blob: 05ef2495475fc7210f1f93666d20acaef918de3f [file] [log] [blame]
//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file provides helpers for the implementation of
/// a TargetTransformInfo-conforming class.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include <utility>
using namespace llvm::PatternMatch;
namespace llvm {
/// Base class for use as a mix-in that aids implementing
/// a TargetTransformInfo-compatible class.
class TargetTransformInfoImplBase {
protected:
typedef TargetTransformInfo TTI;
const DataLayout &DL;
explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
public:
// Provide value semantics. MSVC requires that we spell all of these out.
TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
: DL(Arg.DL) {}
TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
const DataLayout &getDataLayout() const { return DL; }
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) const {
// In the basic model, we just assume that all-constant GEPs will be folded
// into their uses via addressing modes.
for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
if (!isa<Constant>(Operands[Idx]))
return TTI::TCC_Basic;
return TTI::TCC_Free;
}
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
unsigned &JTSize,
ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) const {
(void)PSI;
(void)BFI;
JTSize = 0;
return SI.getNumCases();
}
unsigned getInliningThresholdMultiplier() const { return 1; }
unsigned adjustInliningThreshold(const CallBase *CB) const { return 0; }
int getInlinerVectorBonusPercent() const { return 150; }
InstructionCost getMemcpyCost(const Instruction *I) const {
return TTI::TCC_Expensive;
}
// Although this default value is arbitrary, it is not random. It is assumed
// that a condition that evaluates the same way by a higher percentage than
// this is best represented as control flow. Therefore, the default value N
// should be set such that the win from N% correct executions is greater than
// the loss from (100 - N)% mispredicted executions for the majority of
// intended targets.
BranchProbability getPredictableBranchThreshold() const {
return BranchProbability(99, 100);
}
bool hasBranchDivergence() const { return false; }
bool useGPUDivergenceAnalysis() const { return false; }
bool isSourceOfDivergence(const Value *V) const { return false; }
bool isAlwaysUniform(const Value *V) const { return false; }
unsigned getFlatAddressSpace() const { return -1; }
bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const {
return false;
}
bool isNoopAddrSpaceCast(unsigned, unsigned) const { return false; }
bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const {
return AS == 0;
};
unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value *V) const {
return std::make_pair(nullptr, -1);
}
Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
Value *NewV) const {
return nullptr;
}
bool isLoweredToCall(const Function *F) const {
assert(F && "A concrete function must be provided to this routine.");
// FIXME: These should almost certainly not be handled here, and instead
// handled with the help of TLI or the target itself. This was largely
// ported from existing analysis heuristics here so that such refactorings
// can take place in the future.
if (F->isIntrinsic())
return false;
if (F->hasLocalLinkage() || !F->hasName())
return true;
StringRef Name = F->getName();
// These will all likely lower to a single selection DAG node.
if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
Name == "fmin" || Name == "fminf" || Name == "fminl" ||
Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
return false;
// These are all likely to be optimized into something smaller.
if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
Name == "floorf" || Name == "ceil" || Name == "round" ||
Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
Name == "llabs")
return false;
return true;
}
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *LibInfo,
HardwareLoopInfo &HWLoopInfo) const {
return false;
}
bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *TLI,
DominatorTree *DT,
const LoopAccessInfo *LAI) const {
return false;
}
bool emitGetActiveLaneMask() const {
return false;
}
Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
IntrinsicInst &II) const {
return None;
}
Optional<Value *>
simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
APInt DemandedMask, KnownBits &Known,
bool &KnownBitsComputed) const {
return None;
}
Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) const {
return None;
}
void getUnrollingPreferences(Loop *, ScalarEvolution &,
TTI::UnrollingPreferences &,
OptimizationRemarkEmitter *) const {}
void getPeelingPreferences(Loop *, ScalarEvolution &,
TTI::PeelingPreferences &) const {}
bool isLegalAddImmediate(int64_t Imm) const { return false; }
bool isLegalICmpImmediate(int64_t Imm) const { return false; }
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
Instruction *I = nullptr) const {
// Guess that only reg and reg+reg addressing is allowed. This heuristic is
// taken from the implementation of LSR.
