blob: 869ff3e7353dfdb11accc729e7352fa151d73ad5 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ U T I L --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Casing; use Casing;
with Checks; use Checks;
with Debug; use Debug;
with Errout; use Errout;
with Elists; use Elists;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Fname; use Fname;
with Freeze; use Freeze;
with Lib; use Lib;
with Lib.Xref; use Lib.Xref;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Output; use Output;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Scans; use Scans;
with Scn; use Scn;
with Sem; use Sem;
with Sem_Ch8; use Sem_Ch8;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sinfo; use Sinfo;
with Sinput; use Sinput;
with Snames; use Snames;
with Stand; use Stand;
with Style;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uname; use Uname;
package body Sem_Util is
-----------------------
-- Local Subprograms --
-----------------------
function Build_Component_Subtype
(C : List_Id;
Loc : Source_Ptr;
T : Entity_Id) return Node_Id;
-- This function builds the subtype for Build_Actual_Subtype_Of_Component
-- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
-- Loc is the source location, T is the original subtype.
function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
-- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
-- with discriminants whose default values are static, examine only the
-- components in the selected variant to determine whether all of them
-- have a default.
function Has_Null_Extension (T : Entity_Id) return Boolean;
-- T is a derived tagged type. Check whether the type extension is null.
-- If the parent type is fully initialized, T can be treated as such.
--------------------------------
-- Add_Access_Type_To_Process --
--------------------------------
procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
L : Elist_Id;
begin
Ensure_Freeze_Node (E);
L := Access_Types_To_Process (Freeze_Node (E));
if No (L) then
L := New_Elmt_List;
Set_Access_Types_To_Process (Freeze_Node (E), L);
end if;
Append_Elmt (A, L);
end Add_Access_Type_To_Process;
-----------------------
-- Alignment_In_Bits --
-----------------------
function Alignment_In_Bits (E : Entity_Id) return Uint is
begin
return Alignment (E) * System_Storage_Unit;
end Alignment_In_Bits;
-----------------------------------------
-- Apply_Compile_Time_Constraint_Error --
-----------------------------------------
procedure Apply_Compile_Time_Constraint_Error
(N : Node_Id;
Msg : String;
Reason : RT_Exception_Code;
Ent : Entity_Id := Empty;
Typ : Entity_Id := Empty;
Loc : Source_Ptr := No_Location;
Rep : Boolean := True;
Warn : Boolean := False)
is
Stat : constant Boolean := Is_Static_Expression (N);
Rtyp : Entity_Id;
begin
if No (Typ) then
Rtyp := Etype (N);
else
Rtyp := Typ;
end if;
Discard_Node
(Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
if not Rep then
return;
end if;
-- Now we replace the node by an N_Raise_Constraint_Error node
-- This does not need reanalyzing, so set it as analyzed now.
Rewrite (N,
Make_Raise_Constraint_Error (Sloc (N),
Reason => Reason));
Set_Analyzed (N, True);
Set_Etype (N, Rtyp);
Set_Raises_Constraint_Error (N);
-- If the original expression was marked as static, the result is
-- still marked as static, but the Raises_Constraint_Error flag is
-- always set so that further static evaluation is not attempted.
if Stat then
Set_Is_Static_Expression (N);
end if;
end Apply_Compile_Time_Constraint_Error;
--------------------------
-- Build_Actual_Subtype --
--------------------------
function Build_Actual_Subtype
(T : Entity_Id;
N : Node_Or_Entity_Id) return Node_Id
is
Obj : Node_Id;
Loc : constant Source_Ptr := Sloc (N);
Constraints : List_Id;
Decl : Node_Id;
Discr : Entity_Id;
Hi : Node_Id;
Lo : Node_Id;
Subt : Entity_Id;
Disc_Type : Entity_Id;
begin
if Nkind (N) = N_Defining_Identifier then
Obj := New_Reference_To (N, Loc);
else
Obj := N;
end if;
if Is_Array_Type (T) then
Constraints := New_List;
for J in 1 .. Number_Dimensions (T) loop
-- Build an array subtype declaration with the nominal
-- subtype and the bounds of the actual. Add the declaration
-- in front of the local declarations for the subprogram, for
-- analysis before any reference to the formal in the body.
Lo :=
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J)));
Hi :=
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J)));
Append (Make_Range (Loc, Lo, Hi), Constraints);
end loop;
-- If the type has unknown discriminants there is no constrained
-- subtype to build. This is never called for a formal or for a
-- lhs, so returning the type is ok ???
elsif Has_Unknown_Discriminants (T) then
return T;
else
Constraints := New_List;
if Is_Private_Type (T) and then No (Full_View (T)) then
-- Type is a generic derived type. Inherit discriminants from
-- Parent type.
