blob: 12850e14f4ed9b272fcff1e17f87d5bacdcece67 [file] [log] [blame]
//===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the SparseBitVector class. See the doxygen comment for
// SparseBitVector for more details on the algorithm used.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SPARSEBITVECTOR_H
#define LLVM_ADT_SPARSEBITVECTOR_H
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <climits>
#include <cstring>
#include <iterator>
#include <list>
namespace llvm {
/// SparseBitVector is an implementation of a bitvector that is sparse by only
/// storing the elements that have non-zero bits set. In order to make this
/// fast for the most common cases, SparseBitVector is implemented as a linked
/// list of SparseBitVectorElements. We maintain a pointer to the last
/// SparseBitVectorElement accessed (in the form of a list iterator), in order
/// to make multiple in-order test/set constant time after the first one is
/// executed. Note that using vectors to store SparseBitVectorElement's does
/// not work out very well because it causes insertion in the middle to take
/// enormous amounts of time with a large amount of bits. Other structures that
/// have better worst cases for insertion in the middle (various balanced trees,
/// etc) do not perform as well in practice as a linked list with this iterator
/// kept up to date. They are also significantly more memory intensive.
template <unsigned ElementSize = 128> struct SparseBitVectorElement {
public:
using BitWord = unsigned long;
using size_type = unsigned;
enum {
BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT,
BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE,
BITS_PER_ELEMENT = ElementSize
};
private:
// Index of Element in terms of where first bit starts.
unsigned ElementIndex;
BitWord Bits[BITWORDS_PER_ELEMENT];
SparseBitVectorElement() {
ElementIndex = ~0U;
memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
}
public:
explicit SparseBitVectorElement(unsigned Idx) {
ElementIndex = Idx;
memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
}
// Comparison.
bool operator==(const SparseBitVectorElement &RHS) const {
if (ElementIndex != RHS.ElementIndex)
return false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i] != RHS.Bits[i])
return false;
return true;
}
bool operator!=(const SparseBitVectorElement &RHS) const {
return !(*this == RHS);
}
// Return the bits that make up word Idx in our element.
BitWord word(unsigned Idx) const {
assert(Idx < BITWORDS_PER_ELEMENT);
return Bits[Idx];
}
unsigned index() const {
return ElementIndex;
}
bool empty() const {
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i])
return false;
return true;
}
void set(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
}
bool test_and_set(unsigned Idx) {
bool old = test(Idx);
if (!old) {
set(Idx);
return true;
}
return false;
}
void reset(unsigned Idx) {
Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
}
bool test(unsigned Idx) const {
return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE));
}
size_type count() const {
unsigned NumBits = 0;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
NumBits += countPopulation(Bits[i]);
return NumBits;
}
/// find_first - Returns the index of the first set bit.
int find_first() const {
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i] != 0)
return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
llvm_unreachable("Illegal empty element");
}
/// find_last - Returns the index of the last set bit.
int find_last() const {
for (unsigned I = 0; I < BITWORDS_PER_ELEMENT; ++I) {
unsigned Idx = BITWORDS_PER_ELEMENT - I - 1;
if (Bits[Idx] != 0)
return Idx * BITWORD_SIZE + BITWORD_SIZE -
countLeadingZeros(Bits[Idx]) - 1;
}
llvm_unreachable("Illegal empty element");
}
/// find_next - Returns the index of the next set bit starting from the
/// "Curr" bit. Returns -1 if the next set bit is not found.
int find_next(unsigned Curr) const {
if (Curr >= BITS_PER_ELEMENT)
return -1;
unsigned WordPos = Curr / BITWORD_SIZE;
unsigned BitPos = Curr % BITWORD_SIZE;
BitWord Copy = Bits[WordPos];
assert(WordPos <= BITWORDS_PER_ELEMENT
&& "Word Position outside of element");
// Mask off previous bits.
Copy &= ~0UL << BitPos;
if (Copy != 0)
return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
// Check subsequent words.
for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i)
if (Bits[i] != 0)
return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
return -1;
}
// Union this element with RHS and return true if this one changed.
bool unionWith(const SparseBitVectorElement &RHS) {
bool changed = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
BitWord old = changed ? 0 : Bits[i];
Bits[i] |= RHS.Bits[i];
if (!changed && old != Bits[i])
changed = true;
}
return changed;
}
// Return true if we have any bits in common with RHS
bool intersects(const SparseBitVectorElement &RHS) const {
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
if (RHS.Bits[i] & Bits[i])
return true;
}
return false;
}
// Intersect this Element with RHS and return true if this one changed.