return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
}
bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) const {
return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
C2.ScaleCost, C2.ImmCost, C2.SetupCost);
}
bool isNumRegsMajorCostOfLSR() const { return true; }
bool isProfitableLSRChainElement(Instruction *I) const { return false; }
bool canMacroFuseCmp() const { return false; }
bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
DominatorTree *DT, AssumptionCache *AC,
TargetLibraryInfo *LibInfo) const {
return false;
}
TTI::AddressingModeKind
getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const {
return TTI::AMK_None;
}
bool isLegalMaskedStore(Type *DataType, Align Alignment) const {
return false;
}
bool isLegalMaskedLoad(Type *DataType, Align Alignment) const {
return false;
}
bool isLegalNTStore(Type *DataType, Align Alignment) const {
// By default, assume nontemporal memory stores are available for stores
// that are aligned and have a size that is a power of 2.
unsigned DataSize = DL.getTypeStoreSize(DataType);
return Alignment >= DataSize && isPowerOf2_32(DataSize);
}
bool isLegalNTLoad(Type *DataType, Align Alignment) const {
// By default, assume nontemporal memory loads are available for loads that
// are aligned and have a size that is a power of 2.
unsigned DataSize = DL.getTypeStoreSize(DataType);
return Alignment >= DataSize && isPowerOf2_32(DataSize);
}
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
return false;
}
bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
return false;
}
bool isLegalMaskedCompressStore(Type *DataType) const { return false; }
bool isLegalMaskedExpandLoad(Type *DataType) const { return false; }
bool enableOrderedReductions() const { return false; }
bool hasDivRemOp(Type *DataType, bool IsSigned) const { return false; }
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const {
return false;
}
bool prefersVectorizedAddressing() const { return true; }
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale,
unsigned AddrSpace) const {
// Guess that all legal addressing mode are free.
if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
AddrSpace))
return 0;
return -1;
}
bool LSRWithInstrQueries() const { return false; }
bool isTruncateFree(Type *Ty1, Type *Ty2) const { return false; }
bool isProfitableToHoist(Instruction *I) const { return true; }
bool useAA() const { return false; }
bool isTypeLegal(Type *Ty) const { return false; }
InstructionCost getRegUsageForType(Type *Ty) const { return 1; }
bool shouldBuildLookupTables() const { return true; }
bool shouldBuildLookupTablesForConstant(Constant *C) const { return true; }
bool shouldBuildRelLookupTables() const { return false; }
bool useColdCCForColdCall(Function &F) const { return false; }
InstructionCost getScalarizationOverhead(VectorType *Ty,
const APInt &DemandedElts,
bool Insert, bool Extract) const {
return 0;
}
InstructionCost getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
ArrayRef<Type *> Tys) const {
return 0;
}
bool supportsEfficientVectorElementLoadStore() const { return false; }
bool enableAggressiveInterleaving(bool LoopHasReductions) const {
return false;
}
TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
bool IsZeroCmp) const {
return {};
}
bool enableInterleavedAccessVectorization() const { return false; }
bool enableMaskedInterleavedAccessVectorization() const { return false; }
bool isFPVectorizationPotentiallyUnsafe() const { return false; }
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
unsigned AddressSpace, Align Alignment,
bool *Fast) const {
return false;
}
TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
return TTI::PSK_Software;
}
bool haveFastSqrt(Type *Ty) const { return false; }
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { return true; }
InstructionCost getFPOpCost(Type *Ty) const {
return TargetTransformInfo::TCC_Basic;
}
InstructionCost getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty) const {
return 0;
}
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) const {
return TTI::TCC_Basic;
}
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
Instruction *Inst = nullptr) const {
return TTI::TCC_Free;
}
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) const {
return TTI::TCC_Free;
}
unsigned getNumberOfRegisters(unsigned ClassID) const { return 8; }
unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const {
return Vector ? 1 : 0;
};
const char *getRegisterClassName(unsigned ClassID) const {
switch (ClassID) {
default:
return "Generic::Unknown Register Class";
case 0:
return "Generic::ScalarRC";
case 1:
return "Generic::VectorRC";
}
}
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
return TypeSize::getFixed(32);
}
unsigned getMinVectorRegisterBitWidth() const { return 128; }
Optional<unsigned> getMaxVScale() const { return None; }
Optional<unsigned> getVScaleForTuning() const { return None; }
bool shouldMaximizeVectorBandwidth() const { return false; }
ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const {
return ElementCount::get(0, IsScalable);
}
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { return 0; }
bool shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
AllowPromotionWithoutCommonHeader = false;
return false;
}
unsigned getCacheLineSize() const { return 0; }
llvm::Optional<unsigned>
getCacheSize(TargetTransformInfo::CacheLevel Level) const {
switch (Level) {
case TargetTransformInfo::CacheLevel::L1D:
LLVM_FALLTHROUGH;
case TargetTransformInfo::CacheLevel::L2D:
return llvm::Optional<unsigned>();
}
llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
}
llvm::Optional<unsigned>
getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const {
switch (Level) {
case TargetTransformInfo::CacheLevel::L1D:
LLVM_FALLTHROUGH;
case TargetTransformInfo::CacheLevel::L2D:
return llvm::Optional<unsigned>();
}
llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
}
unsigned getPrefetchDistance() const { return 0; }
unsigned getMinPrefetchStride(unsigned NumMemAccesses,
unsigned NumStridedMemAccesses,
unsigned NumPrefetches, bool HasCall) const {
return 1;
}
unsigned getMaxPrefetchIterationsAhead() const { return UINT_MAX; }
bool enableWritePrefetching() const { return false; }
unsigned getMaxInterleaveFactor(unsigned VF) const { return 1; }
InstructionCost getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
const Instruction *CxtI = nullptr) const {
// FIXME: A number of transformation tests seem to require these values
// which seems a little odd for how arbitary there are.
