blob: 2aa495fd9e490d771f26450df751f031eb7a84c5 [file] [log] [blame]
/* libgcc routines for the Texas Instruments TMS320C[34]x
Copyright (C) 1997,98, 1999 Free Software Foundation, Inc.
Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
; These routines are called using the standard TI register argument
; passing model.
; The following registers do not have to be saved:
; r0, r1, r2, r3, ar0, ar1, ar2, ir0, ir1, bk, rs, rc, re, (r9, r10, r11)
;
; Perform floating point divqf3
;
; This routine performs a reciprocal of the divisor using the method
; described in the C30/C40 user manuals. It then multiplies that
; result by the dividend.
;
; Let r be the reciprocal of the divisor v and let the ith estimate
; of r be denoted by r[i]. An iterative approach can be used to
; improve the estimate of r, given an initial estimate r[0], where
;
; r[i + 1] = r[i] * (2.0 - v * r[i])
;
; The normalized error e[i] at the ith iteration is
;
; e[i] = (r - r[i]) / r = (1 / v - r[i]) * v = (1 - v * r[i])
;
; Note that
;
; e[i + 1] = (1 - v * r[i + 1]) = 1 - 2 * v * r[i] + v^2 + (r[i])^2
; = (1 - v * r[i])^2 = (e[i])^2
; r2 dividend, r3 divisor, r0 quotient
; clobbers r1, ar1
#ifdef L_divsf3
.text
.global ___divqf3
___divqf3:
#ifdef _TMS320C4x
.if .REGPARM == 0
lda sp,ar0
ldf *-ar0(2), r3
.endif
pop ar1 ; Pop return address
; r0 = estimate of r, r1 = tmp, r2 = dividend, r3 = divisor
rcpf r3, r0 ; Compute initial estimate r[0]
mpyf3 r0, r3, r1 ; r1 = r[0] * v
subrf 2.0, r1 ; r1 = 2.0 - r[0] * v
mpyf r1, r0 ; r0 = r[0] * (2.0 - r[0] * v) = r[1]
; End of 1st iteration (16 bits accuracy)
mpyf3 r0, r3, r1 ; r1 = r[1] * v
subrf 2.0, r1 ; r1 = 2.0 - r[1] * v
bud ar1 ; Delayed branch
mpyf r1, r0 ; r0 = r[1] * (2.0 - r[1] * v) = r[2]
; End of 2nd iteration (32 bits accuracy)
.if .REGPARM == 0
mpyf *-ar0(1), r0 ; Multiply by the dividend
.else
mpyf r2, r0 ; Multiply by the dividend
.endif
rnd r0
; Branch occurs here
#else
.if .REGPARM == 0
ldiu sp,ar0
ldf *-ar0(2), r3
.endif
pop ar1 ; Pop return address
; Initial estimate r[0] = 1.0 * 2^(-e - 1)
; where v = m * 2^e
; r0 = estimate of r, r1 = tmp, r2 = dividend, r3 = divisor
; Calculate initial estimate r[0]
pushf r3
pop r0
not r0 ; r0 = -e
; complement exponent = -e -1
; complement sign (side effect)
; complement mantissa (almost 3 bit accurate)
push r0
popf r0 ; r0 = 1.0 * e^(-e - 1) + inverted mantissa
ldf -1.0, r1 ; undo complement sign bit
xor r1, r0
mpyf3 r0, r3, r1 ; r1 = r[0] * v
subrf 2.0, r1 ; r1 = 2.0 - r[0] * v
mpyf r1, r0 ; r0 = r[0] * (2.0 - r[0] * v) = r[1]
; End of 1st iteration
mpyf3 r0, r3, r1 ; r1 = r[1] * v
subrf 2.0, r1 ; r1 = 2.0 - r[1] * v
mpyf r1, r0 ; r0 = r[1] * (2.0 - r[1] * v) = r[2]
; End of 2nd iteration
mpyf3 r0, r3, r1 ; r1 = r[2] * v
subrf 2.0, r1 ; r1 = 2.0 - r[2] * v
mpyf r1, r0 ; r0 = r[2] * (2.0 - r[2] * v) = r[3]
; End of 3rd iteration
rnd r0 ; Minimize error in x[3]'s LSBs
; Use modified last iteration
; r[4] = (r[3] * (1.0 - (v * r[3]))) + r[3]
mpyf3 r0, r3, r1 ; r1 = r[3] * v
subrf 1.0, r1 ; r1 = 1.0 - r[3] * v
mpyf r0, r1 ; r1 = r[3] * (1.0 - r[3] * v)
addf r1, r0 ; r0 = r[3] * (1.0 - r[3] * v) + r[3] = r[4]
rnd r0 ; Minimize error in x[4]'s LSBs
bud ar1 ; Delayed branch
.if .REGPARM == 0
ldfu *-ar0(1), r2 ; Dividend in mem has only 24 bits significance
.else
rnd r2 ; Minimize error in reg dividend's LSBs
; since this may have 32 bit significance
.endif
mpyf r2, r0 ; Multiply by the dividend
rnd r0 ; Round result to 32 bits
; Branch occurs here
#endif
#endif
;
; Integer signed division
;
; ar2 dividend, r2 divisor, r0 quotient
; clobbers r1, r3, ar0, ar1, ir0, ir1, rc, rs, re
#ifdef L_divsi3
.text
.global ___divqi3
.ref udivqi3n
___divqi3:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldi *-ar0(1), ar2
ldi *-ar0(2), r2
.endif
xor3 ar2, r2, r3 ; Get the sign
absi ar2, r0
bvd divq32
ldi r0, ar2
absi r2, r2
cmpi ar2, r2 ; Divisor > dividend?