// BecameZero is set to true if this element became all-zero bits.
bool intersectWith(const SparseBitVectorElement &RHS,
bool &BecameZero) {
bool changed = false;
bool allzero = true;
BecameZero = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
BitWord old = changed ? 0 : Bits[i];
Bits[i] &= RHS.Bits[i];
if (Bits[i] != 0)
allzero = false;
if (!changed && old != Bits[i])
changed = true;
}
BecameZero = allzero;
return changed;
}
// Intersect this Element with the complement of RHS and return true if this
// one changed. BecameZero is set to true if this element became all-zero
// bits.
bool intersectWithComplement(const SparseBitVectorElement &RHS,
bool &BecameZero) {
bool changed = false;
bool allzero = true;
BecameZero = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
BitWord old = changed ? 0 : Bits[i];
Bits[i] &= ~RHS.Bits[i];
if (Bits[i] != 0)
allzero = false;
if (!changed && old != Bits[i])
changed = true;
}
BecameZero = allzero;
return changed;
}
// Three argument version of intersectWithComplement that intersects
// RHS1 & ~RHS2 into this element
void intersectWithComplement(const SparseBitVectorElement &RHS1,
const SparseBitVectorElement &RHS2,
bool &BecameZero) {
bool allzero = true;
BecameZero = false;
for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i];
if (Bits[i] != 0)
allzero = false;
}
BecameZero = allzero;
}
};
template <unsigned ElementSize = 128>
class SparseBitVector {
using ElementList = std::list<SparseBitVectorElement<ElementSize>>;
using ElementListIter = typename ElementList::iterator;
using ElementListConstIter = typename ElementList::const_iterator;
enum {
BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE
};
ElementList Elements;
// Pointer to our current Element. This has no visible effect on the external
// state of a SparseBitVector, it's just used to improve performance in the
// common case of testing/modifying bits with similar indices.
mutable ElementListIter CurrElementIter;
// This is like std::lower_bound, except we do linear searching from the
// current position.
ElementListIter FindLowerBoundImpl(unsigned ElementIndex) const {
// We cache a non-const iterator so we're forced to resort to const_cast to
// get the begin/end in the case where 'this' is const. To avoid duplication
// of code with the only difference being whether the const cast is present
// 'this' is always const in this particular function and we sort out the
// difference in FindLowerBound and FindLowerBoundConst.
ElementListIter Begin =
const_cast<SparseBitVector<ElementSize> *>(this)->Elements.begin();
ElementListIter End =
const_cast<SparseBitVector<ElementSize> *>(this)->Elements.end();
if (Elements.empty()) {
CurrElementIter = Begin;
return CurrElementIter;
}
// Make sure our current iterator is valid.
if (CurrElementIter == End)
--CurrElementIter;
// Search from our current iterator, either backwards or forwards,
// depending on what element we are looking for.
ElementListIter ElementIter = CurrElementIter;
if (CurrElementIter->index() == ElementIndex) {
return ElementIter;
} else if (CurrElementIter->index() > ElementIndex) {
while (ElementIter != Begin
&& ElementIter->index() > ElementIndex)
--ElementIter;
} else {
while (ElementIter != End &&
ElementIter->index() < ElementIndex)
++ElementIter;
}
CurrElementIter = ElementIter;
return ElementIter;
}
ElementListConstIter FindLowerBoundConst(unsigned ElementIndex) const {
return FindLowerBoundImpl(ElementIndex);
}
ElementListIter FindLowerBound(unsigned ElementIndex) {
return FindLowerBoundImpl(ElementIndex);
}
// Iterator to walk set bits in the bitmap. This iterator is a lot uglier
// than it would be, in order to be efficient.
class SparseBitVectorIterator {
private:
bool AtEnd;
const SparseBitVector<ElementSize> *BitVector = nullptr;
// Current element inside of bitmap.
