blob: 716f5f21302a8a7c67d58e5f03a7cfc24704c8a7 [file] [log] [blame]
//===- SSAUpdaterBulk.cpp - Unit tests for SSAUpdaterBulk -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
TEST(SSAUpdaterBulk, SimpleMerge) {
SSAUpdaterBulk Updater;
LLVMContext C;
Module M("SSAUpdaterTest", C);
IRBuilder<> B(C);
Type *I32Ty = B.getInt32Ty();
auto *F = Function::Create(FunctionType::get(B.getVoidTy(), {I32Ty}, false),
GlobalValue::ExternalLinkage, "F", &M);
// Generate a simple program:
// if:
// br i1 true, label %true, label %false
// true:
// %1 = add i32 %0, 1
// %2 = sub i32 %0, 2
// br label %merge
// false:
// %3 = add i32 %0, 3
// %4 = sub i32 %0, 4
// br label %merge
// merge:
// %5 = add i32 %1, 5
// %6 = add i32 %3, 6
// %7 = add i32 %2, %4
// %8 = sub i32 %2, %4
Argument *FirstArg = &*(F->arg_begin());
BasicBlock *IfBB = BasicBlock::Create(C, "if", F);
BasicBlock *TrueBB = BasicBlock::Create(C, "true", F);
BasicBlock *FalseBB = BasicBlock::Create(C, "false", F);
BasicBlock *MergeBB = BasicBlock::Create(C, "merge", F);
B.SetInsertPoint(IfBB);
B.CreateCondBr(B.getTrue(), TrueBB, FalseBB);
B.SetInsertPoint(TrueBB);
Value *AddOp1 = B.CreateAdd(FirstArg, ConstantInt::get(I32Ty, 1));
Value *SubOp1 = B.CreateSub(FirstArg, ConstantInt::get(I32Ty, 2));
B.CreateBr(MergeBB);
B.SetInsertPoint(FalseBB);
Value *AddOp2 = B.CreateAdd(FirstArg, ConstantInt::get(I32Ty, 3));
Value *SubOp2 = B.CreateSub(FirstArg, ConstantInt::get(I32Ty, 4));
B.CreateBr(MergeBB);
B.SetInsertPoint(MergeBB, MergeBB->begin());
auto *I1 = cast<Instruction>(B.CreateAdd(AddOp1, ConstantInt::get(I32Ty, 5)));
auto *I2 = cast<Instruction>(B.CreateAdd(AddOp2, ConstantInt::get(I32Ty, 6)));
auto *I3 = cast<Instruction>(B.CreateAdd(SubOp1, SubOp2));
auto *I4 = cast<Instruction>(B.CreateSub(SubOp1, SubOp2));
// Now rewrite uses in instructions %5, %6, %7. They need to use a phi, which
// SSAUpdater should insert into %merge.
// Intentionally don't touch %8 to see that SSAUpdater only changes
// instructions that were explicitly specified.
unsigned VarNum = Updater.AddVariable("a", I32Ty);
Updater.AddAvailableValue(VarNum, TrueBB, AddOp1);
Updater.AddAvailableValue(VarNum, FalseBB, AddOp2);
Updater.AddUse(VarNum, &I1->getOperandUse(0));
Updater.AddUse(VarNum, &I2->getOperandUse(0));
VarNum = Updater.AddVariable("b", I32Ty);
Updater.AddAvailableValue(VarNum, TrueBB, SubOp1);
Updater.AddAvailableValue(VarNum, FalseBB, SubOp2);
Updater.AddUse(VarNum, &I3->getOperandUse(0));
Updater.AddUse(VarNum, &I3->getOperandUse(1));
DominatorTree DT(*F);
Updater.RewriteAllUses(&DT);
// Check how %5 and %6 were rewritten.
PHINode *UpdatePhiA = dyn_cast_or_null<PHINode>(I1->getOperand(0));
EXPECT_NE(UpdatePhiA, nullptr);
EXPECT_EQ(UpdatePhiA->getIncomingValueForBlock(TrueBB), AddOp1);
EXPECT_EQ(UpdatePhiA->getIncomingValueForBlock(FalseBB), AddOp2);
EXPECT_EQ(UpdatePhiA, dyn_cast_or_null<PHINode>(I1->getOperand(0)));
// Check how %7 was rewritten.
PHINode *UpdatePhiB = dyn_cast_or_null<PHINode>(I3->getOperand(0));
EXPECT_EQ(UpdatePhiB->getIncomingValueForBlock(TrueBB), SubOp1);
EXPECT_EQ(UpdatePhiB->getIncomingValueForBlock(FalseBB), SubOp2);
EXPECT_EQ(UpdatePhiB, dyn_cast_or_null<PHINode>(I3->getOperand(1)));
// Check that %8 was kept untouched.
