;; Predicate definitions for IA-32 and x86-64. ;; Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING. If not, write to ;; the Free Software Foundation, 51 Franklin Street, Fifth Floor, ;; Boston, MA 02110-1301, USA.

;; Return nonzero if OP is either a i387 or SSE fp register. (define_predicate “any_fp_register_operand” (and (match_code “reg”) (match_test “ANY_FP_REGNO_P (REGNO (op))”)))

;; Return nonzero if OP is an i387 fp register. (define_predicate “fp_register_operand” (and (match_code “reg”) (match_test “FP_REGNO_P (REGNO (op))”)))

;; Return nonzero if OP is a non-fp register_operand. (define_predicate “register_and_not_any_fp_reg_operand” (and (match_code “reg”) (not (match_test “ANY_FP_REGNO_P (REGNO (op))”))))

;; Return nonzero if OP is a register operand other than an i387 fp register. (define_predicate “register_and_not_fp_reg_operand” (and (match_code “reg”) (not (match_test “FP_REGNO_P (REGNO (op))”))))

;; True if the operand is an MMX register. (define_predicate “mmx_reg_operand” (and (match_code “reg”) (match_test “MMX_REGNO_P (REGNO (op))”)))

;; True if the operand is a Q_REGS class register. (define_predicate “q_regs_operand” (match_operand 0 “register_operand”) { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); return ANY_QI_REG_P (op); })

;; Return true if op is a NON_Q_REGS class register. (define_predicate “non_q_regs_operand” (match_operand 0 “register_operand”) { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); return NON_QI_REG_P (op); })

;; Match an SI or HImode register for a zero_extract. (define_special_predicate “ext_register_operand” (match_operand 0 “register_operand”) { if ((!TARGET_64BIT || GET_MODE (op) != DImode) && GET_MODE (op) != SImode && GET_MODE (op) != HImode) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op);

/* Be careful to accept only registers having upper parts. */ return REGNO (op) > LAST_VIRTUAL_REGISTER || REGNO (op) < 4; })

;; Return true if op is the AX register. (define_predicate “ax_reg_operand” (and (match_code “reg”) (match_test “REGNO (op) == 0”)))

;; Return true if op is the flags register. (define_predicate “flags_reg_operand” (and (match_code “reg”) (match_test “REGNO (op) == FLAGS_REG”)))

;; APPLE LOCAL begin 5612787 mainline sse4 ;; Return true if op is not xmm0 register. (define_predicate “reg_not_xmm0_operand” (and (match_operand 0 “register_operand”) (match_test “GET_CODE (op) != REG || REGNO (op) != FIRST_SSE_REG”)))

;; As above, but allow nonimmediate operands. (define_predicate “nonimm_not_xmm0_operand” (and (match_operand 0 “nonimmediate_operand”) (match_test “GET_CODE (op) != REG || REGNO (op) != FIRST_SSE_REG”))) ;; APPLE LOCAL end 5612787 mainline sse4

;; Return 1 if VALUE can be stored in a sign extended immediate field. (define_predicate “x86_64_immediate_operand” (match_code “const_int,symbol_ref,label_ref,const”) { if (!TARGET_64BIT) return immediate_operand (op, mode);

switch (GET_CODE (op)) { case CONST_INT: /* CONST_DOUBLES never match, since HOST_BITS_PER_WIDE_INT is known to be at least 32 and this all acceptable constants are represented as CONST_INT. */ if (HOST_BITS_PER_WIDE_INT == 32) return 1; else { HOST_WIDE_INT val = trunc_int_for_mode (INTVAL (op), DImode); return trunc_int_for_mode (val, SImode) == val; } break;

case SYMBOL_REF:
  /* For certain code models, the symbolic references are known to fit.
 in CM_SMALL_PIC model we know it fits if it is local to the shared
 library.  Don't count TLS SYMBOL_REFs here, since they should fit
 only if inside of UNSPEC handled below.  */
  /* TLS symbols are not constant.  */
  if (SYMBOL_REF_TLS_MODEL (op))
return false;
  return (ix86_cmodel == CM_SMALL || ix86_cmodel == CM_KERNEL
      || (ix86_cmodel == CM_MEDIUM && !SYMBOL_REF_FAR_ADDR_P (op)));