Disc_Type := Etype (Base_Type (T));
else
Disc_Type := T;
end if;
Discr := First_Discriminant (Disc_Type);
while Present (Discr) loop
Append_To (Constraints,
Make_Selected_Component (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Obj),
Selector_Name => New_Occurrence_Of (Discr, Loc)));
Next_Discriminant (Discr);
end loop;
end if;
Subt :=
Make_Defining_Identifier (Loc,
Chars => New_Internal_Name ('S'));
Set_Is_Internal (Subt);
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (T, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Constraints)));
Mark_Rewrite_Insertion (Decl);
return Decl;
end Build_Actual_Subtype;
---------------------------------------
-- Build_Actual_Subtype_Of_Component --
---------------------------------------
function Build_Actual_Subtype_Of_Component
(T : Entity_Id;
N : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
P : constant Node_Id := Prefix (N);
D : Elmt_Id;
Id : Node_Id;
Indx_Type : Entity_Id;
Deaccessed_T : Entity_Id;
-- This is either a copy of T, or if T is an access type, then it is
-- the directly designated type of this access type.
function Build_Actual_Array_Constraint return List_Id;
-- If one or more of the bounds of the component depends on
-- discriminants, build actual constraint using the discriminants
-- of the prefix.
function Build_Actual_Record_Constraint return List_Id;
-- Similar to previous one, for discriminated components constrained
-- by the discriminant of the enclosing object.
-----------------------------------
-- Build_Actual_Array_Constraint --
-----------------------------------
function Build_Actual_Array_Constraint return List_Id is
Constraints : constant List_Id := New_List;
Indx : Node_Id;
Hi : Node_Id;
Lo : Node_Id;
Old_Hi : Node_Id;
Old_Lo : Node_Id;
begin
Indx := First_Index (Deaccessed_T);
while Present (Indx) loop
Old_Lo := Type_Low_Bound (Etype (Indx));
Old_Hi := Type_High_Bound (Etype (Indx));
if Denotes_Discriminant (Old_Lo) then
Lo :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (P),
Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
else
Lo := New_Copy_Tree (Old_Lo);
-- The new bound will be reanalyzed in the enclosing
-- declaration. For literal bounds that come from a type
-- declaration, the type of the context must be imposed, so
-- insure that analysis will take place. For non-universal
-- types this is not strictly necessary.
Set_Analyzed (Lo, False);
end if;
if Denotes_Discriminant (Old_Hi) then
Hi :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (P),
Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
else
Hi := New_Copy_Tree (Old_Hi);
Set_Analyzed (Hi, False);
end if;
Append (Make_Range (Loc, Lo, Hi), Constraints);
Next_Index (Indx);
end loop;
return Constraints;
end Build_Actual_Array_Constraint;
------------------------------------
-- Build_Actual_Record_Constraint --
------------------------------------
function Build_Actual_Record_Constraint return List_Id is
Constraints : constant List_Id := New_List;
D : Elmt_Id;
D_Val : Node_Id;
begin
D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
D_Val := Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (P),
Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
else
D_Val := New_Copy_Tree (Node (D));
end if;
Append (D_Val, Constraints);
Next_Elmt (D);
end loop;
return Constraints;
end Build_Actual_Record_Constraint;
-- Start of processing for Build_Actual_Subtype_Of_Component
begin
if In_Default_Expression then
return Empty;
elsif Nkind (N) = N_Explicit_Dereference then
if Is_Composite_Type (T)
and then not Is_Constrained (T)
and then not (Is_Class_Wide_Type (T)
and then Is_Constrained (Root_Type (T)))
and then not Has_Unknown_Discriminants (T)
then
-- If the type of the dereference is already constrained, it
-- is an actual subtype.
if Is_Array_Type (Etype (N))
and then Is_Constrained (Etype (N))
then
return Empty;
else
Remove_Side_Effects (P);
return Build_Actual_Subtype (T, N);
end if;
else
return Empty;
end if;
end if;
if Ekind (T) = E_Access_Subtype then
Deaccessed_T := Designated_Type (T);
else
Deaccessed_T := T;
end if;
if Ekind (Deaccessed_T) = E_Array_Subtype then
Id := First_Index (Deaccessed_T);
while Present (Id) loop
Indx_Type := Underlying_Type (Etype (Id));
if Denotes_Discriminant (Type_Low_Bound (Indx_Type)) or else
Denotes_Discriminant (Type_High_Bound (Indx_Type))
then
Remove_Side_Effects (P);
return
Build_Component_Subtype (
Build_Actual_Array_Constraint, Loc, Base_Type (T));
end if;
Next_Index (Id);
end loop;
elsif Is_Composite_Type (Deaccessed_T)
and then Has_Discriminants (Deaccessed_T)
and then not Has_Unknown_Discriminants (Deaccessed_T)
then
D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
Remove_Side_Effects (P);
return
Build_Component_Subtype (
Build_Actual_Record_Constraint, Loc, Base_Type (T));
end if;
Next_Elmt (D);
end loop;
end if;
-- If none of the above, the actual and nominal subtypes are the same
return Empty;
end Build_Actual_Subtype_Of_Component;
-----------------------------
-- Build_Component_Subtype --
-----------------------------
function Build_Component_Subtype
(C : List_Id;
Loc : Source_Ptr;
T : Entity_Id) return Node_Id
is
Subt : Entity_Id;
Decl : Node_Id;
begin
-- Unchecked_Union components do not require component subtypes
if Is_Unchecked_Union (T) then
return Empty;
end if;
Subt :=
Make_Defining_Identifier (Loc,
Chars => New_Internal_Name ('S'));
Set_Is_Internal (Subt);
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Base_Type (T), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => C)));
Mark_Rewrite_Insertion (Decl);
return Decl;
end Build_Component_Subtype;
--------------------------------------------
-- Build_Discriminal_Subtype_Of_Component --
--------------------------------------------
function Build_Discriminal_Subtype_Of_Component
(T : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (T);
D : Elmt_Id;
Id : Node_Id;
function Build_Discriminal_Array_Constraint return List_Id;
-- If one or more of the bounds of the component depends on
-- discriminants, build actual constraint using the discriminants
-- of the prefix.
function Build_Discriminal_Record_Constraint return List_Id;
-- Similar to previous one, for discriminated components constrained
-- by the discriminant of the enclosing object.