EXPECT_EQ(I4->getOperand(0), SubOp1);
EXPECT_EQ(I4->getOperand(1), SubOp2);
}
TEST(SSAUpdaterBulk, Irreducible) {
SSAUpdaterBulk Updater;
LLVMContext C;
Module M("SSAUpdaterTest", C);
IRBuilder<> B(C);
Type *I32Ty = B.getInt32Ty();
auto *F = Function::Create(FunctionType::get(B.getVoidTy(), {I32Ty}, false),
GlobalValue::ExternalLinkage, "F", &M);
// Generate a small program with a multi-entry loop:
// if:
// %1 = add i32 %0, 1
// br i1 true, label %loopmain, label %loopstart
//
// loopstart:
// %2 = add i32 %0, 2
// br label %loopmain
//
// loopmain:
// %3 = add i32 %1, 3
// br i1 true, label %loopstart, label %afterloop
//
// afterloop:
// %4 = add i32 %2, 4
// ret i32 %0
Argument *FirstArg = &*F->arg_begin();
BasicBlock *IfBB = BasicBlock::Create(C, "if", F);
BasicBlock *LoopStartBB = BasicBlock::Create(C, "loopstart", F);
BasicBlock *LoopMainBB = BasicBlock::Create(C, "loopmain", F);
BasicBlock *AfterLoopBB = BasicBlock::Create(C, "afterloop", F);
B.SetInsertPoint(IfBB);
Value *AddOp1 = B.CreateAdd(FirstArg, ConstantInt::get(I32Ty, 1));
B.CreateCondBr(B.getTrue(), LoopMainBB, LoopStartBB);
B.SetInsertPoint(LoopStartBB);
Value *AddOp2 = B.CreateAdd(FirstArg, ConstantInt::get(I32Ty, 2));
B.CreateBr(LoopMainBB);
B.SetInsertPoint(LoopMainBB);
auto *I1 = cast<Instruction>(B.CreateAdd(AddOp1, ConstantInt::get(I32Ty, 3)));
B.CreateCondBr(B.getTrue(), LoopStartBB, AfterLoopBB);
B.SetInsertPoint(AfterLoopBB);
auto *I2 = cast<Instruction>(B.CreateAdd(AddOp2, ConstantInt::get(I32Ty, 4)));
ReturnInst *Return = B.CreateRet(FirstArg);
// Now rewrite uses in instructions %3, %4, and 'ret i32 %0'. Only %4 needs a
// new phi, others should be able to work with existing values.
// The phi for %4 should be inserted into LoopMainBB and should look like
// this:
// %b = phi i32 [ %2, %loopstart ], [ undef, %if ]
// No other rewrites should be made.
// Add use in %3.
unsigned VarNum = Updater.AddVariable("c", I32Ty);
Updater.AddAvailableValue(VarNum, IfBB, AddOp1);
Updater.AddUse(VarNum, &I1->getOperandUse(0));
// Add use in %4.
VarNum = Updater.AddVariable("b", I32Ty);
Updater.AddAvailableValue(VarNum, LoopStartBB, AddOp2);
Updater.AddUse(VarNum, &I2->getOperandUse(0));
// Add use in the return instruction.
VarNum = Updater.AddVariable("a", I32Ty);
Updater.AddAvailableValue(VarNum, &F->getEntryBlock(), FirstArg);
Updater.AddUse(VarNum, &Return->getOperandUse(0));
// Save all inserted phis into a vector.
SmallVector<PHINode *, 8> Inserted;
DominatorTree DT(*F);
Updater.RewriteAllUses(&DT, &Inserted);
// Only one phi should have been inserted.
EXPECT_EQ(Inserted.size(), 1u);
// I1 and Return should use the same values as they used before.
EXPECT_EQ(I1->getOperand(0), AddOp1);
EXPECT_EQ(Return->getOperand(0), FirstArg);
// I2 should use the new phi.
