : support::big,
TI.Disassembler.get(), TI.InstPrinter.get(), dbgs());
std::string CheckLineStart = "# " + CheckName + ":";
for (auto &CheckFile : CheckFiles) {
auto CheckerFileBuf =
ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(CheckFile)));
if (!Checker.checkAllRulesInBuffer(CheckLineStart, &*CheckerFileBuf))
ExitOnErr(make_error<StringError>(
"Some checks in " + CheckFile + " failed", inconvertibleErrorCode()));
}
return Error::success();
}
static Error addSelfRelocations(LinkGraph &G) {
auto TI = getTargetInfo(G.getTargetTriple());
for (auto *Sym : G.defined_symbols())
if (Sym->isCallable())
if (auto Err = addFunctionPointerRelocationsToCurrentSymbol(
*Sym, G, *TI.Disassembler, *TI.MIA))
return Err;
return Error::success();
}
static void dumpSessionStats(Session &S) {
if (!ShowSizes)
return;
if (!OrcRuntime.empty())
outs() << "Note: Session stats include runtime and entry point lookup, but "
"not JITDylib initialization/deinitialization.\n";
if (ShowSizes)
outs() << " Total size of all blocks before pruning: "
<< S.SizeBeforePruning
<< "\n Total size of all blocks after fixups: " << S.SizeAfterFixups
<< "\n";
}
static Expected<JITEvaluatedSymbol> getMainEntryPoint(Session &S) {
return S.ES.lookup(S.JDSearchOrder, EntryPointName);
}
static Expected<JITEvaluatedSymbol> getOrcRuntimeEntryPoint(Session &S) {
std::string RuntimeEntryPoint = "__orc_rt_run_program_wrapper";
const auto &TT = S.ES.getExecutorProcessControl().getTargetTriple();
if (TT.getObjectFormat() == Triple::MachO)
RuntimeEntryPoint = '_' + RuntimeEntryPoint;
return S.ES.lookup(S.JDSearchOrder, RuntimeEntryPoint);
}
static Expected<int> runWithRuntime(Session &S, ExecutorAddr EntryPointAddr) {
StringRef DemangledEntryPoint = EntryPointName;
const auto &TT = S.ES.getExecutorProcessControl().getTargetTriple();
if (TT.getObjectFormat() == Triple::MachO &&
DemangledEntryPoint.front() == '_')
DemangledEntryPoint = DemangledEntryPoint.drop_front();
using SPSRunProgramSig =
int64_t(SPSString, SPSString, SPSSequence<SPSString>);
int64_t Result;
if (auto Err = S.ES.callSPSWrapper<SPSRunProgramSig>(
EntryPointAddr, Result, S.MainJD->getName(), DemangledEntryPoint,
static_cast<std::vector<std::string> &>(InputArgv)))
return std::move(Err);
return Result;
}
static Expected<int> runWithoutRuntime(Session &S,
ExecutorAddr EntryPointAddr) {
return S.ES.getExecutorProcessControl().runAsMain(EntryPointAddr, InputArgv);
}
namespace {
struct JITLinkTimers {
TimerGroup JITLinkTG{"llvm-jitlink timers", "timers for llvm-jitlink phases"};
Timer LoadObjectsTimer{"load", "time to load/add object files", JITLinkTG};
Timer LinkTimer{"link", "time to link object files", JITLinkTG};
Timer RunTimer{"run", "time to execute jitlink'd code", JITLinkTG};
};
} // namespace
int main(int argc, char *argv[]) {
InitLLVM X(argc, argv);
InitializeAllTargetInfos();
InitializeAllTargetMCs();
InitializeAllDisassemblers();
cl::HideUnrelatedOptions({&JITLinkCategory, &getColorCategory()});
cl::ParseCommandLineOptions(argc, argv, "llvm jitlink tool");
ExitOnErr.setBanner(std::string(argv[0]) + ": ");
/// If timers are enabled, create a JITLinkTimers instance.
std::unique_ptr<JITLinkTimers> Timers =
ShowTimes ? std::make_unique<JITLinkTimers>() : nullptr;
ExitOnErr(sanitizeArguments(getFirstFileTriple(), argv[0]));
auto S = ExitOnErr(Session::Create(getFirstFileTriple()));
{
TimeRegion TR(Timers ? &Timers->LoadObjectsTimer : nullptr);
ExitOnErr(loadObjects(*S));
}
if (PhonyExternals)
addPhonyExternalsGenerator(*S);
if (ShowInitialExecutionSessionState)
S->ES.dump(outs());
JITEvaluatedSymbol EntryPoint = 0;
{
TimeRegion TR(Timers ? &Timers->LinkTimer : nullptr);
// Find the entry-point function unconditionally, since we want to force
// it to be materialized to collect stats.
EntryPoint = ExitOnErr(getMainEntryPoint(*S));
// If we're running with the ORC runtime then replace the entry-point
// with the __orc_rt_run_program symbol.
if (!OrcRuntime.empty())
EntryPoint = ExitOnErr(getOrcRuntimeEntryPoint(*S));
}
if (ShowAddrs)
S->dumpSessionInfo(outs());
ExitOnErr(runChecks(*S));
dumpSessionStats(*S);
if (NoExec)
return 0;
int Result = 0;
{
LLVM_DEBUG(dbgs() << "Running \"" << EntryPointName << "\"...\n");
TimeRegion TR(Timers ? &Timers->RunTimer : nullptr);
if (!OrcRuntime.empty())
Result =
ExitOnErr(runWithRuntime(*S, ExecutorAddr(EntryPoint.getAddress())));
else
Result = ExitOnErr(
runWithoutRuntime(*S, ExecutorAddr(EntryPoint.getAddress())));
}
// Destroy the session.
ExitOnErr(S->ES.endSession());
S.reset();
// If the executing code set a test result override then use that.
if (UseTestResultOverride)
Result = TestResultOverride;
return Result;
}