----------------------------------------
-- Build_Discriminal_Array_Constraint --
----------------------------------------
function Build_Discriminal_Array_Constraint return List_Id is
Constraints : constant List_Id := New_List;
Indx : Node_Id;
Hi : Node_Id;
Lo : Node_Id;
Old_Hi : Node_Id;
Old_Lo : Node_Id;
begin
Indx := First_Index (T);
while Present (Indx) loop
Old_Lo := Type_Low_Bound (Etype (Indx));
Old_Hi := Type_High_Bound (Etype (Indx));
if Denotes_Discriminant (Old_Lo) then
Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
else
Lo := New_Copy_Tree (Old_Lo);
end if;
if Denotes_Discriminant (Old_Hi) then
Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
else
Hi := New_Copy_Tree (Old_Hi);
end if;
Append (Make_Range (Loc, Lo, Hi), Constraints);
Next_Index (Indx);
end loop;
return Constraints;
end Build_Discriminal_Array_Constraint;
-----------------------------------------
-- Build_Discriminal_Record_Constraint --
-----------------------------------------
function Build_Discriminal_Record_Constraint return List_Id is
Constraints : constant List_Id := New_List;
D : Elmt_Id;
D_Val : Node_Id;
begin
D := First_Elmt (Discriminant_Constraint (T));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
D_Val :=
New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
else
D_Val := New_Copy_Tree (Node (D));
end if;
Append (D_Val, Constraints);
Next_Elmt (D);
end loop;
return Constraints;
end Build_Discriminal_Record_Constraint;
-- Start of processing for Build_Discriminal_Subtype_Of_Component
begin
if Ekind (T) = E_Array_Subtype then
Id := First_Index (T);
while Present (Id) loop
if Denotes_Discriminant (Type_Low_Bound (Etype (Id))) or else
Denotes_Discriminant (Type_High_Bound (Etype (Id)))
then
return Build_Component_Subtype
(Build_Discriminal_Array_Constraint, Loc, T);
end if;
Next_Index (Id);
end loop;
elsif Ekind (T) = E_Record_Subtype
and then Has_Discriminants (T)
and then not Has_Unknown_Discriminants (T)
then
D := First_Elmt (Discriminant_Constraint (T));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
return Build_Component_Subtype
(Build_Discriminal_Record_Constraint, Loc, T);
end if;
Next_Elmt (D);
end loop;
end if;
-- If none of the above, the actual and nominal subtypes are the same
return Empty;
end Build_Discriminal_Subtype_Of_Component;
------------------------------
-- Build_Elaboration_Entity --
------------------------------
procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Unum : constant Unit_Number_Type := Get_Source_Unit (Loc);
Decl : Node_Id;
P : Natural;
Elab_Ent : Entity_Id;
begin
-- Ignore if already constructed
if Present (Elaboration_Entity (Spec_Id)) then
return;
end if;
-- Construct name of elaboration entity as xxx_E, where xxx
-- is the unit name with dots replaced by double underscore.
-- We have to manually construct this name, since it will
-- be elaborated in the outer scope, and thus will not have
-- the unit name automatically prepended.
Get_Name_String (Unit_Name (Unum));
-- Replace the %s by _E
Name_Buffer (Name_Len - 1 .. Name_Len) := "_E";
-- Replace dots by double underscore
P := 2;
while P < Name_Len - 2 loop
if Name_Buffer (P) = '.' then
Name_Buffer (P + 2 .. Name_Len + 1) :=
Name_Buffer (P + 1 .. Name_Len);
Name_Len := Name_Len + 1;
Name_Buffer (P) := '_';
Name_Buffer (P + 1) := '_';
P := P + 3;
else
P := P + 1;
end if;
end loop;
-- Create elaboration flag
Elab_Ent :=
Make_Defining_Identifier (Loc, Chars => Name_Find);
Set_Elaboration_Entity (Spec_Id, Elab_Ent);
if No (Declarations (Aux_Decls_Node (N))) then
Set_Declarations (Aux_Decls_Node (N), New_List);
end if;
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Elab_Ent,
Object_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc),
Expression =>
New_Occurrence_Of (Standard_False, Loc));
Append_To (Declarations (Aux_Decls_Node (N)), Decl);
Analyze (Decl);
-- Reset True_Constant indication, since we will indeed
-- assign a value to the variable in the binder main.
Set_Is_True_Constant (Elab_Ent, False);
Set_Current_Value (Elab_Ent, Empty);
-- We do not want any further qualification of the name (if we did
-- not do this, we would pick up the name of the generic package
-- in the case of a library level generic instantiation).
