blob: 2071a08d87117df462a35f11b68c985df3a79ff9 [file] [log] [blame]
//== llvm/Support/LowLevelTypeImpl.h --------------------------- -*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Implement a low-level type suitable for MachineInstr level instruction
/// selection.
///
/// For a type attached to a MachineInstr, we only care about 2 details: total
/// size and the number of vector lanes (if any). Accordingly, there are 4
/// possible valid type-kinds:
///
/// * `sN` for scalars and aggregates
/// * `<N x sM>` for vectors, which must have at least 2 elements.
/// * `pN` for pointers
///
/// Other information required for correct selection is expected to be carried
/// by the opcode, or non-type flags. For example the distinction between G_ADD
/// and G_FADD for int/float or fast-math flags.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_LOWLEVELTYPEIMPL_H
#define LLVM_SUPPORT_LOWLEVELTYPEIMPL_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MachineValueType.h"
#include <cassert>
namespace llvm {
class DataLayout;
class Type;
class raw_ostream;
class LLT {
public:
/// Get a low-level scalar or aggregate "bag of bits".
static LLT scalar(unsigned SizeInBits) {
return LLT{/*isPointer=*/false, /*isVector=*/false, /*isScalar=*/true,
ElementCount::getFixed(0), SizeInBits,
/*AddressSpace=*/0};
}
/// Get a low-level pointer in the given address space.
static LLT pointer(unsigned AddressSpace, unsigned SizeInBits) {
assert(SizeInBits > 0 && "invalid pointer size");
return LLT{/*isPointer=*/true, /*isVector=*/false, /*isScalar=*/false,
ElementCount::getFixed(0), SizeInBits, AddressSpace};
}
/// Get a low-level vector of some number of elements and element width.
static LLT vector(ElementCount EC, unsigned ScalarSizeInBits) {
assert(!EC.isScalar() && "invalid number of vector elements");
return LLT{/*isPointer=*/false, /*isVector=*/true, /*isScalar=*/false,
EC, ScalarSizeInBits, /*AddressSpace=*/0};
}
/// Get a low-level vector of some number of elements and element type.
static LLT vector(ElementCount EC, LLT ScalarTy) {
assert(!EC.isScalar() && "invalid number of vector elements");
assert(!ScalarTy.isVector() && "invalid vector element type");
return LLT{ScalarTy.isPointer(), /*isVector=*/true, /*isScalar=*/false,
EC,
ScalarTy.getSizeInBits().getFixedSize(),
ScalarTy.isPointer() ? ScalarTy.getAddressSpace() : 0};
}
/// Get a low-level fixed-width vector of some number of elements and element
/// width.
static LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits) {
return vector(ElementCount::getFixed(NumElements), ScalarSizeInBits);
}
/// Get a low-level fixed-width vector of some number of elements and element
/// type.
static LLT fixed_vector(unsigned NumElements, LLT ScalarTy) {
return vector(ElementCount::getFixed(NumElements), ScalarTy);
}
/// Get a low-level scalable vector of some number of elements and element
/// width.
static LLT scalable_vector(unsigned MinNumElements,
unsigned ScalarSizeInBits) {
return vector(ElementCount::getScalable(MinNumElements), ScalarSizeInBits);
}
/// Get a low-level scalable vector of some number of elements and element
/// type.
static LLT scalable_vector(unsigned MinNumElements, LLT ScalarTy) {
return vector(ElementCount::getScalable(MinNumElements), ScalarTy);
}
static LLT scalarOrVector(ElementCount EC, LLT ScalarTy) {
return EC.isScalar() ? ScalarTy : LLT::vector(EC, ScalarTy);
}
static LLT scalarOrVector(ElementCount EC, uint64_t ScalarSize) {
assert(ScalarSize <= std::numeric_limits<unsigned>::max() &&
"Not enough bits in LLT to represent size");
return scalarOrVector(EC, LLT::scalar(static_cast<unsigned>(ScalarSize)));
}
explicit LLT(bool isPointer, bool isVector, bool isScalar, ElementCount EC,
uint64_t SizeInBits, unsigned AddressSpace) {
init(isPointer, isVector, isScalar, EC, SizeInBits, AddressSpace);
}
explicit LLT()
: IsScalar(false), IsPointer(false), IsVector(false), RawData(0) {}
explicit LLT(MVT VT);
bool isValid() const { return IsScalar || RawData != 0; }
bool isScalar() const { return IsScalar; }
bool isPointer() const { return isValid() && IsPointer && !IsVector; }
bool isVector() const { return isValid() && IsVector; }
/// Returns the number of elements in a vector LLT. Must only be called on
/// vector types.