case LABEL_REF:
  /* For certain code models, the code is near as well.  */
  return (ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM
      || ix86_cmodel == CM_KERNEL);

case CONST:
  /* We also may accept the offsetted memory references in certain
 special cases.  */
  if (GET_CODE (XEXP (op, 0)) == UNSPEC)
switch (XINT (XEXP (op, 0), 1))
  {
  case UNSPEC_GOTPCREL:
  case UNSPEC_DTPOFF:
  case UNSPEC_GOTNTPOFF:
  case UNSPEC_NTPOFF:
    return 1;
  default:
    break;
  }

  if (GET_CODE (XEXP (op, 0)) == PLUS)
{
  rtx op1 = XEXP (XEXP (op, 0), 0);
  rtx op2 = XEXP (XEXP (op, 0), 1);
  HOST_WIDE_INT offset;

  if (ix86_cmodel == CM_LARGE)
    return 0;
  if (GET_CODE (op2) != CONST_INT)
    return 0;
  offset = trunc_int_for_mode (INTVAL (op2), DImode);
  switch (GET_CODE (op1))
    {
    case SYMBOL_REF:
      /* TLS symbols are not constant.  */
      if (SYMBOL_REF_TLS_MODEL (op1))
	return 0;
      /* For CM_SMALL assume that latest object is 16MB before
	 end of 31bits boundary.  We may also accept pretty
	 large negative constants knowing that all objects are
	 in the positive half of address space.  */
      if ((ix86_cmodel == CM_SMALL
	   || (ix86_cmodel == CM_MEDIUM
	       && !SYMBOL_REF_FAR_ADDR_P (op1)))
	  && offset < 16*1024*1024
	  && trunc_int_for_mode (offset, SImode) == offset)
	return 1;
      /* For CM_KERNEL we know that all object resist in the
	 negative half of 32bits address space.  We may not
	 accept negative offsets, since they may be just off
	 and we may accept pretty large positive ones.  */
      if (ix86_cmodel == CM_KERNEL
	  && offset > 0
	  && trunc_int_for_mode (offset, SImode) == offset)
	return 1;
      break;

    case LABEL_REF:
      /* These conditions are similar to SYMBOL_REF ones, just the
	 constraints for code models differ.  */
      if ((ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM)
	  && offset < 16*1024*1024
	  && trunc_int_for_mode (offset, SImode) == offset)
	return 1;
      if (ix86_cmodel == CM_KERNEL
	  && offset > 0
	  && trunc_int_for_mode (offset, SImode) == offset)
	return 1;
      break;

    case UNSPEC:
      switch (XINT (op1, 1))
	{
	case UNSPEC_DTPOFF:
	case UNSPEC_NTPOFF:
	  if (offset > 0
	      && trunc_int_for_mode (offset, SImode) == offset)
	    return 1;
	}
      break;

    default:
      break;
    }
}
  break;

  default:
gcc_unreachable ();
}

return 0; })

;; Return 1 if VALUE can be stored in the zero extended immediate field. (define_predicate “x86_64_zext_immediate_operand” (match_code “const_double,const_int,symbol_ref,label_ref,const”) { switch (GET_CODE (op)) { case CONST_DOUBLE: if (HOST_BITS_PER_WIDE_INT == 32) return (GET_MODE (op) == VOIDmode && !CONST_DOUBLE_HIGH (op)); else return 0;

case CONST_INT:
  if (HOST_BITS_PER_WIDE_INT == 32)
return INTVAL (op) >= 0;
  else
return !(INTVAL (op) & ~(HOST_WIDE_INT) 0xffffffff);

case SYMBOL_REF:
  /* For certain code models, the symbolic references are known to fit.  */
  /* TLS symbols are not constant.  */
  if (SYMBOL_REF_TLS_MODEL (op))
return false;
  return (ix86_cmodel == CM_SMALL
      || (ix86_cmodel == CM_MEDIUM
	  && !SYMBOL_REF_FAR_ADDR_P (op)));

case LABEL_REF:
  /* For certain code models, the code is near as well.  */
  return ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM;

case CONST:
  /* We also may accept the offsetted memory references in certain
 special cases.  */
  if (GET_CODE (XEXP (op, 0)) == PLUS)
{
  rtx op1 = XEXP (XEXP (op, 0), 0);
  rtx op2 = XEXP (XEXP (op, 0), 1);