pop ir1
bhid zero ; If so, return 0
;
; Normalize oeprands. Use difference exponents as shift count
; for divisor, and as repeat count for "subc"
;
float ar2, r1 ; Normalize dividend
pushf r1 ; Get as integer
pop ar0
lsh -24, ar0 ; Get exponent
float r2, r1 ; Normalize divisor
pushf r1 ; Get as integer
pop ir0
lsh -24, ir0 ; Get exponent
subi ir0, ar0 ; Get difference of exponents
lsh ar0, r2 ; Align divisor with dividend
;
; Do count + 1 subtracts and shifts
;
rpts ar0
subc r2, ar2
;
; Mask off the lower count+1 bits of ar2
;
subri 31, ar0 ; Shift count is (32 - (ar0 + 1))
lsh ar0, ar2 ; Shift left
negi ar0, ar0
lsh3 ar0, ar2, r0 ; Shift right and put result in r0
;
; Check sign and negate result if necessary
;
bud ir1 ; Delayed return
negi r0, r1 ; Negate result
ash -31, r3 ; Check sign
ldinz r1, r0 ; If set, use negative result
; Branch occurs here
zero: bud ir1 ; Delayed branch
ldi 0, r0
nop
nop
; Branch occurs here
;
; special case where ar2 = abs(ar2) = 0x80000000. We handle this by
; calling unsigned divide and negating the result if necessary.
;
divq32:
push r3 ; Save sign
call udivqi3n
pop r3
pop ir1
bd ir1
negi r0, r1 ; Negate result
ash -31, r3 ; Check sign
ldinz r1, r0 ; If set, use negative result
; Branch occurs here
#endif
;
;
; ar2 dividend, r2 divisor, r0 quotient,
; clobbers r1, r3, ar0, ar1, ir0, ir1, rc, rs, re
#ifdef L_udivsi3
.text
.global ___udivqi3
.global udivqi3n
___udivqi3:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldi *-ar0(1), ar2
ldi *-ar0(2), r2
.endif
udivqi3n:
pop ir1
cmpi ar2, r2 ; If divisor > dividend
bhi qzero ; return zero
ldi r2, ar1 ; Store divisor in ar1
tstb ar2, ar2 ; Check top bit, jump if set to special handler
bld div_32 ; Delayed branch
;
; Get divisor exponent
;
float ar1, r1 ; Normalize the divisor
pushf r1 ; Get into int register
pop rc
; branch occurs here
bzd qzero ; if (float) divisor zero, return zero
float ar2, r1 ; Normalize the dividend
pushf r1 ; Get into int register
pop ar0
lsh -24, ar0 ; Get both the exponents
lsh -24, rc
subi rc, ar0 ; Get the difference between the exponents
lsh ar0, ar1 ; Normalize the divisor with the dividend
;
; Do count_1 subtracts and shifts
;
rpts ar0
subc ar1, ar2
;
; mask off the lower count+1 bits
;
subri 31, ar0 ; Shift count (31 - (ar0+1))
bud ir1 ; Delayed return
lsh3 ar0, ar2, r0
negi ar0, ar0
lsh ar0, r0
; Branch occurs here
;
; Handle a full 32-bit dividend
;
div_32: tstb ar1, ar1
bld qone ; if divisor high bit is one, the result is one
lsh -24, rc
subri 31, rc
lsh rc, ar1 ; Line up the divisor
;
; Now divisor and dividend are aligned. Do first SUBC by hand, save
; of the forst quotient digit. Then, shift divisor right rather
; than shifting dividend left. This leaves a zero in the top bit of
; the divident
;
ldi 1, ar0 ; Initizialize MSB of quotient
lsh rc, ar0 ; create a mask for MSBs