uint16_t getNumElements() const {
if (isScalable())
llvm::reportInvalidSizeRequest(
"Possible incorrect use of LLT::getNumElements() for "
"scalable vector. Scalable flag may be dropped, use "
"LLT::getElementCount() instead");
return getElementCount().getKnownMinValue();
}
/// Returns true if the LLT is a scalable vector. Must only be called on
/// vector types.
bool isScalable() const {
assert(isVector() && "Expected a vector type");
return IsPointer ? getFieldValue(PointerVectorScalableFieldInfo)
: getFieldValue(VectorScalableFieldInfo);
}
ElementCount getElementCount() const {
assert(IsVector && "cannot get number of elements on scalar/aggregate");
return ElementCount::get(IsPointer
? getFieldValue(PointerVectorElementsFieldInfo)
: getFieldValue(VectorElementsFieldInfo),
isScalable());
}
/// Returns the total size of the type. Must only be called on sized types.
TypeSize getSizeInBits() const {
if (isPointer() || isScalar())
return TypeSize::Fixed(getScalarSizeInBits());
auto EC = getElementCount();
return TypeSize(getScalarSizeInBits() * EC.getKnownMinValue(),
EC.isScalable());
}
/// Returns the total size of the type in bytes, i.e. number of whole bytes
/// needed to represent the size in bits. Must only be called on sized types.
TypeSize getSizeInBytes() const {
TypeSize BaseSize = getSizeInBits();
return {(BaseSize.getKnownMinSize() + 7) / 8, BaseSize.isScalable()};
}
LLT getScalarType() const {
return isVector() ? getElementType() : *this;
}
/// If this type is a vector, return a vector with the same number of elements
/// but the new element type. Otherwise, return the new element type.
LLT changeElementType(LLT NewEltTy) const {
return isVector() ? LLT::vector(getElementCount(), NewEltTy) : NewEltTy;
}
/// If this type is a vector, return a vector with the same number of elements
/// but the new element size. Otherwise, return the new element type. Invalid
/// for pointer types. For pointer types, use changeElementType.
LLT changeElementSize(unsigned NewEltSize) const {
assert(!getScalarType().isPointer() &&
"invalid to directly change element size for pointers");
return isVector() ? LLT::vector(getElementCount(), NewEltSize)
: LLT::scalar(NewEltSize);
}
/// Return a vector or scalar with the same element type and the new element
/// count.
LLT changeElementCount(ElementCount EC) const {
return LLT::scalarOrVector(EC, getScalarType());
}
/// Return a type that is \p Factor times smaller. Reduces the number of
/// elements if this is a vector, or the bitwidth for scalar/pointers. Does
/// not attempt to handle cases that aren't evenly divisible.
LLT divide(int Factor) const {
assert(Factor != 1);
assert((!isScalar() || getScalarSizeInBits() != 0) &&
"cannot divide scalar of size zero");
if (isVector()) {
assert(getElementCount().isKnownMultipleOf(Factor));
return scalarOrVector(getElementCount().divideCoefficientBy(Factor),
getElementType());
}
assert(getScalarSizeInBits() % Factor == 0);
return scalar(getScalarSizeInBits() / Factor);
}
bool isByteSized() const { return getSizeInBits().isKnownMultipleOf(8); }
unsigned getScalarSizeInBits() const {
if (IsScalar)
return getFieldValue(ScalarSizeFieldInfo);
if (IsVector) {
if (!IsPointer)
return getFieldValue(VectorSizeFieldInfo);
else
return getFieldValue(PointerVectorSizeFieldInfo);
} else if (IsPointer)
return getFieldValue(PointerSizeFieldInfo);
else
llvm_unreachable("unexpected LLT");
}
unsigned getAddressSpace() const {
assert(RawData != 0 && "Invalid Type");
assert(IsPointer && "cannot get address space of non-pointer type");
if (!IsVector)
return getFieldValue(PointerAddressSpaceFieldInfo);
else
return getFieldValue(PointerVectorAddressSpaceFieldInfo);
}
/// Returns the vector's element type. Only valid for vector types.