  if (ix86_cmodel == CM_LARGE)
    return 0;
  switch (GET_CODE (op1))
    {
    case SYMBOL_REF:
      /* TLS symbols are not constant.  */
      if (SYMBOL_REF_TLS_MODEL (op1))
	return 0;
      /* For small code model we may accept pretty large positive
	 offsets, since one bit is available for free.  Negative
	 offsets are limited by the size of NULL pointer area
	 specified by the ABI.  */
      if ((ix86_cmodel == CM_SMALL
	   || (ix86_cmodel == CM_MEDIUM
	       && !SYMBOL_REF_FAR_ADDR_P (op1)))
	  && GET_CODE (op2) == CONST_INT
	  && trunc_int_for_mode (INTVAL (op2), DImode) > -0x10000
	  && trunc_int_for_mode (INTVAL (op2), SImode) == INTVAL (op2))
	return 1;
      /* ??? For the kernel, we may accept adjustment of
	 -0x10000000, since we know that it will just convert
	 negative address space to positive, but perhaps this
	 is not worthwhile.  */
      break;

    case LABEL_REF:
      /* These conditions are similar to SYMBOL_REF ones, just the
	 constraints for code models differ.  */
      if ((ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM)
	  && GET_CODE (op2) == CONST_INT
	  && trunc_int_for_mode (INTVAL (op2), DImode) > -0x10000
	  && trunc_int_for_mode (INTVAL (op2), SImode) == INTVAL (op2))
	return 1;
      break;

    default:
      return 0;
    }
}
  break;

default:
  gcc_unreachable ();
}

return 0; })

;; Return nonzero if OP is general operand representable on x86_64. (define_predicate “x86_64_general_operand” (if_then_else (match_test “TARGET_64BIT”) (ior (match_operand 0 “nonimmediate_operand”) (match_operand 0 “x86_64_immediate_operand”)) (match_operand 0 “general_operand”)))

;; Return nonzero if OP is general operand representable on x86_64 ;; as either sign extended or zero extended constant. (define_predicate “x86_64_szext_general_operand” (if_then_else (match_test “TARGET_64BIT”) (ior (match_operand 0 “nonimmediate_operand”) (ior (match_operand 0 “x86_64_immediate_operand”) (match_operand 0 “x86_64_zext_immediate_operand”))) (match_operand 0 “general_operand”)))

;; Return nonzero if OP is nonmemory operand representable on x86_64. (define_predicate “x86_64_nonmemory_operand” (if_then_else (match_test “TARGET_64BIT”) (ior (match_operand 0 “register_operand”) (match_operand 0 “x86_64_immediate_operand”)) (match_operand 0 “nonmemory_operand”)))

;; Return nonzero if OP is nonmemory operand representable on x86_64. (define_predicate “x86_64_szext_nonmemory_operand” (if_then_else (match_test “TARGET_64BIT”) (ior (match_operand 0 “register_operand”) (ior (match_operand 0 “x86_64_immediate_operand”) (match_operand 0 “x86_64_zext_immediate_operand”))) (match_operand 0 “nonmemory_operand”)))

;; Return true when operand is PIC expression that can be computed by lea ;; operation. (define_predicate “pic_32bit_operand” (match_code “const,symbol_ref,label_ref”) { if (!flag_pic) return 0; /* Rule out relocations that translate into 64bit constants. */ if (TARGET_64BIT && GET_CODE (op) == CONST) { op = XEXP (op, 0); if (GET_CODE (op) == PLUS && GET_CODE (XEXP (op, 1)) == CONST_INT) op = XEXP (op, 0); if (GET_CODE (op) == UNSPEC && (XINT (op, 1) == UNSPEC_GOTOFF || XINT (op, 1) == UNSPEC_GOT)) return 0; } return symbolic_operand (op, mode); })

;; Return nonzero if OP is nonmemory operand acceptable by movabs patterns. (define_predicate “x86_64_movabs_operand” (if_then_else (match_test “!TARGET_64BIT || !flag_pic”) (match_operand 0 “nonmemory_operand”) (ior (match_operand 0 “register_operand”) (and (match_operand 0 “const_double_operand”) (match_test “GET_MODE_SIZE (mode) <= 8”)))))