subi 1, ar0 ; mask is (2 << count) - 1
subi3 ar1, ar2, r1
ldihs r1, ar2
ldihs 1, r1
ldilo 0, r1
lsh rc, r1
lsh -1, ar1
subi 1, rc
;
; do the rest of the shifts and subtracts
;
rpts rc
subc ar1, ar2
bud ir1
and ar0, ar2
or3 r1, ar2, r0
nop
qone:
bud ir1
ldi 1, r0
nop
nop
qzero:
bud ir1
ldi 0, r0
nop
nop
#endif
#ifdef L_umodsi3
.text
.global ___umodqi3
.global umodqi3n
___umodqi3:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldi *-ar0(1), ar2
ldi *-ar0(2), r2
.endif
umodqi3n:
pop ir1 ; return address
cmpi ar2, r2 ; divisor > dividend ?
bhi uzero ; if so, return dividend
ldi r2, ar1 ; load divisor
;
; If top bit of dividend is set, handle specially.
;
tstb ar2, ar2 ; check top bit
bld umod_32 ; get divisor exponent, then jump.
;
; Get divisor exponent by converting to float.
;
float ar1, r1 ; normalize divisor
pushf r1 ; push as float
pop rc ; pop as int to get exponent
bzd uzero ; if (float)divisor was zero, return
;
; 31 or less bits in dividend. Get dividend exponent.
;
float ar2, r1 ; normalize dividend
pushf r1 ; push as float
pop ar0 ; pop as int to get exponent
;
; Use difference in exponents as shift count to line up MSBs.
;
lsh -24, rc ; divisor exponent
lsh -24, ar0 ; dividend exponent
subi rc, ar0 ; difference
lsh ar0, ar1 ; shift divisor up
;
; Do COUNT+1 subtract & shifts.
;
rpts ar0
subc ar1, ar2
;
; Remainder is in upper 31-COUNT bits.
;
bud ir1 ; delayed branch to return
addi 1, ar0 ; shift count is COUNT+1
negi ar0, ar0 ; negate for right shift
lsh3 ar0, ar2, r0 ; shift to get result
; Return occurs here
;
; The following code handles cases of a full 32-bit dividend. Before
; SUBC can be used, the top bit must be cleared (otherwise SUBC can
; possibly shift a significant 1 out the top of the dividend). This
; is accomplished by first doing a normal subtraction, then proceeding
; with SUBCs.
;
umod_32:
;
; If the top bit of the divisor is set too, the remainder is simply
; the difference between the dividend and divisor. Otherwise, shift
; the divisor up to line up the MSBs.
;
tstb ar1, ar1 ; check divisor
bld uone ; if negative, remainder is diff
lsh -24, rc ; divisor exponent
subri 31, rc ; shift count = 31 - exp
negi rc, ar0 ; used later as shift count
lsh rc, ar1 ; shift up to line up MSBs
;
; Now MSBs are aligned. Do first SUBC by hand using a plain subtraction.
; Then, shift divisor right rather than shifting dividend left. This leaves
; a 0 in the top bit of the dividend.
;
subi3 ar1, ar2, r1 ; subtract
ldihs r1, ar2 ; if positive, replace dividend
subi 1, rc ; first iteration is done
lsh -1, ar1 ; shift divisor down
;
; Do EXP subtract & shifts.
;
rpts rc
subc ar1, ar2
;
; Quotient is in EXP+1 LSBs; shift remainder (in MSBs) down.
;
bud ir1
lsh3 ar0, ar2, r0 ; COUNT contains -(EXP+1)
nop
nop
;
; Return (dividend - divisor).
;
uone: bud ir1
subi3 r2, ar2, r0
nop
nop
;
; Return dividend.