LLT getElementType() const {
assert(isVector() && "cannot get element type of scalar/aggregate");
if (IsPointer)
return pointer(getAddressSpace(), getScalarSizeInBits());
else
return scalar(getScalarSizeInBits());
}
void print(raw_ostream &OS) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void dump() const {
print(dbgs());
dbgs() << '\n';
}
#endif
bool operator==(const LLT &RHS) const {
return IsPointer == RHS.IsPointer && IsVector == RHS.IsVector &&
IsScalar == RHS.IsScalar && RHS.RawData == RawData;
}
bool operator!=(const LLT &RHS) const { return !(*this == RHS); }
friend struct DenseMapInfo<LLT>;
friend class GISelInstProfileBuilder;
private:
/// LLT is packed into 64 bits as follows:
/// isScalar : 1
/// isPointer : 1
/// isVector : 1
/// with 61 bits remaining for Kind-specific data, packed in bitfields
/// as described below. As there isn't a simple portable way to pack bits
/// into bitfields, here the different fields in the packed structure is
/// described in static const *Field variables. Each of these variables
/// is a 2-element array, with the first element describing the bitfield size
/// and the second element describing the bitfield offset.
typedef int BitFieldInfo[2];
///
/// This is how the bitfields are packed per Kind:
/// * Invalid:
/// gets encoded as RawData == 0, as that is an invalid encoding, since for
/// valid encodings, SizeInBits/SizeOfElement must be larger than 0.
/// * Non-pointer scalar (isPointer == 0 && isVector == 0):
/// SizeInBits: 32;
static const constexpr BitFieldInfo ScalarSizeFieldInfo{32, 0};
/// * Pointer (isPointer == 1 && isVector == 0):
/// SizeInBits: 16;
/// AddressSpace: 24;
static const constexpr BitFieldInfo PointerSizeFieldInfo{16, 0};
static const constexpr BitFieldInfo PointerAddressSpaceFieldInfo{
24, PointerSizeFieldInfo[0] + PointerSizeFieldInfo[1]};
static_assert((PointerAddressSpaceFieldInfo[0] +
PointerAddressSpaceFieldInfo[1]) <= 61,
"Insufficient bits to encode all data");
/// * Vector-of-non-pointer (isPointer == 0 && isVector == 1):
/// NumElements: 16;
/// SizeOfElement: 32;
/// Scalable: 1;
static const constexpr BitFieldInfo VectorElementsFieldInfo{16, 0};
static const constexpr BitFieldInfo VectorSizeFieldInfo{
32, VectorElementsFieldInfo[0] + VectorElementsFieldInfo[1]};
static const constexpr BitFieldInfo VectorScalableFieldInfo{
1, VectorSizeFieldInfo[0] + VectorSizeFieldInfo[1]};
static_assert((VectorSizeFieldInfo[0] + VectorSizeFieldInfo[1]) <= 61,
"Insufficient bits to encode all data");
/// * Vector-of-pointer (isPointer == 1 && isVector == 1):
/// NumElements: 16;
/// SizeOfElement: 16;
/// AddressSpace: 24;
/// Scalable: 1;
static const constexpr BitFieldInfo PointerVectorElementsFieldInfo{16, 0};
static const constexpr BitFieldInfo PointerVectorSizeFieldInfo{
16,
PointerVectorElementsFieldInfo[1] + PointerVectorElementsFieldInfo[0]};
static const constexpr BitFieldInfo PointerVectorAddressSpaceFieldInfo{