PHINode *UpdatePhi = dyn_cast_or_null<PHINode>(I2->getOperand(0));
EXPECT_NE(UpdatePhi, nullptr);
EXPECT_EQ(UpdatePhi->getIncomingValueForBlock(LoopStartBB), AddOp2);
EXPECT_EQ(UpdatePhi->getIncomingValueForBlock(IfBB), UndefValue::get(I32Ty));
}
TEST(SSAUpdaterBulk, SingleBBLoop) {
const char *IR = R"(
define void @main() {
entry:
br label %loop
loop:
%i = add i32 0, 1
%cmp = icmp slt i32 %i, 42
br i1 %cmp, label %loop, label %exit
exit:
ret void
}
)";
llvm::LLVMContext Context;
llvm::SMDiagnostic Err;
std::unique_ptr<llvm::Module> M = llvm::parseAssemblyString(IR, Err, Context);
ASSERT_NE(M, nullptr) << "Failed to parse IR: " << Err.getMessage();
Function *F = M->getFunction("main");
auto *Entry = &F->getEntryBlock();
auto *Loop = Entry->getSingleSuccessor();
auto *I = &Loop->front();
// Rewrite first operand of "%i = add i32 0, 1" to use incoming values entry:0
// or loop:%i (that is the value of %i from the previous iteration).
SSAUpdaterBulk Updater;
Type *I32Ty = Type::getInt32Ty(Context);
unsigned PrevI = Updater.AddVariable("i.prev", I32Ty);
Updater.AddAvailableValue(PrevI, Entry, ConstantInt::get(I32Ty, 0));
Updater.AddAvailableValue(PrevI, Loop, I);
Updater.AddUse(PrevI, &I->getOperandUse(0));
SmallVector<PHINode *, 1> Inserted;
DominatorTree DT(*F);
Updater.RewriteAllUses(&DT, &Inserted);
#if 0 // Enable for debugging.
Loop->dump();
// Output:
// loop: ; preds = %loop, %entry
// %i.prev = phi i32 [ %i, %loop ], [ 0, %entry ]
// %i = add i32 %i.prev, 1
// %cmp = icmp slt i32 %i, 42
// br i1 %cmp, label %loop, label %exit
#endif
ASSERT_EQ(Inserted.size(), 1u);
PHINode *Phi = Inserted[0];
EXPECT_EQ(Phi, dyn_cast<PHINode>(I->getOperand(0)));
EXPECT_EQ(Phi->getIncomingValueForBlock(Entry), ConstantInt::get(I32Ty, 0));
EXPECT_EQ(Phi->getIncomingValueForBlock(Loop), I);
}
TEST(SSAUpdaterBulk, TwoBBLoop) {
const char *IR = R"(
define void @main() {
entry:
br label %loop_header
loop_header:
br label %loop
loop:
%i = add i32 0, 1
%cmp = icmp slt i32 %i, 42
br i1 %cmp, label %loop_header, label %exit
exit:
ret void
}
)";
llvm::LLVMContext Context;
llvm::SMDiagnostic Err;
std::unique_ptr<llvm::Module> M = llvm::parseAssemblyString(IR, Err, Context);
ASSERT_NE(M, nullptr) << "Failed to parse IR: " << Err.getMessage();
Function *F = M->getFunction("main");
auto *Entry = &F->getEntryBlock();
auto *LoopHdr = Entry->getSingleSuccessor();
auto *Loop = LoopHdr->getSingleSuccessor();
auto *I = &Loop->front();
// Rewrite first operand of "%i = add i32 0, 1" to use incoming values entry:0
// or loop:%i (that is the value of %i from the previous iteration).
SSAUpdaterBulk Updater;
Type *I32Ty = Type::getInt32Ty(Context);
unsigned PrevI = Updater.AddVariable("i.prev", I32Ty);
Updater.AddAvailableValue(PrevI, Entry, ConstantInt::get(I32Ty, 0));
Updater.AddAvailableValue(PrevI, Loop, I);
Updater.AddUse(PrevI, &I->getOperandUse(0));
SmallVector<PHINode *, 1> Inserted;
DominatorTree DT(*F);
Updater.RewriteAllUses(&DT, &Inserted);
#if 0 // Enable for debugging.
