[RISCV] Don't forward AVL in VSETVLIInfo if it would clobber other definitions (#97264)

This fixes a crash found when compiling OpenBLAS with -mllvm
-verify-machineinstrs.

When we "forward" the AVL from the output of a vsetvli, we might have to
extend the LiveInterval of the AVL to where insert the new vsetvli.

Most of the time we are able to extend the LiveInterval because there's
only one val num (definition) for the register. But PHI elimination can
assign multiple values to the same register, in which case we end up
clobbering a different val num when extending:

    %x = PseudoVSETVLI %avl, ...
    %avl = ADDI ...
    %v = PseudoVADD ..., avl=%x
    ; %avl is forwarded to PseudoVADD:
    %x = PseudoVSETVLI %avl, ...
    %avl = ADDI ...
    %v = PseudoVADD ..., avl=%avl

Here there's no way to extend the %avl from the vsetvli since %avl is
redefined, i.e. we have two val nums.

This fixes it by only forwarding it when we have exactly one val num,
where it should be safe to extend it.
4 files changed
tree: c5441e7125b948e51d862f973afac0fc3d5a1652
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. offload/
  21. openmp/
  22. polly/
  23. pstl/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitattributes
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. pyproject.toml
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.