switch (Opcode) {
default:
break;
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::UDiv:
case Instruction::URem:
// FIXME: Unlikely to be true for CodeSize.
return TTI::TCC_Expensive;
}
return 1;
}
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Ty,
ArrayRef<int> Mask, int Index,
VectorType *SubTp) const {
return 1;
}
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) const {
switch (Opcode) {
default:
break;
case Instruction::IntToPtr: {
unsigned SrcSize = Src->getScalarSizeInBits();
if (DL.isLegalInteger(SrcSize) &&
SrcSize <= DL.getPointerTypeSizeInBits(Dst))
return 0;
break;
}
case Instruction::PtrToInt: {
unsigned DstSize = Dst->getScalarSizeInBits();
if (DL.isLegalInteger(DstSize) &&
DstSize >= DL.getPointerTypeSizeInBits(Src))
return 0;
break;
}
case Instruction::BitCast:
if (Dst == Src || (Dst->isPointerTy() && Src->isPointerTy()))
// Identity and pointer-to-pointer casts are free.
return 0;
break;
case Instruction::Trunc: {
// trunc to a native type is free (assuming the target has compare and
// shift-right of the same width).
TypeSize DstSize = DL.getTypeSizeInBits(Dst);
if (!DstSize.isScalable() && DL.isLegalInteger(DstSize.getFixedSize()))
return 0;
break;
}
}
return 1;
}
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy,
unsigned Index) const {
return 1;
}
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) const {
// A phi would be free, unless we're costing the throughput because it
// will require a register.
if (Opcode == Instruction::PHI && CostKind != TTI::TCK_RecipThroughput)
return 0;
return 1;
}
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I) const {
return 1;
}
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const {
return 1;
}
unsigned getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
const APInt &DemandedDstElts,
TTI::TargetCostKind CostKind) {
return 1;
}
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I) const {
return 1;
}
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind) const {
return 1;
}
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
const Value *Ptr, bool VariableMask,
Align Alignment,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) const {
return 1;
}
unsigned getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond, bool UseMaskForGaps) const {
return 1;
}
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) const {
switch (ICA.getID()) {
default:
break;
case Intrinsic::annotation:
case Intrinsic::assume:
case Intrinsic::sideeffect:
case Intrinsic::pseudoprobe:
case Intrinsic::arithmetic_fence:
case Intrinsic::dbg_declare:
case Intrinsic::dbg_value:
case Intrinsic::dbg_label:
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
case Intrinsic::is_constant:
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::experimental_noalias_scope_decl:
case Intrinsic::objectsize:
case Intrinsic::ptr_annotation:
case Intrinsic::var_annotation:
case Intrinsic::experimental_gc_result:
case Intrinsic::experimental_gc_relocate:
case Intrinsic::coro_alloc:
case Intrinsic::coro_begin:
case Intrinsic::coro_free:
case Intrinsic::coro_end:
case Intrinsic::coro_frame:
case Intrinsic::coro_size:
case Intrinsic::coro_suspend:
case Intrinsic::coro_param:
case Intrinsic::coro_subfn_addr:
// These intrinsics don't actually represent code after lowering.