24, PointerVectorSizeFieldInfo[1] + PointerVectorSizeFieldInfo[0]};
static const constexpr BitFieldInfo PointerVectorScalableFieldInfo{
1, PointerVectorAddressSpaceFieldInfo[0] +
PointerVectorAddressSpaceFieldInfo[1]};
static_assert((PointerVectorAddressSpaceFieldInfo[0] +
PointerVectorAddressSpaceFieldInfo[1]) <= 61,
"Insufficient bits to encode all data");
uint64_t IsScalar : 1;
uint64_t IsPointer : 1;
uint64_t IsVector : 1;
uint64_t RawData : 61;
static uint64_t getMask(const BitFieldInfo FieldInfo) {
const int FieldSizeInBits = FieldInfo[0];
return (((uint64_t)1) << FieldSizeInBits) - 1;
}
static uint64_t maskAndShift(uint64_t Val, uint64_t Mask, uint8_t Shift) {
assert(Val <= Mask && "Value too large for field");
return (Val & Mask) << Shift;
}
static uint64_t maskAndShift(uint64_t Val, const BitFieldInfo FieldInfo) {
return maskAndShift(Val, getMask(FieldInfo), FieldInfo[1]);
}
uint64_t getFieldValue(const BitFieldInfo FieldInfo) const {
return getMask(FieldInfo) & (RawData >> FieldInfo[1]);
}
void init(bool IsPointer, bool IsVector, bool IsScalar, ElementCount EC,
uint64_t SizeInBits, unsigned AddressSpace) {
assert(SizeInBits <= std::numeric_limits<unsigned>::max() &&
"Not enough bits in LLT to represent size");
this->IsPointer = IsPointer;
this->IsVector = IsVector;
this->IsScalar = IsScalar;
if (IsScalar)
RawData = maskAndShift(SizeInBits, ScalarSizeFieldInfo);
else if (IsVector) {
assert(EC.isVector() && "invalid number of vector elements");
if (!IsPointer)
RawData =
maskAndShift(EC.getKnownMinValue(), VectorElementsFieldInfo) |
maskAndShift(SizeInBits, VectorSizeFieldInfo) |
maskAndShift(EC.isScalable() ? 1 : 0, VectorScalableFieldInfo);
else
RawData =
maskAndShift(EC.getKnownMinValue(),
PointerVectorElementsFieldInfo) |
maskAndShift(SizeInBits, PointerVectorSizeFieldInfo) |
maskAndShift(AddressSpace, PointerVectorAddressSpaceFieldInfo) |
maskAndShift(EC.isScalable() ? 1 : 0,
PointerVectorScalableFieldInfo);
} else if (IsPointer)
RawData = maskAndShift(SizeInBits, PointerSizeFieldInfo) |
maskAndShift(AddressSpace, PointerAddressSpaceFieldInfo);
else
llvm_unreachable("unexpected LLT configuration");
}
public:
uint64_t getUniqueRAWLLTData() const {
return ((uint64_t)RawData) << 3 | ((uint64_t)IsScalar) << 2 |
((uint64_t)IsPointer) << 1 | ((uint64_t)IsVector);
}
};
inline raw_ostream& operator<<(raw_ostream &OS, const LLT &Ty) {
Ty.print(OS);
return OS;
}
template<> struct DenseMapInfo<LLT> {
static inline LLT getEmptyKey() {
LLT Invalid;
Invalid.IsPointer = true;
return Invalid;
}
static inline LLT getTombstoneKey() {
LLT Invalid;
Invalid.IsVector = true;
return Invalid;
}
static inline unsigned getHashValue(const LLT &Ty) {
uint64_t Val = Ty.getUniqueRAWLLTData();
return DenseMapInfo<uint64_t>::getHashValue(Val);
}
static bool isEqual(const LLT &LHS, const LLT &RHS) {
return LHS == RHS;
}
};
}
#endif // LLVM_SUPPORT_LOWLEVELTYPEIMPL_H