Set_Has_Qualified_Name (Elab_Ent);
Set_Has_Fully_Qualified_Name (Elab_Ent);
end Build_Elaboration_Entity;
-----------------------------------
-- Cannot_Raise_Constraint_Error --
-----------------------------------
function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
begin
if Compile_Time_Known_Value (Expr) then
return True;
elsif Do_Range_Check (Expr) then
return False;
elsif Raises_Constraint_Error (Expr) then
return False;
else
case Nkind (Expr) is
when N_Identifier =>
return True;
when N_Expanded_Name =>
return True;
when N_Selected_Component =>
return not Do_Discriminant_Check (Expr);
when N_Attribute_Reference =>
if Do_Overflow_Check (Expr) then
return False;
elsif No (Expressions (Expr)) then
return True;
else
declare
N : Node_Id := First (Expressions (Expr));
begin
while Present (N) loop
if Cannot_Raise_Constraint_Error (N) then
Next (N);
else
return False;
end if;
end loop;
return True;
end;
end if;
when N_Type_Conversion =>
if Do_Overflow_Check (Expr)
or else Do_Length_Check (Expr)
or else Do_Tag_Check (Expr)
then
return False;
else
return
Cannot_Raise_Constraint_Error (Expression (Expr));
end if;
when N_Unchecked_Type_Conversion =>
return Cannot_Raise_Constraint_Error (Expression (Expr));
when N_Unary_Op =>
if Do_Overflow_Check (Expr) then
return False;
else
return
Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
end if;
when N_Op_Divide |
N_Op_Mod |
N_Op_Rem
=>
if Do_Division_Check (Expr)
or else Do_Overflow_Check (Expr)
then
return False;
else
return
Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
and then
Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
end if;
when N_Op_Add |
N_Op_And |
N_Op_Concat |
N_Op_Eq |
N_Op_Expon |
N_Op_Ge |
N_Op_Gt |
N_Op_Le |
N_Op_Lt |
N_Op_Multiply |
N_Op_Ne |
N_Op_Or |
N_Op_Rotate_Left |
N_Op_Rotate_Right |
N_Op_Shift_Left |
N_Op_Shift_Right |
N_Op_Shift_Right_Arithmetic |
N_Op_Subtract |
N_Op_Xor
=>
if Do_Overflow_Check (Expr) then
return False;
else
return
Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
and then
Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
end if;
when others =>
return False;
end case;
end if;
end Cannot_Raise_Constraint_Error;
--------------------------
-- Check_Fully_Declared --
--------------------------
procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
begin
if Ekind (T) = E_Incomplete_Type then
-- Ada 2005 (AI-50217): If the type is available through a limited
-- with_clause, verify that its full view has been analyzed.
if From_With_Type (T)
and then Present (Non_Limited_View (T))
and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
then
-- The non-limited view is fully declared
null;
else
Error_Msg_NE
("premature usage of incomplete}", N, First_Subtype (T));
end if;
elsif Has_Private_Component (T)
and then not Is_Generic_Type (Root_Type (T))
and then not In_Default_Expression
then
-- Special case: if T is the anonymous type created for a single
-- task or protected object, use the name of the source object.
if Is_Concurrent_Type (T)
and then not Comes_From_Source (T)
and then Nkind (N) = N_Object_Declaration
then
Error_Msg_NE ("type of& has incomplete component", N,
Defining_Identifier (N));
else
Error_Msg_NE
("premature usage of incomplete}", N, First_Subtype (T));
end if;
end if;
end Check_Fully_Declared;
-----------------------
-- Check_Obsolescent --
-----------------------
procedure Check_Obsolescent (Nam : Entity_Id; N : Node_Id) is
W : Node_Id;
begin
-- Note that we always allow obsolescent references in the compiler
-- itself and the run time, since we assume that we know what we are
-- doing in such cases. For example the calls in Ada.Characters.Handling
-- to its own obsolescent subprograms are just fine.
if Is_Obsolescent (Nam) and then not GNAT_Mode then
Check_Restriction (No_Obsolescent_Features, N);
if Warn_On_Obsolescent_Feature then
if Is_Package_Or_Generic_Package (Nam) then
Error_Msg_NE ("with of obsolescent package&?", N, Nam);
else
Error_Msg_NE ("call to obsolescent subprogram&?", N, Nam);
end if;
-- Output additional warning if present
W := Obsolescent_Warning (Nam);
if Present (W) then
Name_Buffer (1) := '|';
Name_Buffer (2) := '?';
Name_Len := 2;
-- Add characters to message, and output message
for J in 1 .. String_Length (Strval (W)) loop
Add_Char_To_Name_Buffer (''');
Add_Char_To_Name_Buffer
(Get_Character (Get_String_Char (Strval (W), J)));
end loop;
Error_Msg_N (Name_Buffer (1 .. Name_Len), N);
end if;
end if;
end if;
end Check_Obsolescent;
------------------------------------------
-- Check_Potentially_Blocking_Operation --
------------------------------------------
procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
S : Entity_Id;
begin
-- N is one of the potentially blocking operations listed in 9.5.1(8).
-- When pragma Detect_Blocking is active, the run time will raise
-- Program_Error. Here we only issue a warning, since we generally
-- support the use of potentially blocking operations in the absence
-- of the pragma.
-- Indirect blocking through a subprogram call cannot be diagnosed
-- statically without interprocedural analysis, so we do not attempt
-- to do it here.