;; Returns nonzero if OP is either a symbol reference or a sum of a symbol ;; reference and a constant. (define_predicate “symbolic_operand” (match_code “symbol_ref,label_ref,const”) { switch (GET_CODE (op)) { case SYMBOL_REF: case LABEL_REF: return 1;

case CONST:
  op = XEXP (op, 0);
  if (GET_CODE (op) == SYMBOL_REF
  || GET_CODE (op) == LABEL_REF
  || (GET_CODE (op) == UNSPEC
      && (XINT (op, 1) == UNSPEC_GOT
	  || XINT (op, 1) == UNSPEC_GOTOFF
	  || XINT (op, 1) == UNSPEC_GOTPCREL)))
return 1;
  if (GET_CODE (op) != PLUS
  || GET_CODE (XEXP (op, 1)) != CONST_INT)
return 0;

  op = XEXP (op, 0);
  if (GET_CODE (op) == SYMBOL_REF
  || GET_CODE (op) == LABEL_REF)
return 1;
  /* Only @GOTOFF gets offsets.  */
  if (GET_CODE (op) != UNSPEC
  || XINT (op, 1) != UNSPEC_GOTOFF)
return 0;

  op = XVECEXP (op, 0, 0);
  if (GET_CODE (op) == SYMBOL_REF
  || GET_CODE (op) == LABEL_REF)
return 1;
  return 0;

default:
  gcc_unreachable ();
}

})

;; Return true if the operand contains a @GOT or @GOTOFF reference. (define_predicate “pic_symbolic_operand” (match_code “const”) { op = XEXP (op, 0); if (TARGET_64BIT) { if (GET_CODE (op) == UNSPEC && XINT (op, 1) == UNSPEC_GOTPCREL) return 1; if (GET_CODE (op) == PLUS && GET_CODE (XEXP (op, 0)) == UNSPEC && XINT (XEXP (op, 0), 1) == UNSPEC_GOTPCREL) return 1; } else { if (GET_CODE (op) == UNSPEC) return 1; if (GET_CODE (op) != PLUS || GET_CODE (XEXP (op, 1)) != CONST_INT) return 0; op = XEXP (op, 0); if (GET_CODE (op) == UNSPEC) return 1; } return 0; })

;; Return true if OP is a symbolic operand that resolves locally. (define_predicate “local_symbolic_operand” (match_code “const,label_ref,symbol_ref”) { if (GET_CODE (op) == CONST && GET_CODE (XEXP (op, 0)) == PLUS && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT) op = XEXP (XEXP (op, 0), 0);

if (GET_CODE (op) == LABEL_REF) return 1;

if (GET_CODE (op) != SYMBOL_REF) return 0;

if (SYMBOL_REF_TLS_MODEL (op) != 0) return 0;

/* APPLE LOCAL begin fix-and-continue 6358507 / if (SYMBOL_REF_LOCAL_P (op)) { / LLVM LOCAL begin non-Darwin hack. / #ifdef TARGET_FIX_AND_CONTINUE if (!indirect_data (op) || machopic_data_defined_p (op))
#endif /
LLVM LOCAL end non-Darwin hack / return 1; } / APPLE LOCAL end fix-and-continue 6358507 */

/* There is, however, a not insubstantial body of code in the rest of the compiler that assumes it can just stick the results of ASM_GENERATE_INTERNAL_LABEL in a symbol_ref and have done. / / ??? This is a hack. Should update the body of the compiler to always create a DECL an invoke targetm.encode_section_info. */ if (strncmp (XSTR (op, 0), internal_label_prefix, internal_label_prefix_len) == 0) return 1;

return 0; })

;; Test for various thread-local symbols. (define_predicate “tls_symbolic_operand” (and (match_code “symbol_ref”) (match_test “SYMBOL_REF_TLS_MODEL (op) != 0”)))

(define_predicate “tls_modbase_operand” (and (match_code “symbol_ref”) (match_test “op == ix86_tls_module_base ()”)))

(define_predicate “tp_or_register_operand” (ior (match_operand 0 “register_operand”) (and (match_code “unspec”) (match_test “XINT (op, 1) == UNSPEC_TP”))))

;; Test for a pc-relative call operand (define_predicate “constant_call_address_operand” (ior (match_code “symbol_ref”) (match_operand 0 “local_symbolic_operand”)))