ElementListConstIter Iter;
// Current bit number inside of our bitmap.
unsigned BitNumber;
// Current word number inside of our element.
unsigned WordNumber;
// Current bits from the element.
typename SparseBitVectorElement<ElementSize>::BitWord Bits;
// Move our iterator to the first non-zero bit in the bitmap.
void AdvanceToFirstNonZero() {
if (AtEnd)
return;
if (BitVector->Elements.empty()) {
AtEnd = true;
return;
}
Iter = BitVector->Elements.begin();
BitNumber = Iter->index() * ElementSize;
unsigned BitPos = Iter->find_first();
BitNumber += BitPos;
WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
Bits = Iter->word(WordNumber);
Bits >>= BitPos % BITWORD_SIZE;
}
// Move our iterator to the next non-zero bit.
void AdvanceToNextNonZero() {
if (AtEnd)
return;
while (Bits && !(Bits & 1)) {
Bits >>= 1;
BitNumber += 1;
}
// See if we ran out of Bits in this word.
if (!Bits) {
int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ;
// If we ran out of set bits in this element, move to next element.
if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) {
++Iter;
WordNumber = 0;
// We may run out of elements in the bitmap.
if (Iter == BitVector->Elements.end()) {
AtEnd = true;
return;
}
// Set up for next non-zero word in bitmap.
BitNumber = Iter->index() * ElementSize;
NextSetBitNumber = Iter->find_first();
BitNumber += NextSetBitNumber;
WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
Bits = Iter->word(WordNumber);
Bits >>= NextSetBitNumber % BITWORD_SIZE;
} else {
WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE;
Bits = Iter->word(WordNumber);
Bits >>= NextSetBitNumber % BITWORD_SIZE;
BitNumber = Iter->index() * ElementSize;
BitNumber += NextSetBitNumber;
}
}
}
public:
SparseBitVectorIterator() = default;
SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS,
bool end = false):BitVector(RHS) {
Iter = BitVector->Elements.begin();
BitNumber = 0;
Bits = 0;
WordNumber = ~0;
AtEnd = end;
AdvanceToFirstNonZero();
}
// Preincrement.
inline SparseBitVectorIterator& operator++() {
++BitNumber;
Bits >>= 1;
AdvanceToNextNonZero();
return *this;
}
// Postincrement.
inline SparseBitVectorIterator operator++(int) {
SparseBitVectorIterator tmp = *this;
++*this;
return tmp;
}
// Return the current set bit number.
unsigned operator*() const {
return BitNumber;
}
bool operator==(const SparseBitVectorIterator &RHS) const {
// If they are both at the end, ignore the rest of the fields.
if (AtEnd && RHS.AtEnd)
return true;
// Otherwise they are the same if they have the same bit number and
// bitmap.
return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber;
}
bool operator!=(const SparseBitVectorIterator &RHS) const {
return !(*this == RHS);
}
};
public:
using iterator = SparseBitVectorIterator;
SparseBitVector() : Elements(), CurrElementIter(Elements.begin()) {}
SparseBitVector(const SparseBitVector &RHS)
: Elements(RHS.Elements), CurrElementIter(Elements.begin()) {}
SparseBitVector(SparseBitVector &&RHS)
: Elements(std::move(RHS.Elements)), CurrElementIter(Elements.begin()) {}
// Clear.
void clear() {
Elements.clear();
}
// Assignment
SparseBitVector& operator=(const SparseBitVector& RHS) {
if (this == &RHS)
return *this;
Elements = RHS.Elements;
CurrElementIter = Elements.begin();
return *this;
}
SparseBitVector &operator=(SparseBitVector &&RHS) {
Elements = std::move(RHS.Elements);
CurrElementIter = Elements.begin();
return *this;
}
// Test, Reset, and Set a bit in the bitmap.
bool test(unsigned Idx) const {
if (Elements.empty())
return false;
unsigned ElementIndex = Idx / ElementSize;
ElementListConstIter ElementIter = FindLowerBoundConst(ElementIndex);
// If we can't find an element that is supposed to contain this bit, there
// is nothing more to do.
if (ElementIter == Elements.end() ||
ElementIter->index() != ElementIndex)
return false;
return ElementIter->test(Idx % ElementSize);
}
void reset(unsigned Idx) {
if (Elements.empty())
return;
unsigned ElementIndex = Idx / ElementSize;
ElementListIter ElementIter = FindLowerBound(ElementIndex);
// If we can't find an element that is supposed to contain this bit, there
// is nothing more to do.
if (ElementIter == Elements.end() ||
ElementIter->index() != ElementIndex)
return;
ElementIter->reset(Idx % ElementSize);
// When the element is zeroed out, delete it.
if (ElementIter->empty()) {
++CurrElementIter;
Elements.erase(ElementIter);
}
}
void set(unsigned Idx) {
unsigned ElementIndex = Idx / ElementSize;
ElementListIter ElementIter;
if (Elements.empty()) {
ElementIter = Elements.emplace(Elements.end(), ElementIndex);
} else {
ElementIter = FindLowerBound(ElementIndex);
if (ElementIter == Elements.end() ||
ElementIter->index() != ElementIndex) {
// We may have hit the beginning of our SparseBitVector, in which case,
// we may need to insert right after this element, which requires moving
// the current iterator forward one, because insert does insert before.