S := Scope (Current_Scope);
while Present (S) and then S /= Standard_Standard loop
if Is_Protected_Type (S) then
Error_Msg_N
("potentially blocking operation in protected operation?", N);
return;
end if;
S := Scope (S);
end loop;
end Check_Potentially_Blocking_Operation;
---------------
-- Check_VMS --
---------------
procedure Check_VMS (Construct : Node_Id) is
begin
if not OpenVMS_On_Target then
Error_Msg_N
("this construct is allowed only in Open'V'M'S", Construct);
end if;
end Check_VMS;
----------------------------------
-- Collect_Primitive_Operations --
----------------------------------
function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
B_Type : constant Entity_Id := Base_Type (T);
B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
B_Scope : Entity_Id := Scope (B_Type);
Op_List : Elist_Id;
Formal : Entity_Id;
Is_Prim : Boolean;
Formal_Derived : Boolean := False;
Id : Entity_Id;
begin
-- For tagged types, the primitive operations are collected as they
-- are declared, and held in an explicit list which is simply returned.
if Is_Tagged_Type (B_Type) then
return Primitive_Operations (B_Type);
-- An untagged generic type that is a derived type inherits the
-- primitive operations of its parent type. Other formal types only
-- have predefined operators, which are not explicitly represented.
elsif Is_Generic_Type (B_Type) then
if Nkind (B_Decl) = N_Formal_Type_Declaration
and then Nkind (Formal_Type_Definition (B_Decl))
= N_Formal_Derived_Type_Definition
then
Formal_Derived := True;
else
return New_Elmt_List;
end if;
end if;
Op_List := New_Elmt_List;
if B_Scope = Standard_Standard then
if B_Type = Standard_String then
Append_Elmt (Standard_Op_Concat, Op_List);
elsif B_Type = Standard_Wide_String then
Append_Elmt (Standard_Op_Concatw, Op_List);
else
null;
end if;
elsif (Is_Package_Or_Generic_Package (B_Scope)
and then
Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
N_Package_Body)
or else Is_Derived_Type (B_Type)
then
-- The primitive operations appear after the base type, except
-- if the derivation happens within the private part of B_Scope
-- and the type is a private type, in which case both the type
-- and some primitive operations may appear before the base
-- type, and the list of candidates starts after the type.
if In_Open_Scopes (B_Scope)
and then Scope (T) = B_Scope
and then In_Private_Part (B_Scope)
then
Id := Next_Entity (T);
else
Id := Next_Entity (B_Type);
end if;
while Present (Id) loop
-- Note that generic formal subprograms are not
-- considered to be primitive operations and thus
-- are never inherited.
if Is_Overloadable (Id)
and then Nkind (Parent (Parent (Id)))
not in N_Formal_Subprogram_Declaration
then
Is_Prim := False;
if Base_Type (Etype (Id)) = B_Type then
Is_Prim := True;
else
Formal := First_Formal (Id);
while Present (Formal) loop
if Base_Type (Etype (Formal)) = B_Type then
Is_Prim := True;
exit;
elsif Ekind (Etype (Formal)) = E_Anonymous_Access_Type
and then Base_Type
(Designated_Type (Etype (Formal))) = B_Type
then
Is_Prim := True;
exit;
end if;
Next_Formal (Formal);
end loop;
end if;
-- For a formal derived type, the only primitives are the
-- ones inherited from the parent type. Operations appearing
-- in the package declaration are not primitive for it.
if Is_Prim
and then (not Formal_Derived
or else Present (Alias (Id)))
then
Append_Elmt (Id, Op_List);
end if;
end if;
Next_Entity (Id);
-- For a type declared in System, some of its operations
-- may appear in the target-specific extension to System.
if No (Id)
and then Chars (B_Scope) = Name_System
and then Scope (B_Scope) = Standard_Standard
and then Present_System_Aux
then
B_Scope := System_Aux_Id;
Id := First_Entity (System_Aux_Id);
end if;
end loop;
end if;
return Op_List;
end Collect_Primitive_Operations;
-----------------------------------
-- Compile_Time_Constraint_Error --
-----------------------------------
function Compile_Time_Constraint_Error
(N : Node_Id;
Msg : String;
Ent : Entity_Id := Empty;
Loc : Source_Ptr := No_Location;
Warn : Boolean := False) return Node_Id
is
Msgc : String (1 .. Msg'Length + 2);
Msgl : Natural;
Wmsg : Boolean;
P : Node_Id;
OldP : Node_Id;
Msgs : Boolean;
Eloc : Source_Ptr;
begin
-- A static constraint error in an instance body is not a fatal error.
-- we choose to inhibit the message altogether, because there is no
-- obvious node (for now) on which to post it. On the other hand the
-- offending node must be replaced with a constraint_error in any case.
-- No messages are generated if we already posted an error on this node
if not Error_Posted (N) then
if Loc /= No_Location then
Eloc := Loc;
else
Eloc := Sloc (N);
end if;
-- Make all such messages unconditional
Msgc (1 .. Msg'Length) := Msg;
Msgc (Msg'Length + 1) := '!';
Msgl := Msg'Length + 1;
-- Message is a warning, even in Ada 95 case
-- LLVM local
if Msg (Msg'Last) = '?' then
Wmsg := True;
-- In Ada 83, all messages are warnings. In the private part and
-- the body of an instance, constraint_checks are only warnings.