;; True for any non-virtual or eliminable register. Used in places where ;; instantiation of such a register may cause the pattern to not be recognized. (define_predicate “register_no_elim_operand” (match_operand 0 “register_operand”) { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); return !(op == arg_pointer_rtx || op == frame_pointer_rtx || (REGNO (op) >= FIRST_PSEUDO_REGISTER && REGNO (op) <= LAST_VIRTUAL_REGISTER)); })

;; Similarly, but include the stack pointer. This is used to prevent esp ;; from being used as an index reg. (define_predicate “index_register_operand” (match_operand 0 “register_operand”) { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (reload_in_progress || reload_completed) return REG_OK_FOR_INDEX_STRICT_P (op); else return REG_OK_FOR_INDEX_NONSTRICT_P (op); })

;; Return false if this is any eliminable register. Otherwise general_operand. (define_predicate “general_no_elim_operand” (if_then_else (match_code “reg,subreg”) (match_operand 0 “register_no_elim_operand”) (match_operand 0 “general_operand”)))

;; Return false if this is any eliminable register. Otherwise ;; register_operand or a constant. (define_predicate “nonmemory_no_elim_operand” (ior (match_operand 0 “register_no_elim_operand”) (match_operand 0 “immediate_operand”)))

;; Test for a valid operand for a call instruction. (define_predicate “call_insn_operand” (ior (match_operand 0 “constant_call_address_operand”) (ior (match_operand 0 “register_no_elim_operand”) (match_operand 0 “memory_operand”))))

;; Similarly, but for tail calls, in which we cannot allow memory references. (define_predicate “sibcall_insn_operand” (ior (match_operand 0 “constant_call_address_operand”) (match_operand 0 “register_no_elim_operand”)))

;; Match exactly zero. (define_predicate “const0_operand” (match_code “const_int,const_double,const_vector”) { if (mode == VOIDmode) mode = GET_MODE (op); return op == CONST0_RTX (mode); })

;; Match exactly one. (define_predicate “const1_operand” (and (match_code “const_int”) (match_test “op == const1_rtx”)))

;; Match exactly eight. (define_predicate “const8_operand” (and (match_code “const_int”) (match_test “INTVAL (op) == 8”)))

;; Match 2, 4, or 8. Used for leal multiplicands. (define_predicate “const248_operand” (match_code “const_int”) { HOST_WIDE_INT i = INTVAL (op); return i == 2 || i == 4 || i == 8; })

;; Match 0 or 1. (define_predicate “const_0_to_1_operand” (and (match_code “const_int”) (match_test “op == const0_rtx || op == const1_rtx”)))

;; Match 0 to 3. (define_predicate “const_0_to_3_operand” (and (match_code “const_int”) (match_test “INTVAL (op) >= 0 && INTVAL (op) <= 3”)))

;; Match 0 to 7. (define_predicate “const_0_to_7_operand” (and (match_code “const_int”) (match_test “INTVAL (op) >= 0 && INTVAL (op) <= 7”)))

;; Match 0 to 15. (define_predicate “const_0_to_15_operand” (and (match_code “const_int”) (match_test “INTVAL (op) >= 0 && INTVAL (op) <= 15”)))

;; Match 0 to 63. (define_predicate “const_0_to_63_operand” (and (match_code “const_int”) (match_test “INTVAL (op) >= 0 && INTVAL (op) <= 63”)))

;; Match 0 to 255. (define_predicate “const_0_to_255_operand” (and (match_code “const_int”) (match_test “INTVAL (op) >= 0 && INTVAL (op) <= 255”)))

;; Match (0 to 255) * 8 (define_predicate “const_0_to_255_mul_8_operand” (match_code “const_int”) { unsigned HOST_WIDE_INT val = INTVAL (op); return val <= 255*8 && val % 8 == 0; })

;; Return nonzero if OP is CONST_INT >= 1 and <= 31 (a valid operand ;; for shift & compare patterns, as shifting by 0 does not change flags). (define_predicate “const_1_to_31_operand” (and (match_code “const_int”) (match_test “INTVAL (op) >= 1 && INTVAL (op) <= 31”)))

;; Match 2 or 3. (define_predicate “const_2_to_3_operand” (and (match_code “const_int”) (match_test “INTVAL (op) == 2 || INTVAL (op) == 3”)))