if (ElementIter != Elements.end() &&
ElementIter->index() < ElementIndex)
++ElementIter;
ElementIter = Elements.emplace(ElementIter, ElementIndex);
}
}
CurrElementIter = ElementIter;
ElementIter->set(Idx % ElementSize);
}
bool test_and_set(unsigned Idx) {
bool old = test(Idx);
if (!old) {
set(Idx);
return true;
}
return false;
}
bool operator!=(const SparseBitVector &RHS) const {
return !(*this == RHS);
}
bool operator==(const SparseBitVector &RHS) const {
ElementListConstIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end();
++Iter1, ++Iter2) {
if (*Iter1 != *Iter2)
return false;
}
return Iter1 == Elements.end() && Iter2 == RHS.Elements.end();
}
// Union our bitmap with the RHS and return true if we changed.
bool operator|=(const SparseBitVector &RHS) {
if (this == &RHS)
return false;
bool changed = false;
ElementListIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// If RHS is empty, we are done
if (RHS.Elements.empty())
return false;
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) {
Elements.insert(Iter1, *Iter2);
++Iter2;
changed = true;
} else if (Iter1->index() == Iter2->index()) {
changed |= Iter1->unionWith(*Iter2);
++Iter1;
++Iter2;
} else {
++Iter1;
}
}
CurrElementIter = Elements.begin();
return changed;
}
// Intersect our bitmap with the RHS and return true if ours changed.
bool operator&=(const SparseBitVector &RHS) {
if (this == &RHS)
return false;
bool changed = false;
ElementListIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// Check if both bitmaps are empty.
if (Elements.empty() && RHS.Elements.empty())
return false;
// Loop through, intersecting as we go, erasing elements when necessary.
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end()) {
CurrElementIter = Elements.begin();
return changed;
}
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
bool BecameZero;
changed |= Iter1->intersectWith(*Iter2, BecameZero);
if (BecameZero) {
ElementListIter IterTmp = Iter1;
++Iter1;
Elements.erase(IterTmp);
} else {
++Iter1;
}
++Iter2;
} else {
ElementListIter IterTmp = Iter1;
++Iter1;
Elements.erase(IterTmp);
changed = true;
}
}
if (Iter1 != Elements.end()) {
Elements.erase(Iter1, Elements.end());
changed = true;
}
CurrElementIter = Elements.begin();
return changed;
}
// Intersect our bitmap with the complement of the RHS and return true
// if ours changed.
bool intersectWithComplement(const SparseBitVector &RHS) {
if (this == &RHS) {
if (!empty()) {
clear();
return true;
}
return false;
}
bool changed = false;
ElementListIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// If either our bitmap or RHS is empty, we are done
if (Elements.empty() || RHS.Elements.empty())
return false;
// Loop through, intersecting as we go, erasing elements when necessary.
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end()) {
CurrElementIter = Elements.begin();
return changed;
}
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
bool BecameZero;
changed |= Iter1->intersectWithComplement(*Iter2, BecameZero);
if (BecameZero) {
ElementListIter IterTmp = Iter1;
++Iter1;
Elements.erase(IterTmp);
} else {
++Iter1;
}
++Iter2;
} else {
++Iter1;
}
}
CurrElementIter = Elements.begin();
return changed;
}
bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const {
return intersectWithComplement(*RHS);
}
// Three argument version of intersectWithComplement.
// Result of RHS1 & ~RHS2 is stored into this bitmap.
void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1,
const SparseBitVector<ElementSize> &RHS2)
{
if (this == &RHS1) {
intersectWithComplement(RHS2);
return;
} else if (this == &RHS2) {
SparseBitVector RHS2Copy(RHS2);
intersectWithComplement(RHS1, RHS2Copy);
return;
}
Elements.clear();
CurrElementIter = Elements.begin();
ElementListConstIter Iter1 = RHS1.Elements.begin();
ElementListConstIter Iter2 = RHS2.Elements.begin();
// If RHS1 is empty, we are done
// If RHS2 is empty, we still have to copy RHS1
if (RHS1.Elements.empty())
return;
// Loop through, intersecting as we go, erasing elements when necessary.