;
uzero: bud ir1
ldi ar2, r0 ; set status from result
nop
nop
#endif
#ifdef L_modsi3
.text
.global ___modqi3
.ref umodqi3n
___modqi3:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldi *-ar0(1), ar2
ldi *-ar0(2), r2
.endif
;
; Determine sign of result. Get absolute value of operands.
;
ldi ar2, ar0 ; sign of result same as dividend
absi ar2, r0 ; make dividend positive
bvd mod_32 ; if still negative, escape
absi r2, r1 ; make divisor positive
ldi r1, ar1 ; save in ar1
cmpi r0, ar1 ; divisor > dividend ?
pop ir1 ; return address
bhid return ; if so, return dividend
;
; Normalize operands. Use difference in exponents as shift count
; for divisor, and as repeat count for SUBC.
;
float r1, r1 ; normalize divisor
pushf r1 ; push as float
pop rc ; pop as int
bzd return ; if (float)divisor was zero, return
float r0, r1 ; normalize dividend
pushf r1 ; push as float
pop r1 ; pop as int
lsh -24, rc ; get divisor exponent
lsh -24, r1 ; get dividend exponent
subi rc, r1 ; get difference in exponents
lsh r1, ar1 ; align divisor with dividend
;
; Do COUNT+1 subtract & shifts.
;
rpts r1
subc ar1, r0
;
; Remainder is in upper bits of R0
;
addi 1, r1 ; shift count is -(r1+1)
negi r1, r1
lsh r1, r0 ; shift right
;
; Check sign and negate result if necessary.
;
return:
bud ir1 ; delayed branch to return
negi r0, r1 ; negate result
cmpi 0, ar0 ; check sign
ldin r1, r0 ; if set, use negative result
; Return occurs here
;
; The following code handles cases of a full 32-bit dividend. This occurs
; when R0 = abs(R0) = 080000000h. Handle this by calling the unsigned mod
; function, then negating the result if necessary.
;
mod_32:
push ar0 ; remember sign
call umodqi3n ; do divide
brd return ; return
pop ar0 ; restore sign
pop ir1 ; return address
nop
#endif
#ifdef L_unsfltconst
.section .const
.global ___unsfltconst
___unsfltconst: .float 4294967296.0
#endif
#ifdef L_unsfltcompare
.section .const
.global ___unsfltcompare
___unsfltcompare: .float 2147483648.0
#endif
; Integer 32-bit signed multiplication
;
; The TMS320C3x MPYI instruction takes two 24-bit signed integers
; and produces a 48-bit signed result which is truncated to 32-bits.
;
; A 32-bit by 32-bit multiplication thus requires a number of steps.
;
; Consider the product of two 32-bit signed integers,
;
; z = x * y
;
; where x = (b << 16) + a, y = (d << 16) + c
;
; This can be expressed as
;
; z = ((b << 16) + a) * ((d << 16) + c)
;
; = ((b * d) << 32) + ((b * c + a * d) << 16) + a * c
;
; Let z = (f << 16) + e where f < (1 << 16).
;
; Since we are only interested in a 32-bit result, we can ignore the
; (b * d) << 32 term, and thus
;
; f = b * c + a * d, e = a * c
;
; We can simplify things if we have some a priori knowledge of the
; operands, for example, if -32768 <= y <= 32767, then y = c and d = 0 and thus