;; Match 4 to 7. (define_predicate “const_4_to_7_operand” (and (match_code “const_int”) (match_test “INTVAL (op) >= 4 && INTVAL (op) <= 7”)))

;; APPLE LOCAL begin 5612787 mainline sse4 ;; Match exactly one bit in 2-bit mask. (define_predicate “const_pow2_1_to_2_operand” (and (match_code “const_int”) (match_test “INTVAL (op) == 1 || INTVAL (op) == 2”))) ;; APPLE LOCAL end 5612787 mainline sse4

;; Match exactly one bit in 4-bit mask. (define_predicate “const_pow2_1_to_8_operand” (match_code “const_int”) { unsigned int log = exact_log2 (INTVAL (op)); return log <= 3; })

;; Match exactly one bit in 8-bit mask. (define_predicate “const_pow2_1_to_128_operand” (match_code “const_int”) { unsigned int log = exact_log2 (INTVAL (op)); return log <= 7; })

;; APPLE LOCAL begin 5612787 mainline sse4 ;; Match exactly one bit in 16-bit mask. (define_predicate “const_pow2_1_to_32768_operand” (match_code “const_int”) { unsigned int log = exact_log2 (INTVAL (op)); return log <= 15; }) ;; APPLE LOCAL end 5612787 mainline sse4

;; True if this is a constant appropriate for an increment or decrement. (define_predicate “incdec_operand” (match_code “const_int”) { /* On Pentium4, the inc and dec operations causes extra dependency on flag registers, since carry flag is not set. */ if (!TARGET_USE_INCDEC && !optimize_size) return 0; return op == const1_rtx || op == constm1_rtx; })

;; True for registers, or 1 or -1. Used to optimize double-word shifts. (define_predicate “reg_or_pm1_operand” (ior (match_operand 0 “register_operand”) (and (match_code “const_int”) (match_test “op == const1_rtx || op == constm1_rtx”))))

;; True if OP is acceptable as operand of DImode shift expander. (define_predicate “shiftdi_operand” (if_then_else (match_test “TARGET_64BIT”) (match_operand 0 “nonimmediate_operand”) (match_operand 0 “register_operand”)))

(define_predicate “ashldi_input_operand” (if_then_else (match_test “TARGET_64BIT”) (match_operand 0 “nonimmediate_operand”) (match_operand 0 “reg_or_pm1_operand”)))

;; Return true if OP is a vector load from the constant pool with just ;; the first element nonzero. (define_predicate “zero_extended_scalar_load_operand” (match_code “mem”) { unsigned n_elts; op = maybe_get_pool_constant (op); if (!op) return 0; if (GET_CODE (op) != CONST_VECTOR) return 0; n_elts = (GET_MODE_SIZE (GET_MODE (op)) / GET_MODE_SIZE (GET_MODE_INNER (GET_MODE (op)))); for (n_elts--; n_elts > 0; n_elts--) { rtx elt = CONST_VECTOR_ELT (op, n_elts); if (elt != CONST0_RTX (GET_MODE_INNER (GET_MODE (op)))) return 0; } return 1; })

/* Return true if operand is a vector constant that is all ones. */ (define_predicate “vector_all_ones_operand” (match_code “const_vector”) { int nunits = GET_MODE_NUNITS (mode);

if (GET_CODE (op) == CONST_VECTOR && CONST_VECTOR_NUNITS (op) == nunits) { int i; for (i = 0; i < nunits; ++i) { rtx x = CONST_VECTOR_ELT (op, i); if (x != constm1_rtx) return 0; } return 1; }

return 0; })

; Return 1 when OP is operand acceptable for standard SSE move. (define_predicate “vector_move_operand” (ior (match_operand 0 “nonimmediate_operand”) (match_operand 0 “const0_operand”)))

;; Return 1 when OP is nonimmediate or standard SSE constant. (define_predicate “nonimmediate_or_sse_const_operand” (match_operand 0 “general_operand”) { if (nonimmediate_operand (op, mode)) return 1; if (standard_sse_constant_p (op) > 0) return 1; return 0; })

;; APPLE LOCAL begin mainline /* MERGE FIXME was this replaced by reg_or_0_operand below */ ;; Return true if OP is a nonimmediate or a zero. (define_predicate “nonimmediate_or_0_operand” (ior (match_operand 0 “nonimmediate_operand”) (match_operand 0 “const0_operand”))) ;; APPLE LOCAL end mainline