-- We also make this a warning if the Warn parameter is set.
elsif Warn
or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
then
Msgl := Msgl + 1;
Msgc (Msgl) := '?';
Wmsg := True;
elsif In_Instance_Not_Visible then
Msgl := Msgl + 1;
Msgc (Msgl) := '?';
Wmsg := True;
-- Otherwise we have a real error message (Ada 95 static case)
else
Wmsg := False;
end if;
-- Should we generate a warning? The answer is not quite yes. The
-- very annoying exception occurs in the case of a short circuit
-- operator where the left operand is static and decisive. Climb
-- parents to see if that is the case we have here. Conditional
-- expressions with decisive conditions are a similar situation.
Msgs := True;
P := N;
loop
OldP := P;
P := Parent (P);
-- And then with False as left operand
if Nkind (P) = N_And_Then
and then Compile_Time_Known_Value (Left_Opnd (P))
and then Is_False (Expr_Value (Left_Opnd (P)))
then
Msgs := False;
exit;
-- OR ELSE with True as left operand
elsif Nkind (P) = N_Or_Else
and then Compile_Time_Known_Value (Left_Opnd (P))
and then Is_True (Expr_Value (Left_Opnd (P)))
then
Msgs := False;
exit;
-- Conditional expression
elsif Nkind (P) = N_Conditional_Expression then
declare
Cond : constant Node_Id := First (Expressions (P));
Texp : constant Node_Id := Next (Cond);
Fexp : constant Node_Id := Next (Texp);
begin
if Compile_Time_Known_Value (Cond) then
-- Condition is True and we are in the right operand
if Is_True (Expr_Value (Cond))
and then OldP = Fexp
then
Msgs := False;
exit;
-- Condition is False and we are in the left operand
elsif Is_False (Expr_Value (Cond))
and then OldP = Texp
then
Msgs := False;
exit;
end if;
end if;
end;
-- Special case for component association in aggregates, where
-- we want to keep climbing up to the parent aggregate.
elsif Nkind (P) = N_Component_Association
and then Nkind (Parent (P)) = N_Aggregate
then
null;
-- Keep going if within subexpression
else
exit when Nkind (P) not in N_Subexpr;
end if;
end loop;
if Msgs then
if Present (Ent) then
Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
else
Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
end if;
if Wmsg then
if Inside_Init_Proc then
Error_Msg_NEL
("\?& will be raised for objects of this type",
N, Standard_Constraint_Error, Eloc);
else
Error_Msg_NEL
("\?& will be raised at run time",
N, Standard_Constraint_Error, Eloc);
end if;
else
Error_Msg_NEL
("\static expression raises&!",
N, Standard_Constraint_Error, Eloc);
end if;
end if;
end if;
return N;
end Compile_Time_Constraint_Error;
-----------------------
-- Conditional_Delay --
-----------------------
procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
begin
if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
Set_Has_Delayed_Freeze (New_Ent);
end if;
end Conditional_Delay;
--------------------
-- Current_Entity --
--------------------
-- The currently visible definition for a given identifier is the
-- one most chained at the start of the visibility chain, i.e. the
-- one that is referenced by the Node_Id value of the name of the
-- given identifier.
function Current_Entity (N : Node_Id) return Entity_Id is
begin
return Get_Name_Entity_Id (Chars (N));
end Current_Entity;
-----------------------------
-- Current_Entity_In_Scope --
-----------------------------
function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
E : Entity_Id;
CS : constant Entity_Id := Current_Scope;
Transient_Case : constant Boolean := Scope_Is_Transient;
begin
E := Get_Name_Entity_Id (Chars (N));
while Present (E)
and then Scope (E) /= CS
and then (not Transient_Case or else Scope (E) /= Scope (CS))
loop
E := Homonym (E);
end loop;
return E;
end Current_Entity_In_Scope;
-------------------
-- Current_Scope --
-------------------
function Current_Scope return Entity_Id is
begin
if Scope_Stack.Last = -1 then
return Standard_Standard;
else
declare
C : constant Entity_Id :=
Scope_Stack.Table (Scope_Stack.Last).Entity;
begin
if Present (C) then
return C;
else
return Standard_Standard;
end if;
end;
end if;
end Current_Scope;
------------------------
-- Current_Subprogram --
------------------------
function Current_Subprogram return Entity_Id is
Scop : constant Entity_Id := Current_Scope;
begin
if Is_Subprogram (Scop) or else Is_Generic_Subprogram (Scop) then
return Scop;
else
return Enclosing_Subprogram (Scop);
end if;
end Current_Subprogram;
---------------------
-- Defining_Entity --
---------------------
function Defining_Entity (N : Node_Id) return Entity_Id is
K : constant Node_Kind := Nkind (N);
Err : Entity_Id := Empty;
begin
case K is
when
N_Subprogram_Declaration |
N_Abstract_Subprogram_Declaration |
N_Subprogram_Body |
N_Package_Declaration |
N_Subprogram_Renaming_Declaration |
N_Subprogram_Body_Stub |
N_Generic_Subprogram_Declaration |
N_Generic_Package_Declaration |
N_Formal_Subprogram_Declaration
=>
return Defining_Entity (Specification (N));
when
N_Component_Declaration |
N_Defining_Program_Unit_Name |
N_Discriminant_Specification |
N_Entry_Body |
N_Entry_Declaration |
N_Entry_Index_Specification |
N_Exception_Declaration |
N_Exception_Renaming_Declaration |
N_Formal_Object_Declaration |
N_Formal_Package_Declaration |
N_Formal_Type_Declaration |
N_Full_Type_Declaration |
N_Implicit_Label_Declaration |
N_Incomplete_Type_Declaration |
N_Loop_Parameter_Specification |
N_Number_Declaration |
N_Object_Declaration |
N_Object_Renaming_Declaration |
N_Package_Body_Stub |
N_Parameter_Specification |
N_Private_Extension_Declaration |
N_Private_Type_Declaration |
N_Protected_Body |
N_Protected_Body_Stub |
N_Protected_Type_Declaration |