LoopHdr->dump();
Loop->dump();
// Output:
// loop_header: ; preds = %loop, %entry
// %i.prev = phi i32 [ %i, %loop ], [ 0, %entry ]
// br label %loop
// loop: ; preds = %loop_header
// %i = add i32 %i.prev, 1
// %cmp = icmp slt i32 %i, 42
// br i1 %cmp, label %loop_header, label %exit
#endif
ASSERT_EQ(Inserted.size(), 1u);
PHINode *Phi = Inserted[0];
EXPECT_EQ(Phi, dyn_cast<PHINode>(I->getOperand(0)));
EXPECT_EQ(Phi->getParent(), LoopHdr);
EXPECT_EQ(Phi->getIncomingValueForBlock(Entry), ConstantInt::get(I32Ty, 0));
EXPECT_EQ(Phi->getIncomingValueForBlock(Loop), I);
}
TEST(SSAUpdaterBulk, SimplifyPHIs) {
const char *IR = R"(
define void @main(i32 %val, i1 %cond) {
entry:
br i1 %cond, label %left, label %right
left:
%add = add i32 %val, 1
br label %exit
right:
%sub = sub i32 %val, 1
br label %exit
exit:
%phi = phi i32 [ %sub, %right ], [ %add, %left ]
%cmp = icmp slt i32 0, 42
ret void
}
)";
llvm::LLVMContext Context;
llvm::SMDiagnostic Err;
std::unique_ptr<llvm::Module> M = llvm::parseAssemblyString(IR, Err, Context);
ASSERT_NE(M, nullptr) << "Failed to parse IR: " << Err.getMessage();
Function *F = M->getFunction("main");
auto *Entry = &F->getEntryBlock();
auto *Left = Entry->getTerminator()->getSuccessor(0);
auto *Right = Entry->getTerminator()->getSuccessor(1);
auto *Exit = Left->getSingleSuccessor();
auto *Val = &*F->arg_begin();
auto *Phi = &Exit->front();
auto *Cmp = &*std::next(Exit->begin());
auto *Add = &Left->front();
auto *Sub = &Right->front();
SSAUpdaterBulk Updater;
Type *I32Ty = Type::getInt32Ty(Context);
// Use %val directly instead of creating a phi.
unsigned ValVar = Updater.AddVariable("Val", I32Ty);
Updater.AddAvailableValue(ValVar, Left, Val);
Updater.AddAvailableValue(ValVar, Right, Val);
Updater.AddUse(ValVar, &Cmp->getOperandUse(0));
// Use existing %phi for %add and %sub values.
unsigned AddSubVar = Updater.AddVariable("AddSub", I32Ty);
Updater.AddAvailableValue(AddSubVar, Left, Add);
Updater.AddAvailableValue(AddSubVar, Right, Sub);
Updater.AddUse(AddSubVar, &Cmp->getOperandUse(1));
auto ExitSizeBefore = Exit->size();
DominatorTree DT(*F);
Updater.RewriteAndOptimizeAllUses(DT);
// Output for Exit->dump():
// exit: ; preds = %right, %left
// %phi = phi i32 [ %sub, %right ], [ %add, %left ]
// %cmp = icmp slt i32 %val, %phi
// ret void
ASSERT_EQ(Exit->size(), ExitSizeBefore);
ASSERT_EQ(&Exit->front(), Phi);
EXPECT_EQ(Val, Cmp->getOperand(0));
EXPECT_EQ(Phi, Cmp->getOperand(1));
}
bool EliminateNewDuplicatePHINodes(BasicBlock *BB,
BasicBlock::phi_iterator FirstExistingPN);
// Helper to run both versions on the same input.
static void RunEliminateNewDuplicatePHINode(
const char *AsmText,
std::function<void(BasicBlock &,
bool(BasicBlock *BB, BasicBlock::phi_iterator))>
Check) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(AsmText, Err, C);
if (!M) {
Err.print("UtilsTests", errs());
return;
}
Function *F = M->getFunction("main");
auto BBIt = std::find_if(F->begin(), F->end(), [](const BasicBlock &Block) {
return Block.getName() == "testbb";
});
ASSERT_NE(BBIt, F->end());
Check(*BBIt, EliminateNewDuplicatePHINodes);
}
static BasicBlock::phi_iterator getPhiIt(BasicBlock &BB, unsigned Idx) {
return std::next(BB.phis().begin(), Idx);
}
static PHINode *getPhi(BasicBlock &BB, unsigned Idx) {
return &*getPhiIt(BB, Idx);
}
static int getNumPHIs(BasicBlock &BB) {
return std::distance(BB.phis().begin(), BB.phis().end());
}
TEST(SSAUpdaterBulk, EliminateNewDuplicatePHINodes_OrderExisting) {
RunEliminateNewDuplicatePHINode(R"(
define void @main() {
entry:
br label %testbb
testbb:
%np0 = phi i32 [ 1, %entry ]
%np1 = phi i32 [ 1, %entry ]
%ep0 = phi i32 [ 1, %entry ]
%ep1 = phi i32 [ 1, %entry ]
%u = add i32 %np0, %np1
ret void
}
)", [](BasicBlock &BB, auto *ENDPN) {
AssertingVH<PHINode> EP0 = getPhi(BB, 2);
AssertingVH<PHINode> EP1 = getPhi(BB, 3);
EXPECT_TRUE(ENDPN(&BB, getPhiIt(BB, 2)));
// Expected:
// %ep0 = phi i32 [ 1, %entry ]
// %ep1 = phi i32 [ 1, %entry ]
// %u = add i32 %ep0, %ep0
EXPECT_EQ(getNumPHIs(BB), 2);
Instruction &Add = *BB.getFirstNonPHIIt();
EXPECT_EQ(Add.getOperand(0), EP0);
EXPECT_EQ(Add.getOperand(1), EP0);
(void)EP1; // Avoid "unused" warning.