;; Return true if OP is a register or a zero. (define_predicate “reg_or_0_operand” (ior (match_operand 0 “register_operand”) (match_operand 0 “const0_operand”)))

;; Return true if op if a valid address, and does not contain ;; a segment override. (define_special_predicate “no_seg_address_operand” (match_operand 0 “address_operand”) { struct ix86_address parts; int ok;

ok = ix86_decompose_address (op, &parts); gcc_assert (ok); return parts.seg == SEG_DEFAULT; })

;; Return nonzero if the rtx is known to be at least 32 bits aligned. (define_predicate “aligned_operand” (match_operand 0 “general_operand”) { struct ix86_address parts; int ok;

/* Registers and immediate operands are always “aligned”. */ if (GET_CODE (op) != MEM) return 1;

/* All patterns using aligned_operand on memory operands ends up in promoting memory operand to 64bit and thus causing memory mismatch. */ if (TARGET_MEMORY_MISMATCH_STALL && !optimize_size) return 0;

/* Don't even try to do any aligned optimizations with volatiles. */ if (MEM_VOLATILE_P (op)) return 0;

if (MEM_ALIGN (op) >= 32) return 1;

op = XEXP (op, 0);

/* Pushes and pops are only valid on the stack pointer. */ if (GET_CODE (op) == PRE_DEC || GET_CODE (op) == POST_INC) return 1;

/* Decode the address. */ ok = ix86_decompose_address (op, &parts); gcc_assert (ok);

/* Look for some component that isn't known to be aligned. */ if (parts.index) { if (REGNO_POINTER_ALIGN (REGNO (parts.index)) * parts.scale < 32) return 0; } if (parts.base) { if (REGNO_POINTER_ALIGN (REGNO (parts.base)) < 32) return 0; } if (parts.disp) { if (GET_CODE (parts.disp) != CONST_INT || (INTVAL (parts.disp) & 3) != 0) return 0; }

/* Didn't find one -- this must be an aligned address. */ return 1; })

;; Returns 1 if OP is memory operand with a displacement. (define_predicate “memory_displacement_operand” (match_operand 0 “memory_operand”) { struct ix86_address parts; int ok;

ok = ix86_decompose_address (XEXP (op, 0), &parts); gcc_assert (ok); return parts.disp != NULL_RTX; })

;; Returns 1 if OP is memory operand with a displacement only. (define_predicate “memory_displacement_only_operand” (match_operand 0 “memory_operand”) { struct ix86_address parts; int ok;

ok = ix86_decompose_address (XEXP (op, 0), &parts); gcc_assert (ok);

if (parts.base || parts.index) return 0;

return parts.disp != NULL_RTX; })

;; Returns 1 if OP is memory operand that cannot be represented ;; by the modRM array. (define_predicate “long_memory_operand” (and (match_operand 0 “memory_operand”) (match_test “memory_address_length (op) != 0”)))

;; Return 1 if OP is a comparison operator that can be issued by fcmov. (define_predicate “fcmov_comparison_operator” (match_operand 0 “comparison_operator”) { enum machine_mode inmode = GET_MODE (XEXP (op, 0)); enum rtx_code code = GET_CODE (op);

if (inmode == CCFPmode || inmode == CCFPUmode) { enum rtx_code second_code, bypass_code; ix86_fp_comparison_codes (code, &bypass_code, &code, &second_code); if (bypass_code != UNKNOWN || second_code != UNKNOWN) return 0; code = ix86_fp_compare_code_to_integer (code); } /* i387 supports just limited amount of conditional codes. */ switch (code) { case LTU: case GTU: case LEU: case GEU: if (inmode == CCmode || inmode == CCFPmode || inmode == CCFPUmode) return 1; return 0; case ORDERED: case UNORDERED: case EQ: case NE: return 1; default: return 0; } })

;; Return 1 if OP is a comparison that can be used in the CMPSS/CMPPS insns. ;; The first set are supported directly; the second set can‘t be done with ;; full IEEE support, i.e. NaNs. ;; ;; ??? It would seem that we have a lot of uses of this predicate that pass ;; it the wrong mode. We got away with this because the old function didn’t ;; check the mode at all. Mirror that for now by calling this a special ;; predicate.