N_Single_Protected_Declaration |
N_Single_Task_Declaration |
N_Subtype_Declaration |
N_Task_Body |
N_Task_Body_Stub |
N_Task_Type_Declaration
=>
return Defining_Identifier (N);
when N_Subunit =>
return Defining_Entity (Proper_Body (N));
when
N_Function_Instantiation |
N_Function_Specification |
N_Generic_Function_Renaming_Declaration |
N_Generic_Package_Renaming_Declaration |
N_Generic_Procedure_Renaming_Declaration |
N_Package_Body |
N_Package_Instantiation |
N_Package_Renaming_Declaration |
N_Package_Specification |
N_Procedure_Instantiation |
N_Procedure_Specification
=>
declare
Nam : constant Node_Id := Defining_Unit_Name (N);
begin
if Nkind (Nam) in N_Entity then
return Nam;
-- For Error, make up a name and attach to declaration
-- so we can continue semantic analysis
elsif Nam = Error then
Err :=
Make_Defining_Identifier (Sloc (N),
Chars => New_Internal_Name ('T'));
Set_Defining_Unit_Name (N, Err);
return Err;
-- If not an entity, get defining identifier
else
return Defining_Identifier (Nam);
end if;
end;
when N_Block_Statement =>
return Entity (Identifier (N));
when others =>
raise Program_Error;
end case;
end Defining_Entity;
--------------------------
-- Denotes_Discriminant --
--------------------------
function Denotes_Discriminant
(N : Node_Id;
Check_Protected : Boolean := False) return Boolean
is
E : Entity_Id;
begin
if not Is_Entity_Name (N)
or else No (Entity (N))
then
return False;
else
E := Entity (N);
end if;
-- If we are checking for a protected type, the discriminant may have
-- been rewritten as the corresponding discriminal of the original type
-- or of the corresponding concurrent record, depending on whether we
-- are in the spec or body of the protected type.
return Ekind (E) = E_Discriminant
or else
(Check_Protected
and then Ekind (E) = E_In_Parameter
and then Present (Discriminal_Link (E))
and then
(Is_Protected_Type (Scope (Discriminal_Link (E)))
or else
Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
end Denotes_Discriminant;
-----------------------------
-- Depends_On_Discriminant --
-----------------------------
function Depends_On_Discriminant (N : Node_Id) return Boolean is
L : Node_Id;
H : Node_Id;
begin
Get_Index_Bounds (N, L, H);
return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
end Depends_On_Discriminant;
-------------------------
-- Designate_Same_Unit --
-------------------------
function Designate_Same_Unit
(Name1 : Node_Id;
Name2 : Node_Id) return Boolean
is
K1 : constant Node_Kind := Nkind (Name1);
K2 : constant Node_Kind := Nkind (Name2);
function Prefix_Node (N : Node_Id) return Node_Id;
-- Returns the parent unit name node of a defining program unit name
-- or the prefix if N is a selected component or an expanded name.
function Select_Node (N : Node_Id) return Node_Id;
-- Returns the defining identifier node of a defining program unit
-- name or the selector node if N is a selected component or an
-- expanded name.
-----------------
-- Prefix_Node --
-----------------
function Prefix_Node (N : Node_Id) return Node_Id is
begin
if Nkind (N) = N_Defining_Program_Unit_Name then
return Name (N);
else
return Prefix (N);
end if;
end Prefix_Node;
-----------------
-- Select_Node --
-----------------
function Select_Node (N : Node_Id) return Node_Id is
begin
if Nkind (N) = N_Defining_Program_Unit_Name then
return Defining_Identifier (N);
else
return Selector_Name (N);
end if;
end Select_Node;
-- Start of processing for Designate_Next_Unit
begin
if (K1 = N_Identifier or else
K1 = N_Defining_Identifier)
and then
(K2 = N_Identifier or else
K2 = N_Defining_Identifier)
then
return Chars (Name1) = Chars (Name2);
elsif
(K1 = N_Expanded_Name or else
K1 = N_Selected_Component or else
K1 = N_Defining_Program_Unit_Name)
and then
(K2 = N_Expanded_Name or else
K2 = N_Selected_Component or else
K2 = N_Defining_Program_Unit_Name)
then
return
(Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
and then
Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
else
return False;
end if;
end Designate_Same_Unit;
----------------------------
-- Enclosing_Generic_Body --
----------------------------
function Enclosing_Generic_Body
(N : Node_Id) return Node_Id
is
P : Node_Id;
Decl : Node_Id;
Spec : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Package_Body
or else Nkind (P) = N_Subprogram_Body
then
Spec := Corresponding_Spec (P);
if Present (Spec) then
Decl := Unit_Declaration_Node (Spec);
if Nkind (Decl) = N_Generic_Package_Declaration
or else Nkind (Decl) = N_Generic_Subprogram_Declaration
then
return P;
end if;
end if;
end if;
P := Parent (P);
end loop;
return Empty;
end Enclosing_Generic_Body;
----------------------------
-- Enclosing_Generic_Unit --
----------------------------
function Enclosing_Generic_Unit
(N : Node_Id) return Node_Id
is
P : Node_Id;
Decl : Node_Id;
Spec : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Generic_Package_Declaration
or else Nkind (P) = N_Generic_Subprogram_Declaration
then
return P;
elsif Nkind (P) = N_Package_Body
or else Nkind (P) = N_Subprogram_Body
then
Spec := Corresponding_Spec (P);
if Present (Spec) then
Decl := Unit_Declaration_Node (Spec);
if Nkind (Decl) = N_Generic_Package_Declaration
or else Nkind (Decl) = N_Generic_Subprogram_Declaration
then
return Decl;
end if;
end if;
end if;
P := Parent (P);
end loop;
return Empty;
end Enclosing_Generic_Unit;
-------------------------------
-- Enclosing_Lib_Unit_Entity --
-------------------------------
function Enclosing_Lib_Unit_Entity return Entity_Id is
Unit_Entity : Entity_Id := Current_Scope;
begin
-- Look for enclosing library unit entity by following scope links.