;
; f = b * c, e = a * c
;
; ar2 multiplier, r2 multiplicand, r0 product
; clobbers r1, r2, r3
#ifdef L_mulsi3
.text
.global ___mulqi3
___mulqi3:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldi *-ar0(1), ar2
ldi *-ar0(2), r2
.endif
pop ir1 ; return address
ldi ar2, r0 ;
and 0ffffh, r0 ; a
lsh -16, ar2 ; b
ldi r2, r3 ;
and 0ffffh, r3 ; c
mpyi r3, ar2 ; c * b
lsh -16, r2 ; d
mpyi r0, r2 ; a * d
addi ar2, r2 ; c * b + a * d
bd ir1 ; delayed branch to return
lsh 16, r2 ; (c * b + a * d) << 16
mpyi r3, r0 ; a * c
addi r2, r0 ; a * c + (c * b + a * d) << 16
; branch occurs here
#endif
;
; Integer 64 by 64 multiply
; long1 and long2 on stack
; result in r0,r1
;
#ifdef L_muldi3
.text
.global ___mulhi3
#ifdef _TMS320C4x
___mulhi3:
pop ar0
ldi sp,ar2
ldi *-ar2(1),r2
ldi *-ar2(3),r3
mpyi3 r2,r3,r0
mpyuhi3 r2,r3,r1
mpyi *-ar2(2),r2
bd ar0
mpyi *-ar2(0),r3
addi r2,r1
addi r3,r1
#else
___mulhi3:
ldi sp,ar2
ldi -16,rs
ldi *-ar2(2),ar0
ldi *-ar2(4),ar1
ldi ar0,r2
and 0ffffh,r2
ldi ar1,r3
and 0ffffh,r3
lsh rs,ar0
lsh rs,ar1
mpyi r2,r3,r0
mpyi ar0,ar1,r1
mpyi r2,ar1,rc
lsh rs,rc,re
addi re,r1
lsh 16,rc
addi rc,r0
addc 0,r1
mpyi r3,ar0,rc
lsh rs,rc,re
addi re,r1
lsh 16,rc
addi rc,r0
addc 0,r1
ldi *-ar2(1),ar0
ldi ar0,r2
and 0ffffh,r2
lsh rs,ar0
mpyi r2,r3,rc
addi rc,r1
mpyi r2,ar1,rc
mpyi r3,ar0,re
addi re,rc
lsh 16,rc
addi rc,r1
ldi *-ar2(2),ar0
ldi *-ar2(3),ar1
ldi ar0,r2
and 0ffffh,r2
ldi ar1,r3
and 0ffffh,r3
lsh rs,ar0
lsh rs,ar1
mpyi r2,r3,rc
addi rc,r1
mpyi r2,ar1,rc
mpyi r3,ar0,re
pop ar0
bd ar0
addi re,rc
lsh 16,rc
addi rc,r1
#endif
#endif
;
; Integer 32 by 32 multiply highpart unsigned
; src1 in ar2
; src2 in r2
; result in r0
;
#ifdef L_umuldi3_high
.text
.global ___umulhi3_high
___umulhi3_high:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldi *-ar0(1), ar2
ldi *-ar0(2), r2
.endif
ldi -16,rs
ldi r2,r3
and 0ffffh,r2
ldi ar2,ar1
and 0ffffh,ar2
lsh rs,r3
lsh rs,ar1
mpyi ar2,r2,r1
mpyi ar1,r3,r0
mpyi ar2,r3,rc
lsh rs,rc,re
addi re,r0
lsh 16,rc
addi rc,r1
addc 0,r0
mpyi r2,ar1,rc
lsh rs,rc,re
addi re,r0
pop ar0
bd ar0
lsh 16,rc
addi rc,r1
addc 0,r0
#endif
;
; Integer 32 by 32 multiply highpart signed
; src1 in ar2
; src2 in r2
; result in r0
;
#ifdef L_smuldi3_high
.text
.global ___smulhi3_high
___smulhi3_high:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldi *-ar0(1), ar2
ldi *-ar0(2), r2
.endif
ldi -16,rs
ldi 0,rc
subi3 ar2,rc,r0
ldi r2,r3
ldilt r0,rc
subi3 r2,rc,r0
ldi ar2,ar1
tstb ar1,ar1
ldilt r0,rc
and 0ffffh,r2
and 0ffffh,ar2
lsh rs,r3
lsh rs,ar1
mpyi ar2,r2,r1
mpyi ar1,r3,r0
addi rc,r0
mpyi ar2,r3,rc
lsh rs,rc,re
addi re,r0
lsh 16,rc
addi rc,r1
addc 0,r0
mpyi r2,ar1,rc
lsh rs,rc,re
addi re,r0
pop ar0
bd ar0
lsh 16,rc
addi rc,r1
addc 0,r0
#endif
;
; Integer 64 by 64 unsigned divide