return 0;
}
return 1;
}
InstructionCost getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind) const {
return 1;
}
// Assume that we have a register of the right size for the type.
unsigned getNumberOfParts(Type *Tp) const { return 1; }
InstructionCost getAddressComputationCost(Type *Tp, ScalarEvolution *,
const SCEV *) const {
return 0;
}
InstructionCost getArithmeticReductionCost(unsigned, VectorType *,
Optional<FastMathFlags> FMF,
TTI::TargetCostKind) const {
return 1;
}
InstructionCost getMinMaxReductionCost(VectorType *, VectorType *, bool,
TTI::TargetCostKind) const {
return 1;
}
InstructionCost
getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned, Type *ResTy,
VectorType *Ty,
TTI::TargetCostKind CostKind) const {
return 1;
}
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
return 0;
}
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const {
return false;
}
unsigned getAtomicMemIntrinsicMaxElementSize() const {
// Note for overrides: You must ensure for all element unordered-atomic
// memory intrinsics that all power-of-2 element sizes up to, and
// including, the return value of this method have a corresponding
// runtime lib call. These runtime lib call definitions can be found
// in RuntimeLibcalls.h
return 0;
}
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) const {
return nullptr;
}
Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign) const {
return Type::getInt8Ty(Context);
}
void getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign) const {
for (unsigned i = 0; i != RemainingBytes; ++i)
OpsOut.push_back(Type::getInt8Ty(Context));
}
bool areInlineCompatible(const Function *Caller,
const Function *Callee) const {
return (Caller->getFnAttribute("target-cpu") ==
Callee->getFnAttribute("target-cpu")) &&
(Caller->getFnAttribute("target-features") ==
Callee->getFnAttribute("target-features"));
}
bool areFunctionArgsABICompatible(const Function *Caller,
const Function *Callee,
SmallPtrSetImpl<Argument *> &Args) const {
return (Caller->getFnAttribute("target-cpu") ==
Callee->getFnAttribute("target-cpu")) &&
(Caller->getFnAttribute("target-features") ==
Callee->getFnAttribute("target-features"));
}
bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty,
const DataLayout &DL) const {
return false;
}
bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty,
const DataLayout &DL) const {
return false;
}
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const {
return true;
}
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const {
return true;
}
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
ElementCount VF) const {
return true;
}
bool isElementTypeLegalForScalableVector(Type *Ty) const { return true; }
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
return VF;
}
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
return VF;
}
bool preferInLoopReduction(unsigned Opcode, Type *Ty,
TTI::ReductionFlags Flags) const {
return false;
}
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
TTI::ReductionFlags Flags) const {
return false;
}
bool shouldExpandReduction(const IntrinsicInst *II) const { return true; }
unsigned getGISelRematGlobalCost() const { return 1; }
bool supportsScalableVectors() const { return false; }
bool hasActiveVectorLength() const { return false; }
TargetTransformInfo::VPLegalization
getVPLegalizationStrategy(const VPIntrinsic &PI) const {
return TargetTransformInfo::VPLegalization(
/* EVLParamStrategy */ TargetTransformInfo::VPLegalization::Discard,
/* OperatorStrategy */ TargetTransformInfo::VPLegalization::Convert);
}
protected:
// Obtain the minimum required size to hold the value (without the sign)
// In case of a vector it returns the min required size for one element.
unsigned minRequiredElementSize(const Value *Val, bool &isSigned) const {
if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
const auto *VectorValue = cast<Constant>(Val);
// In case of a vector need to pick the max between the min
// required size for each element
auto *VT = cast<FixedVectorType>(Val->getType());
// Assume unsigned elements
isSigned = false;
// The max required size is the size of the vector element type
unsigned MaxRequiredSize =
VT->getElementType()->getPrimitiveSizeInBits().getFixedSize();
unsigned MinRequiredSize = 0;
for (unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
if (auto *IntElement =
dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
bool signedElement = IntElement->getValue().isNegative();
// Get the element min required size.
unsigned ElementMinRequiredSize =
IntElement->getValue().getMinSignedBits() - 1;
// In case one element is signed then all the vector is signed.
isSigned |= signedElement;
// Save the max required bit size between all the elements.
MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
} else {
// not an int constant element
return MaxRequiredSize;
}
}
return MinRequiredSize;
}
if (const auto *CI = dyn_cast<ConstantInt>(Val)) {
isSigned = CI->getValue().isNegative();
return CI->getValue().getMinSignedBits() - 1;
}
if (const auto *Cast = dyn_cast<SExtInst>(Val)) {
isSigned = true;
return Cast->getSrcTy()->getScalarSizeInBits() - 1;
}
if (const auto *Cast = dyn_cast<ZExtInst>(Val)) {
isSigned = false;
return Cast->getSrcTy()->getScalarSizeInBits();
}
isSigned = false;
return Val->getType()->getScalarSizeInBits();
}
bool isStridedAccess(const SCEV *Ptr) const {
return Ptr && isa<SCEVAddRecExpr>(Ptr);
}
const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
const SCEV *Ptr) const {
if (!isStridedAccess(Ptr))
return nullptr;
const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
}
bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
int64_t MergeDistance) const {
const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
if (!Step)
return false;
APInt StrideVal = Step->getAPInt();
if (StrideVal.getBitWidth() > 64)
return false;
// FIXME: Need to take absolute value for negative stride case.
return StrideVal.getSExtValue() < MergeDistance;
}
};
/// CRTP base class for use as a mix-in that aids implementing
/// a TargetTransformInfo-compatible class.
template <typename T>
class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
private:
typedef TargetTransformInfoImplBase BaseT;
protected:
explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
public:
using BaseT::getGEPCost;
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) {
assert(PointeeType && Ptr && "can't get GEPCost of nullptr");
assert(cast<PointerType>(Ptr->getType()->getScalarType())
->isOpaqueOrPointeeTypeMatches(PointeeType) &&
"explicit pointee type doesn't match operand's pointee type");
auto *BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
bool HasBaseReg = (BaseGV == nullptr);
auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
APInt BaseOffset(PtrSizeBits, 0);
int64_t Scale = 0;
auto GTI = gep_type_begin(PointeeType, Operands);
Type *TargetType = nullptr;
// Handle the case where the GEP instruction has a single operand,
// the basis, therefore TargetType is a nullptr.
if (Operands.empty())
return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
TargetType = GTI.getIndexedType();
// We assume that the cost of Scalar GEP with constant index and the
// cost of Vector GEP with splat constant index are the same.
const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
if (!ConstIdx)
if (auto Splat = getSplatValue(*I))
ConstIdx = dyn_cast<ConstantInt>(Splat);
if (StructType *STy = GTI.getStructTypeOrNull()) {
// For structures the index is always splat or scalar constant
assert(ConstIdx && "Unexpected GEP index");
uint64_t Field = ConstIdx->getZExtValue();
BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
} else {
// If this operand is a scalable type, bail out early.
// TODO: handle scalable vectors
if (isa<ScalableVectorType>(TargetType))
return TTI::TCC_Basic;
int64_t ElementSize =
DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize();
if (ConstIdx) {
BaseOffset +=
ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
} else {
// Needs scale register.
if (Scale != 0)
// No addressing mode takes two scale registers.
return TTI::TCC_Basic;
Scale = ElementSize;
}
}
}
if (static_cast<T *>(this)->isLegalAddressingMode(
TargetType, const_cast<GlobalValue *>(BaseGV),
BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale,
Ptr->getType()->getPointerAddressSpace()))
return TTI::TCC_Free;
return TTI::TCC_Basic;
}
InstructionCost getUserCost(const User *U, ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) {
auto *TargetTTI = static_cast<T *>(this);
// Handle non-intrinsic calls, invokes, and callbr.
// FIXME: Unlikely to be true for anything but CodeSize.
auto *CB = dyn_cast<CallBase>(U);
if (CB && !isa<IntrinsicInst>(U)) {
if (const Function *F = CB->getCalledFunction()) {
if (!TargetTTI->isLoweredToCall(F))
return TTI::TCC_Basic; // Give a basic cost if it will be lowered
return TTI::TCC_Basic * (F->getFunctionType()->getNumParams() + 1);
}
// For indirect or other calls, scale cost by number of arguments.
