blob: af0f1d5bd0fef186354239f7b56e33356a905695 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X --
-- --
-- B o d y --
-- (Apple OS X Version) --
-- --
-- Copyright (C) 1998-2005, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- File a-numaux.adb <- a-numaux-d arwin.adb
package body Ada.Numerics.Aux is
-----------------------
-- Local subprograms --
-----------------------
procedure Reduce (X : in out Double; Q : out Natural);
-- Implements reduction of X by Pi/2. Q is the quadrant of the final
-- result in the range 0 .. 3. The absolute value of X is at most Pi/4.
-- The following three functions implement Chebishev approximations
-- of the trigoniometric functions in their reduced domain.
-- These approximations have been computed using Maple.
function Sine_Approx (X : Double) return Double;
function Cosine_Approx (X : Double) return Double;
pragma Inline (Reduce);
pragma Inline (Sine_Approx);
pragma Inline (Cosine_Approx);
function Cosine_Approx (X : Double) return Double is
XX : constant Double := X * X;
begin
return (((((16#8.DC57FBD05F640#E-08 * XX
- 16#4.9F7D00BF25D80#E-06) * XX
+ 16#1.A019F7FDEFCC2#E-04) * XX
- 16#5.B05B058F18B20#E-03) * XX
+ 16#A.AAAAAAAA73FA8#E-02) * XX
- 16#7.FFFFFFFFFFDE4#E-01) * XX
- 16#3.655E64869ECCE#E-14 + 1.0;
end Cosine_Approx;
function Sine_Approx (X : Double) return Double is
XX : constant Double := X * X;
begin
return (((((16#A.EA2D4ABE41808#E-09 * XX
- 16#6.B974C10F9D078#E-07) * XX
+ 16#2.E3BC673425B0E#E-05) * XX
- 16#D.00D00CCA7AF00#E-04) * XX
+ 16#2.222222221B190#E-02) * XX
- 16#2.AAAAAAAAAAA44#E-01) * (XX * X) + X;
end Sine_Approx;
------------
-- Reduce --
------------
procedure Reduce (X : in out Double; Q : out Natural) is
Half_Pi : constant := Pi / 2.0;
Two_Over_Pi : constant := 2.0 / Pi;
HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size);
M : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant
P1 : constant Double := Double'Leading_Part (Half_Pi, HM);
P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM);
P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM);
P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM);
P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3
- P4, HM);
P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5);
K : Double;
begin
-- For X < 2.0**HM, all products below are computed exactly.
-- Due to cancellation effects all subtractions are exact as well.
-- As no double extended floating-point number has more than 75
-- zeros after the binary point, the result will be the correctly
-- rounded result of X - K * (Pi / 2.0).
K := X * Two_Over_Pi;
while abs K >= 2.0 ** HM loop
K := K * M - (K * M - K);
X :=
(((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6;
K := X * Two_Over_Pi;
end loop;
-- If K is not a number (because X was not finite) raise exception
if K /= K then
raise Constraint_Error;
end if;
K := Double'Rounding (K);
Q := Integer (K) mod 4;
X := (((((X - K * P1) - K * P2) - K * P3)
- K * P4) - K * P5) - K * P6;
end Reduce;
---------
-- Cos --
---------
function Cos (X : Double) return Double is
Reduced_X : Double := abs X;
Quadrant : Natural range 0 .. 3;
begin
if Reduced_X > Pi / 4.0 then
Reduce (Reduced_X, Quadrant);
case Quadrant is
when 0 =>
return Cosine_Approx (Reduced_X);
when 1 =>
return Sine_Approx (-Reduced_X);
when 2 =>
return -Cosine_Approx (Reduced_X);
when 3 =>
return Sine_Approx (Reduced_X);
end case;
end if;
return Cosine_Approx (Reduced_X);
end Cos;
---------
-- Sin --
---------
function Sin (X : Double) return Double is
Reduced_X : Double := X;
Quadrant : Natural range 0 .. 3;
begin
if abs X > Pi / 4.0 then
Reduce (Reduced_X, Quadrant);
case Quadrant is
when 0 =>
return Sine_Approx (Reduced_X);
when 1 =>
return Cosine_Approx (Reduced_X);
when 2 =>
return Sine_Approx (-Reduced_X);
when 3 =>
return -Cosine_Approx (Reduced_X);
end case;
end if;
return Sine_Approx (Reduced_X);
end Sin;
end Ada.Numerics.Aux;