[SCEV] Precise trip multiples

We currently have getMinTrailingZeros(), from which we can get a SCEV's
multiple by computing 1 << MinTrailingZeroes. However, this only gets us
multiples that are a power of 2. This patch introduces a way to get max
constant multiples that are not just a power of 2. The logic is similar
to that of getMinTrailingZeros. getMinTrailingZeros is replaced by
computing the max constant multiple, and counting the number of trailing
bits.

This is applied in two places:

1) Computing unsigned constant ranges. For example, if we have i8
   {10,+,10}<nuw>, we know the max constant it can be is 250.

2) Computing trip multiples as shown in SCEV output. This is useful if
   for example, we are unrolling a loop by a factor of 5, and we know
   the trip multiple is 5, then we don't need a loop epilog.

If the code sees that a SCEV does not have <nuw>, it will fall back to
finding the max multiple that is a power of 2. Multiples that are a
power of 2 will still be a multiple even after the SCEV overflows.

Differential Revision: https://reviews.llvm.org/D141823
6 files changed
tree: 479b155f6b16fa8840b501adbdc07741f9b963f9
  1. .github/
  2. bolt/
  3. clang/
  4. clang-tools-extra/
  5. cmake/
  6. compiler-rt/
  7. cross-project-tests/
  8. flang/
  9. libc/
  10. libclc/
  11. libcxx/
  12. libcxxabi/
  13. libunwind/
  14. lld/
  15. lldb/
  16. llvm/
  17. llvm-libgcc/
  18. mlir/
  19. openmp/
  20. polly/
  21. pstl/
  22. runtimes/
  23. third-party/
  24. utils/
  25. .arcconfig
  26. .arclint
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitignore
  31. .mailmap
  32. CONTRIBUTING.md
  33. LICENSE.TXT
  34. README.md
  35. SECURITY.md
README.md

The LLVM Compiler Infrastructure

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.