return TTI::TCC_Basic * (CB->arg_size() + 1);
}
Type *Ty = U->getType();
Type *OpTy =
U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr;
unsigned Opcode = Operator::getOpcode(U);
auto *I = dyn_cast<Instruction>(U);
switch (Opcode) {
default:
break;
case Instruction::Call: {
assert(isa<IntrinsicInst>(U) && "Unexpected non-intrinsic call");
auto *Intrinsic = cast<IntrinsicInst>(U);
IntrinsicCostAttributes CostAttrs(Intrinsic->getIntrinsicID(), *CB);
return TargetTTI->getIntrinsicInstrCost(CostAttrs, CostKind);
}
case Instruction::Br:
case Instruction::Ret:
case Instruction::PHI:
case Instruction::Switch:
return TargetTTI->getCFInstrCost(Opcode, CostKind, I);
case Instruction::ExtractValue:
case Instruction::Freeze:
return TTI::TCC_Free;
case Instruction::Alloca:
if (cast<AllocaInst>(U)->isStaticAlloca())
return TTI::TCC_Free;
break;
case Instruction::GetElementPtr: {
const auto *GEP = cast<GEPOperator>(U);
return TargetTTI->getGEPCost(GEP->getSourceElementType(),
GEP->getPointerOperand(),
Operands.drop_front(), CostKind);
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::FNeg: {
TTI::OperandValueProperties Op1VP = TTI::OP_None;
TTI::OperandValueProperties Op2VP = TTI::OP_None;
TTI::OperandValueKind Op1VK =
TTI::getOperandInfo(U->getOperand(0), Op1VP);
TTI::OperandValueKind Op2VK = Opcode != Instruction::FNeg ?
TTI::getOperandInfo(U->getOperand(1), Op2VP) : TTI::OK_AnyValue;
SmallVector<const Value *, 2> Operands(U->operand_values());
return TargetTTI->getArithmeticInstrCost(Opcode, Ty, CostKind,
Op1VK, Op2VK,
Op1VP, Op2VP, Operands, I);
}
case Instruction::IntToPtr:
case Instruction::PtrToInt:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast:
case Instruction::FPExt:
case Instruction::SExt:
case Instruction::ZExt:
case Instruction::AddrSpaceCast:
return TargetTTI->getCastInstrCost(
Opcode, Ty, OpTy, TTI::getCastContextHint(I), CostKind, I);
case Instruction::Store: {
auto *SI = cast<StoreInst>(U);
Type *ValTy = U->getOperand(0)->getType();
return TargetTTI->getMemoryOpCost(Opcode, ValTy, SI->getAlign(),
SI->getPointerAddressSpace(),
CostKind, I);
}
case Instruction::Load: {
auto *LI = cast<LoadInst>(U);
return TargetTTI->getMemoryOpCost(Opcode, U->getType(), LI->getAlign(),
LI->getPointerAddressSpace(),
CostKind, I);
}
case Instruction::Select: {
const Value *Op0, *Op1;
if (match(U, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
match(U, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
// select x, y, false --> x & y
// select x, true, y --> x | y
TTI::OperandValueProperties Op1VP = TTI::OP_None;
TTI::OperandValueProperties Op2VP = TTI::OP_None;
TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
assert(Op0->getType()->getScalarSizeInBits() == 1 &&
Op1->getType()->getScalarSizeInBits() == 1);
SmallVector<const Value *, 2> Operands{Op0, Op1};
return TargetTTI->getArithmeticInstrCost(
match(U, m_LogicalOr()) ? Instruction::Or : Instruction::And, Ty,
CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
}
Type *CondTy = U->getOperand(0)->getType();
return TargetTTI->getCmpSelInstrCost(Opcode, U->getType(), CondTy,
CmpInst::BAD_ICMP_PREDICATE,
CostKind, I);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ValTy = U->getOperand(0)->getType();
// TODO: Also handle ICmp/FCmp constant expressions.
return TargetTTI->getCmpSelInstrCost(Opcode, ValTy, U->getType(),
I ? cast<CmpInst>(I)->getPredicate()
: CmpInst::BAD_ICMP_PREDICATE,
CostKind, I);
}
case Instruction::InsertElement: {
auto *IE = dyn_cast<InsertElementInst>(U);
if (!IE)
return TTI::TCC_Basic; // FIXME
unsigned Idx = -1;
if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)))
if (CI->getValue().getActiveBits() <= 32)
Idx = CI->getZExtValue();
return TargetTTI->getVectorInstrCost(Opcode, Ty, Idx);
}
case Instruction::ShuffleVector: {
auto *Shuffle = dyn_cast<ShuffleVectorInst>(U);
if (!Shuffle)
return TTI::TCC_Basic; // FIXME
auto *VecTy = cast<VectorType>(U->getType());
auto *VecSrcTy = cast<VectorType>(U->getOperand(0)->getType());
int NumSubElts, SubIndex;
if (Shuffle->changesLength()) {
// Treat a 'subvector widening' as a free shuffle.