; long1 and long2 on stack
; divide in r0,r1
; modulo in r2,r3
; routine takes a maximum of 64*8+23=535 cycles = 21.4 us @ 50Mhz
;
#ifdef L_udivdi3
.text
.global ___udivhi3
.global ___udivide
.global ___umodulo
.ref udivqi3n
.ref umodqi3n
___udivhi3:
ldi sp,ar2
ldi *-ar2(4),ar0
ldi *-ar2(3),ar1
ldi *-ar2(2),r0
ldi *-ar2(1),r1
___udivide:
or r1,ar1,r2
bne udiv0
ldi ar0,r2
ldi r0,ar2
call udivqi3n
ldiu 0,r1
rets
___umodulo:
or r1,ar1,r2
bne udiv0
ldi ar0,r2
ldi r0,ar2
call umodqi3n
ldi r0,r2
ldiu 0,r3
rets
udiv0:
tstb ar1,ar1
bne udiv1
tstb ar0,ar0
bn udiv1
ldiu 63,rc
#ifdef _TMS320C4x
rptbd udivend0
ldiu 0,r2
addi r0,r0
rolc r1
#else
ldiu 0,r2
addi r0,r0
rolc r1
rptb udivend0
#endif
rolc r2
subi3 ar0,r2,r3
ldinc r3,r2
rolc r0
udivend0:
rolc r1
not r0
not r1
ldiu 0,r3
rets
udiv1:
push r4
push r5
ldiu 63,rc
ldiu 0,r2
#ifdef _TMS320C4x
rptbd udivend1
ldiu 0,r3
addi r0,r0
rolc r1
#else
ldiu 0,r3
addi r0,r0
rolc r1
rptb udivend1
#endif
rolc r2
rolc r3
subi3 ar0,r2,r4
subb3 ar1,r3,r5
ldinc r4,r2
ldinc r5,r3
rolc r0
udivend1:
rolc r1
not r0
not r1
pop r5
pop r4
rets
#endif
;
; Integer 64 by 64 unsigned modulo
; long1 and long2 on stack
; result in r0,r1
;
#ifdef L_umoddi3
.text
.global ___umodhi3
.ref ___modulo
___umodhi3:
ldi sp,ar2
ldi *-ar2(4),ar0
ldi *-ar2(3),ar1
ldi *-ar2(2),r0
ldi *-ar2(1),r1
call ___umodulo
pop ar0
bd ar0
ldi r2,r0
ldi r3,r1
nop
#endif
;
; Integer 64 by 64 signed divide
; long1 and long2 on stack
; result in r0,r1
;
#ifdef L_divdi3
.text
.global ___divhi3
.ref ___udivide
___divhi3:
ldi 0,ir0
ldi sp,ar2
ldi *-ar2(4),r0
ldi *-ar2(3),r1
bge div1
not ir0
negi r0
negb r1
div1:
ldi r0,ar0
ldi r1,ar1
ldi *-ar2(2),r0
ldi *-ar2(1),r1
bge div2
not ir0
negi r0
negb r1
div2:
call ___udivide
tstb ir0,ir0
bge div3
negi r0
negb r1
div3:
rets
#endif
;
; Integer 64 by 64 signed modulo
; long1 and long2 on stack
; result in r0,r1
;
#ifdef L_moddi3
.text
.global ___modhi3
.ref ___umodulo
___modhi3:
ldi 0,ir0
ldi sp,ar2
ldi *-ar2(4),r0
ldi *-ar2(3),r1
bge mod1
not ir0
negi r0
negb r1
mod1:
ldi r0,ar0
ldi r1,ar1
ldi *-ar2(2),r0
ldi *-ar2(1),r1
bge mod2
not ir0
negi r0
negb r1
mod2:
call ___umodulo
ldi r2,r0
ldi r3,r1
tstb ir0,ir0
bge mod3
negi r0
negb r1
mod3:
rets
#endif
;
; double to signed long long conversion
; input in r2
; result in r0,r1
;
#ifdef L_fix_truncsfdi2
.text
.global ___fix_truncqfhi2
.ref ufix_truncqfhi2n
___fix_truncqfhi2:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldf *-ar0(1), r2
.endif
cmpf 0.0,r2
bge ufix_truncqfhi2n
negf r2
call ufix_truncqfhi2n
negi r0
negb r1
rets
#endif
;
; double to unsigned long long conversion
; input in r2
; result in r0,r1
;
#ifdef L_ufix_truncsfdi2
.text
.global ___ufix_truncqfhi2
.global ufix_truncqfhi2n
___ufix_truncqfhi2:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldf *-ar0(1), r2
.endif