(define_special_predicate “sse_comparison_operator” (match_code “eq,lt,le,unordered,ne,unge,ungt,ordered”))

;; Return 1 if OP is a valid comparison operator in valid mode. (define_predicate “ix86_comparison_operator” (match_operand 0 “comparison_operator”) { enum machine_mode inmode = GET_MODE (XEXP (op, 0)); enum rtx_code code = GET_CODE (op);

if (inmode == CCFPmode || inmode == CCFPUmode) { enum rtx_code second_code, bypass_code; ix86_fp_comparison_codes (code, &bypass_code, &code, &second_code); return (bypass_code == UNKNOWN && second_code == UNKNOWN); } switch (code) { case EQ: case NE: return 1; case LT: case GE: if (inmode == CCmode || inmode == CCGCmode || inmode == CCGOCmode || inmode == CCNOmode) return 1; return 0; case LTU: case GTU: case LEU: case ORDERED: case UNORDERED: case GEU: if (inmode == CCmode) return 1; return 0; case GT: case LE: if (inmode == CCmode || inmode == CCGCmode || inmode == CCNOmode) return 1; return 0; default: return 0; } })

;; Return 1 if OP is a valid comparison operator testing carry flag to be set. (define_predicate “ix86_carry_flag_operator” (match_code “ltu,lt,unlt,gt,ungt,le,unle,ge,unge,ltgt,uneq”) { enum machine_mode inmode = GET_MODE (XEXP (op, 0)); enum rtx_code code = GET_CODE (op);

if (GET_CODE (XEXP (op, 0)) != REG || REGNO (XEXP (op, 0)) != FLAGS_REG || XEXP (op, 1) != const0_rtx) return 0;

if (inmode == CCFPmode || inmode == CCFPUmode) { enum rtx_code second_code, bypass_code; ix86_fp_comparison_codes (code, &bypass_code, &code, &second_code); if (bypass_code != UNKNOWN || second_code != UNKNOWN) return 0; code = ix86_fp_compare_code_to_integer (code); } else if (inmode != CCmode) return 0;

return code == LTU; })

;; Nearly general operand, but accept any const_double, since we wish ;; to be able to drop them into memory rather than have them get pulled ;; into registers. (define_predicate “cmp_fp_expander_operand” (ior (match_code “const_double”) (match_operand 0 “general_operand”)))

;; Return true if this is a valid binary floating-point operation. (define_predicate “binary_fp_operator” (match_code “plus,minus,mult,div”))

;; Return true if this is a multiply operation. (define_predicate “mult_operator” (match_code “mult”))

;; Return true if this is a division operation. (define_predicate “div_operator” (match_code “div”))

;; Return true if this is a float extend operation. (define_predicate “float_operator” (match_code “float”))

;; Return true for ARITHMETIC_P. (define_predicate “arith_or_logical_operator” (match_code “plus,mult,and,ior,xor,smin,smax,umin,umax,compare,minus,div, mod,udiv,umod,ashift,rotate,ashiftrt,lshiftrt,rotatert”))

;; Return 1 if OP is a binary operator that can be promoted to wider mode. ;; Modern CPUs have same latency for HImode and SImode multiply, ;; but 386 and 486 do HImode multiply faster. */ (define_predicate “promotable_binary_operator” (ior (match_code “plus,and,ior,xor,ashift”) (and (match_code “mult”) (match_test “ix86_tune > PROCESSOR_I486”))))

;; To avoid problems when jump re-emits comparisons like testqi_ext_ccno_0, ;; re-recognize the operand to avoid a copy_to_mode_reg that will fail. ;; ;; ??? It seems likely that this will only work because cmpsi is an ;; expander, and no actual insns use this.

(define_predicate “cmpsi_operand” (ior (match_operand 0 “nonimmediate_operand”) (and (match_code “and”) (match_code “zero_extract” “0”) (match_code “const_int” “1”) (match_code “const_int” “01”) (match_code “const_int” “02”) (match_test “INTVAL (XEXP (XEXP (op, 0), 1)) == 8”) (match_test “INTVAL (XEXP (XEXP (op, 0), 2)) == 8”) )))

(define_predicate “compare_operator” (match_code “compare”))

(define_predicate “absneg_operator” (match_code “abs,neg”))