[mlir][bufferization] Add tensor-like and buffer-like interfaces (#134220)

Current one-shot bufferization infrastructure operates on top of
TensorType and BaseMemRefType. These are non-extensible base classes of
the respective builtins: tensor and memref. Thus, the infrastructure is
bound to work only with builtin tensor/memref types. At the same time,
there are customization points that allow one to provide custom logic to
control the bufferization behavior.

This patch introduces new type interfaces: tensor-like and buffer-like
that aim to supersede TensorType/BaseMemRefType within the bufferization
dialect and allow custom tensors / memrefs to be used. Additionally,
these new type interfaces are attached to the respective builtin types
so that the switch is seamless.

Note that this patch does very minimal initial work, it does NOT
refactor bufferization infrastructure.

See https://discourse.llvm.org/t/rfc-changing-base-types-for-tensors-and-memrefs-from-c-base-classes-to-type-interfaces/85509
13 files changed
tree: 99e20c8a18793115a65c867ca9b3f202bbf9ae27
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. pstl/
  25. runtimes/
  26. third-party/
  27. utils/
  28. .clang-format
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. pyproject.toml
  38. README.md
  39. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.