ufix_truncqfhi2n:
cmpf 0.0,r2
ble ufix1
pushf r2
pop r3
ash -24,r3
subi 31,r3
cmpi 32,r3
bgt ufix1
cmpi -32,r3
ble ufix1
ldi 1,r0
ash 31,r0
or3 r0,r2,r0
ldi r0,r1
lsh3 r3,r0,r0
subi 32,r3
cmpi -32,r3
ldile 0,r1
lsh3 r3,r1,r1
rets
ufix1:
ldi 0,r0
ldi 0,r1
rets
#endif
;
; signed long long to double conversion
; input on stack
; result in r0
;
#ifdef L_floatdisf2
.text
.global ___floathiqf2
.ref ufloathiqf2n
___floathiqf2:
ldi sp,ar2
ldi *-ar2(2),r0
ldi *-ar2(1),r1
bge ufloathiqf2n
negi r0
negb r1
call ufloathiqf2n
negf r0
rets
#endif
;
; unsigned long long to double conversion
; input on stack
; result in r0
;
#ifdef L_ufloatdisf2
.text
.global ___ufloathiqf2
.global ufloathiqf2n
.ref ___unsfltconst
___ufloathiqf2:
ldi sp,ar2
ldi *-ar2(2),r0
ldi *-ar2(1),r1
ufloathiqf2n:
.if .BIGMODEL
#ifdef _TMS320C4x
ldpk @___unsfltconst
#else
ldp @___unsfltconst
#endif
.endif
ldf @___unsfltconst,r2
float r0
bge uflt1
addf r2,r0
uflt1:
float r1
bge uflt2
addf r2,r1
uflt2:
#ifdef _TMS320C4x
pop r3
bd r3
mpyf r2,r1
addf r1,r0
nop
#else
ldf r1,r3
and 0ffh,r3
norm r3,r3
mpyf r2,r3
pop ar2
bd ar2
addf r3,r0
mpyf r2,r1
addf r1,r0
#endif
#endif
;
; long double to signed long long conversion
; input in r2
; result in r0,r1
;
#ifdef L_fix_truncdfdi2
.text
.global ___fix_trunchfhi2
.ref ufix_trunchfhi2n
___fix_trunchfhi2:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldf *-ar0(2), r2
ldi *-ar0(1), r2
.endif
cmpf 0.0,r2
bge ufix_trunchfhi2n
negf r2
call ufix_trunchfhi2n
negi r0
negb r1
rets
#endif
;
; long double to unsigned long long conversion
; input in r2
; result in r0,r1
;
#ifdef L_ufix_truncdfdi2
.text
.global ___ufix_trunchfhi2
.global ufix_trunchfhi2n
___ufix_trunchfhi2:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldf *-ar0(2), r2
ldi *-ar0(1), r2
.endif
ufix_trunchfhi2n:
cmpf 0.0,r2
ble ufixh1
pushf r2
pop r3
ash -24,r3
subi 31,r3
cmpi 32,r3
bgt ufixh1
cmpi -32,r3
ble ufixh1
ldi 1,r0
ash 31,r0
or3 r0,r2,r0
ldi r0,r1
lsh3 r3,r0,r0
subi 32,r3
cmpi -32,r3
ldile 0,r1
lsh3 r3,r1,r1
rets
ufixh1:
ldi 0,r0
ldi 0,r1
rets
#endif
;
; signed long long to long double conversion
; input on stack
; result in r0
;
#ifdef L_floatdidf2
.text
.global ___floathihf2
.ref ufloathihf2n
___floathihf2:
ldi sp,ar2
ldi *-ar2(2),r0
ldi *-ar2(1),r1
bge ufloathihf2n
negi r0
negb r1
call ufloathihf2n
negf r0
rets
#endif
;
; unsigned long long to double conversion
; input on stack
; result in r0
;
#ifdef L_ufloatdidf2
.text
.global ___ufloathihf2
.global ufloathihf2n
.ref ___unsfltconst
___ufloathihf2:
ldi sp,ar2
ldi *-ar2(2),r0
ldi *-ar2(1),r1
ufloathihf2n
.if .BIGMODEL
#ifdef _TMS320C4x
ldpk @___unsfltconst
#else
ldp @___unsfltconst
#endif
.endif
ldf @___unsfltconst,r2
float r0
bge uflth1
addf r2,r0
uflth1:
float r1
bge uflth2