});
}
TEST(SSAUpdaterBulk, EliminateNewDuplicatePHINodes_OrderNew) {
RunEliminateNewDuplicatePHINode(R"(
define void @main() {
entry:
br label %testbb
testbb:
%np0 = phi i32 [ 1, %entry ]
%np1 = phi i32 [ 1, %entry ]
%ep0 = phi i32 [ 2, %entry ]
%ep1 = phi i32 [ 2, %entry ]
%u = add i32 %np0, %np1
ret void
}
)", [](BasicBlock &BB, auto *ENDPN) {
AssertingVH<PHINode> NP0 = getPhi(BB, 0);
AssertingVH<PHINode> EP0 = getPhi(BB, 2);
AssertingVH<PHINode> EP1 = getPhi(BB, 3);
EXPECT_TRUE(ENDPN(&BB, getPhiIt(BB, 2)));
// Expected:
// %np0 = phi i32 [ 1, %entry ]
// %ep0 = phi i32 [ 2, %entry ]
// %ep1 = phi i32 [ 2, %entry ]
// %u = add i32 %np0, %np0
EXPECT_EQ(getNumPHIs(BB), 3);
Instruction &Add = *BB.getFirstNonPHIIt();
EXPECT_EQ(Add.getOperand(0), NP0);
EXPECT_EQ(Add.getOperand(1), NP0);
(void)EP0;
(void)EP1; // Avoid "unused" warning.
});
}
TEST(SSAUpdaterBulk, EliminateNewDuplicatePHINodes_NewRefExisting) {
RunEliminateNewDuplicatePHINode(R"(
define void @main() {
entry:
br label %testbb
testbb:
%np0 = phi i32 [ 1, %entry ], [ %ep0, %testbb ]
%np1 = phi i32 [ 1, %entry ], [ %ep1, %testbb ]
%ep0 = phi i32 [ 1, %entry ], [ %ep0, %testbb ]
%ep1 = phi i32 [ 1, %entry ], [ %ep1, %testbb ]
%u = add i32 %np0, %np1
br label %testbb
}
)", [](BasicBlock &BB, auto *ENDPN) {
AssertingVH<PHINode> EP0 = getPhi(BB, 2);
AssertingVH<PHINode> EP1 = getPhi(BB, 3);
EXPECT_TRUE(ENDPN(&BB, getPhiIt(BB, 2)));
// Expected:
// %ep0 = phi i32 [ 1, %entry ], [ %ep0, %testbb ]
// %ep1 = phi i32 [ 1, %entry ], [ %ep1, %testbb ]
// %u = add i32 %ep0, %ep1
EXPECT_EQ(getNumPHIs(BB), 2);
Instruction &Add = *BB.getFirstNonPHIIt();
EXPECT_EQ(Add.getOperand(0), EP0);
EXPECT_EQ(Add.getOperand(1), EP1);
});
}
TEST(SSAUpdaterBulk, EliminateNewDuplicatePHINodes_ExistingRefNew) {
RunEliminateNewDuplicatePHINode(R"(
define void @main() {
entry:
br label %testbb
testbb:
%np0 = phi i32 [ 1, %entry ], [ %np0, %testbb ]
%np1 = phi i32 [ 1, %entry ], [ %np1, %testbb ]
%ep0 = phi i32 [ 1, %entry ], [ %np0, %testbb ]
%ep1 = phi i32 [ 1, %entry ], [ %np1, %testbb ]
%u = add i32 %np0, %np1
br label %testbb
}
)", [](BasicBlock &BB, auto *ENDPN) {
AssertingVH<PHINode> EP0 = getPhi(BB, 2);
AssertingVH<PHINode> EP1 = getPhi(BB, 3);
EXPECT_TRUE(ENDPN(&BB, getPhiIt(BB, 2)));
// Expected:
// %ep0 = phi i32 [ 1, %entry ], [ %ep0, %testbb ]
// %ep1 = phi i32 [ 1, %entry ], [ %ep1, %testbb ]
// %u = add i32 %ep0, %ep1
EXPECT_EQ(getNumPHIs(BB), 2);
Instruction &Add = *BB.getFirstNonPHIIt();
EXPECT_EQ(Add.getOperand(0), EP0);
EXPECT_EQ(Add.getOperand(1), EP1);
});
}