if (Shuffle->increasesLength() && Shuffle->isIdentityWithPadding())
return 0;
if (Shuffle->isExtractSubvectorMask(SubIndex))
return TargetTTI->getShuffleCost(TTI::SK_ExtractSubvector, VecSrcTy,
Shuffle->getShuffleMask(), SubIndex,
VecTy);
if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
return TargetTTI->getShuffleCost(
TTI::SK_InsertSubvector, VecTy, Shuffle->getShuffleMask(),
SubIndex,
FixedVectorType::get(VecTy->getScalarType(), NumSubElts));
int ReplicationFactor, VF;
if (Shuffle->isReplicationMask(ReplicationFactor, VF)) {
APInt DemandedDstElts =
APInt::getNullValue(Shuffle->getShuffleMask().size());
for (auto I : enumerate(Shuffle->getShuffleMask())) {
if (I.value() != UndefMaskElem)
DemandedDstElts.setBit(I.index());
}
return TargetTTI->getReplicationShuffleCost(
VecSrcTy->getElementType(), ReplicationFactor, VF,
DemandedDstElts, CostKind);
}
return CostKind == TTI::TCK_RecipThroughput ? -1 : 1;
}
if (Shuffle->isIdentity())
return 0;
if (Shuffle->isReverse())
return TargetTTI->getShuffleCost(TTI::SK_Reverse, VecTy,
Shuffle->getShuffleMask(), 0, nullptr);
if (Shuffle->isSelect())
return TargetTTI->getShuffleCost(TTI::SK_Select, VecTy,
Shuffle->getShuffleMask(), 0, nullptr);
if (Shuffle->isTranspose())
return TargetTTI->getShuffleCost(TTI::SK_Transpose, VecTy,
Shuffle->getShuffleMask(), 0, nullptr);
if (Shuffle->isZeroEltSplat())
return TargetTTI->getShuffleCost(TTI::SK_Broadcast, VecTy,
Shuffle->getShuffleMask(), 0, nullptr);
if (Shuffle->isSingleSource())
return TargetTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, VecTy,
Shuffle->getShuffleMask(), 0, nullptr);
if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
return TargetTTI->getShuffleCost(
TTI::SK_InsertSubvector, VecTy, Shuffle->getShuffleMask(), SubIndex,
FixedVectorType::get(VecTy->getScalarType(), NumSubElts));
return TargetTTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy,
Shuffle->getShuffleMask(), 0, nullptr);
}
case Instruction::ExtractElement: {
auto *EEI = dyn_cast<ExtractElementInst>(U);
if (!EEI)
return TTI::TCC_Basic; // FIXME
unsigned Idx = -1;
if (auto *CI = dyn_cast<ConstantInt>(EEI->getOperand(1)))
if (CI->getValue().getActiveBits() <= 32)
Idx = CI->getZExtValue();
Type *DstTy = U->getOperand(0)->getType();
return TargetTTI->getVectorInstrCost(Opcode, DstTy, Idx);
}
}
// By default, just classify everything as 'basic'.
return TTI::TCC_Basic;
}
InstructionCost getInstructionLatency(const Instruction *I) {
SmallVector<const Value *, 4> Operands(I->operand_values());
if (getUserCost(I, Operands, TTI::TCK_Latency) == TTI::TCC_Free)
return 0;
if (isa<LoadInst>(I))
return 4;
Type *DstTy = I->getType();
// Usually an intrinsic is a simple instruction.
// A real function call is much slower.
if (auto *CI = dyn_cast<CallInst>(I)) {
const Function *F = CI->getCalledFunction();
if (!F || static_cast<T *>(this)->isLoweredToCall(F))
return 40;
// Some intrinsics return a value and a flag, we use the value type
// to decide its latency.
if (StructType *StructTy = dyn_cast<StructType>(DstTy))
DstTy = StructTy->getElementType(0);
// Fall through to simple instructions.
}
if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy))
DstTy = VectorTy->getElementType();
if (DstTy->isFloatingPointTy())
return 3;
return 1;
}
};
} // namespace llvm
#endif