addf r2,r1
uflth2:
#ifdef _TMS320C4x
pop r3
bd r3
mpyf r2,r1
addf r1,r0
nop
#else
ldf r1,r3
and 0ffh,r3
norm r3,r3
mpyf r2,r3
pop ar2
bd ar2
addf r3,r0
mpyf r2,r1
addf r1,r0
#endif
#endif
;
; calculate ffs
; input in ar2
; result in r0
;
#ifdef L_ffs
.global ___ffs
.ref ___unsfltconst
.text
___ffs:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldi *-ar0(1), ar2
.endif
negi ar2,r0
and ar2,r0
float r0,r0
ldfu 0.0,r1
.if .BIGMODEL
#ifdef _TMS320C4x
ldpk @___unsfltconst
#else
ldp @___unsfltconst
#endif
.endif
ldflt @___unsfltconst,r1
addf r1,r0
pushf r0
pop r0
pop ar0
bd ar0
ash -24,r0
ldilt -1,r0
addi 1,r0
#endif
;
; calculate long double * long double
; input in r2, r3
; output in r0
;
#ifdef L_muldf3
.global ___mulhf3
.text
___mulhf3:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldf *-ar0(2), r2
ldi *-ar0(1), r2
ldf *-ar0(4), r3
ldi *-ar0(3), r3
.endif
pop ar2 ; return ad
ldf r2,r0 ; copy lsb0
ldf r3,r1 ; copy lsb1
and 0ffh,r0 ; mask lsb0
and 0ffh,r1 ; mask lsb1
norm r0,r0 ; correct lsb0
norm r1,r1 ; correct lsb1
mpyf r2,r1 ; arg0*lsb1
mpyf r3,r0 ; arg1*lsb0
bd ar2 ; return (delayed)
addf r0,r1 ; arg0*lsb1 + arg1*lsb0
mpyf r2,r3,r0 ; msb0*msb1
addf r1,r0 ; msb0*msb1 + arg0*lsb1 + arg1*lsb0
#endif
;
; calculate long double / long double
; r2 dividend, r3 divisor, r0 quotient
;
#ifdef L_divdf3
.global ___divhf3
.text
___divhf3:
.if .REGPARM == 0
#ifdef _TMS320C4x
lda sp,ar0
#else
ldiu sp,ar0
#endif
ldf *-ar0(2), r2
ldi *-ar0(1), r2
ldf *-ar0(4), r3
ldi *-ar0(3), r3
.endif
#ifdef _TMS320C4x
pop ar1
rcpf r3, r0
mpyf3 r0, r3, r1
subrf 2.0, r1
mpyf r1, r0
mpyf3 r0, r3, r1
bud ar1
subrf 2.0, r1
mpyf r1, r0
mpyf r2, r0
#else
pop ar1
pushf r3
pop r0
not r0
push r0
popf r0
ldf -1.0, r1
xor r1, r0
mpyf3 r0, r3, r1 ; r1 = r[0] * v
subrf 2.0, r1 ; r1 = 2.0 - r[0] * v
mpyf r1, r0 ; r0 = r[0] * (2.0 - r[0] * v) = r[1]
; End of 1st iteration
mpyf3 r0, r3, r1 ; r1 = r[1] * v
subrf 2.0, r1 ; r1 = 2.0 - r[1] * v
mpyf r1, r0 ; r0 = r[1] * (2.0 - r[1] * v) = r[2]
; End of 2nd iteration
mpyf3 r0, r3, r1 ; r1 = r[2] * v
subrf 2.0, r1 ; r1 = 2.0 - r[2] * v
mpyf r1, r0 ; r0 = r[2] * (2.0 - r[2] * v) = r[3]
; End of 3rd iteration
or 080h, r0
rnd r0
; mpyf3 r0, r3, r1 ; r1 = r[3] * v
push r4
pushf r4
mpyf r0, r3, r1
ldf r0, r4
and 0ffh, r4
norm r4, r4
mpyf r3, r4
addf r4, r1
ldf r3, r4
and 0ffh, r4
norm r4, r4
mpyf r0, r4
addf r4, r1
subrf 2.0, r1 ; r1 = 2.0 - r[3] * v
mpyf r1, r0, r3 ; r3 = r[3] * (2.0 - r[3] * v) = r[5]
ldf r1, r4
and 0ffh, r4
norm r4, r4
mpyf r0, r4
addf r4, r3
ldf r0, r4
and 0ffh, r4
norm r4, r4
mpyf r1, r4
addf r4, r3
mpyf r2, r3, r0 ; Multiply by the dividend
ldf r2, r4
and 0ffh, r4
norm r4, r4
mpyf r3, r4
addf r4, r0
ldf r3, r4
and 0ffh, r4
norm r4, r4
mpyf r2, r4
bd ar1
addf r4, r0
popf r4
pop r4
#endif
#endif