while (Iter2 != RHS2.Elements.end()) {
if (Iter1 == RHS1.Elements.end())
return;
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
bool BecameZero = false;
Elements.emplace_back(Iter1->index());
Elements.back().intersectWithComplement(*Iter1, *Iter2, BecameZero);
if (BecameZero)
Elements.pop_back();
++Iter1;
++Iter2;
} else {
Elements.push_back(*Iter1++);
}
}
// copy the remaining elements
std::copy(Iter1, RHS1.Elements.end(), std::back_inserter(Elements));
}
void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1,
const SparseBitVector<ElementSize> *RHS2) {
intersectWithComplement(*RHS1, *RHS2);
}
bool intersects(const SparseBitVector<ElementSize> *RHS) const {
return intersects(*RHS);
}
// Return true if we share any bits in common with RHS
bool intersects(const SparseBitVector<ElementSize> &RHS) const {
ElementListConstIter Iter1 = Elements.begin();
ElementListConstIter Iter2 = RHS.Elements.begin();
// Check if both bitmaps are empty.
if (Elements.empty() && RHS.Elements.empty())
return false;
// Loop through, intersecting stopping when we hit bits in common.
while (Iter2 != RHS.Elements.end()) {
if (Iter1 == Elements.end())
return false;
if (Iter1->index() > Iter2->index()) {
++Iter2;
} else if (Iter1->index() == Iter2->index()) {
if (Iter1->intersects(*Iter2))
return true;
++Iter1;
++Iter2;
} else {
++Iter1;
}
}
return false;
}
// Return true iff all bits set in this SparseBitVector are
// also set in RHS.
bool contains(const SparseBitVector<ElementSize> &RHS) const {
SparseBitVector<ElementSize> Result(*this);
Result &= RHS;
return (Result == RHS);
}
// Return the first set bit in the bitmap. Return -1 if no bits are set.
int find_first() const {
if (Elements.empty())
return -1;
const SparseBitVectorElement<ElementSize> &First = *(Elements.begin());
return (First.index() * ElementSize) + First.find_first();
}
// Return the last set bit in the bitmap. Return -1 if no bits are set.
int find_last() const {
if (Elements.empty())
return -1;
const SparseBitVectorElement<ElementSize> &Last = *(Elements.rbegin());
return (Last.index() * ElementSize) + Last.find_last();
}
// Return true if the SparseBitVector is empty
bool empty() const {
return Elements.empty();
}
unsigned count() const {
unsigned BitCount = 0;
for (ElementListConstIter Iter = Elements.begin();
Iter != Elements.end();
++Iter)
BitCount += Iter->count();
return BitCount;
}
iterator begin() const {
return iterator(this);
}
iterator end() const {
return iterator(this, true);
}
};
// Convenience functions to allow Or and And without dereferencing in the user
// code.
template <unsigned ElementSize>
inline bool operator |=(SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> *RHS) {
return LHS |= *RHS;
}
template <unsigned ElementSize>
inline bool operator |=(SparseBitVector<ElementSize> *LHS,
const SparseBitVector<ElementSize> &RHS) {
return LHS->operator|=(RHS);
}
template <unsigned ElementSize>
inline bool operator &=(SparseBitVector<ElementSize> *LHS,
const SparseBitVector<ElementSize> &RHS) {
return LHS->operator&=(RHS);
}
template <unsigned ElementSize>
inline bool operator &=(SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> *RHS) {
return LHS &= *RHS;
}
// Convenience functions for infix union, intersection, difference operators.
template <unsigned ElementSize>
inline SparseBitVector<ElementSize>
operator|(const SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> &RHS) {
SparseBitVector<ElementSize> Result(LHS);
Result |= RHS;
return Result;
}
template <unsigned ElementSize>
inline SparseBitVector<ElementSize>
operator&(const SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> &RHS) {
SparseBitVector<ElementSize> Result(LHS);
Result &= RHS;
return Result;
}
template <unsigned ElementSize>
inline SparseBitVector<ElementSize>
operator-(const SparseBitVector<ElementSize> &LHS,
const SparseBitVector<ElementSize> &RHS) {
SparseBitVector<ElementSize> Result;
Result.intersectWithComplement(LHS, RHS);
return Result;
}
// Dump a SparseBitVector to a stream
template <unsigned ElementSize>
void dump(const SparseBitVector<ElementSize> &LHS, raw_ostream &out) {
out << "[";
typename SparseBitVector<ElementSize>::iterator bi = LHS.begin(),
be = LHS.end();
if (bi != be) {
out << *bi;
for (++bi; bi != be; ++bi) {
out << " " << *bi;
}
}
out << "]\n";
}
} // end namespace llvm
#endif // LLVM_ADT_SPARSEBITVECTOR_H