-- Equivalent to, but faster than indexing through the scope stack.
while (Present (Scope (Unit_Entity))
and then Scope (Unit_Entity) /= Standard_Standard)
and not Is_Child_Unit (Unit_Entity)
loop
Unit_Entity := Scope (Unit_Entity);
end loop;
return Unit_Entity;
end Enclosing_Lib_Unit_Entity;
-----------------------------
-- Enclosing_Lib_Unit_Node --
-----------------------------
function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
Current_Node : Node_Id := N;
begin
while Present (Current_Node)
and then Nkind (Current_Node) /= N_Compilation_Unit
loop
Current_Node := Parent (Current_Node);
end loop;
if Nkind (Current_Node) /= N_Compilation_Unit then
return Empty;
end if;
return Current_Node;
end Enclosing_Lib_Unit_Node;
--------------------------
-- Enclosing_Subprogram --
--------------------------
function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
begin
if Dynamic_Scope = Standard_Standard then
return Empty;
elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
elsif Ekind (Dynamic_Scope) = E_Block then
return Enclosing_Subprogram (Dynamic_Scope);
elsif Ekind (Dynamic_Scope) = E_Task_Type then
return Get_Task_Body_Procedure (Dynamic_Scope);
elsif Convention (Dynamic_Scope) = Convention_Protected then
return Protected_Body_Subprogram (Dynamic_Scope);
else
return Dynamic_Scope;
end if;
end Enclosing_Subprogram;
------------------------
-- Ensure_Freeze_Node --
------------------------
procedure Ensure_Freeze_Node (E : Entity_Id) is
FN : Node_Id;
begin
if No (Freeze_Node (E)) then
FN := Make_Freeze_Entity (Sloc (E));
Set_Has_Delayed_Freeze (E);
Set_Freeze_Node (E, FN);
Set_Access_Types_To_Process (FN, No_Elist);
Set_TSS_Elist (FN, No_Elist);
Set_Entity (FN, E);
end if;
end Ensure_Freeze_Node;
----------------
-- Enter_Name --
----------------
procedure Enter_Name (Def_Id : Entity_Id) is
C : constant Entity_Id := Current_Entity (Def_Id);
E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
S : constant Entity_Id := Current_Scope;
function Is_Private_Component_Renaming (N : Node_Id) return Boolean;
-- Recognize a renaming declaration that is introduced for private
-- components of a protected type. We treat these as weak declarations
-- so that they are overridden by entities with the same name that
-- come from source, such as formals or local variables of a given
-- protected declaration.
-----------------------------------
-- Is_Private_Component_Renaming --
-----------------------------------
function Is_Private_Component_Renaming (N : Node_Id) return Boolean is
begin
return not Comes_From_Source (N)
and then not Comes_From_Source (Current_Scope)
and then Nkind (N) = N_Object_Renaming_Declaration;
end Is_Private_Component_Renaming;
-- Start of processing for Enter_Name
begin
Generate_Definition (Def_Id);
-- Add new name to current scope declarations. Check for duplicate
-- declaration, which may or may not be a genuine error.
if Present (E) then
-- Case of previous entity entered because of a missing declaration
-- or else a bad subtype indication. Best is to use the new entity,
-- and make the previous one invisible.
if Etype (E) = Any_Type then
Set_Is_Immediately_Visible (E, False);
-- Case of renaming declaration constructed for package instances.
-- if there is an explicit declaration with the same identifier,
-- the renaming is not immediately visible any longer, but remains
-- visible through selected component notation.
elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
and then not Comes_From_Source (E)
then
Set_Is_Immediately_Visible (E, False);
-- The new entity may be the package renaming, which has the same
-- same name as a generic formal which has been seen already.
elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
and then not Comes_From_Source (Def_Id)
then
Set_Is_Immediately_Visible (E, False);
-- For a fat pointer corresponding to a remote access to subprogram,
-- we use the same identifier as the RAS type, so that the proper
-- name appears in the stub. This type is only retrieved through
-- the RAS type and never by visibility, and is not added to the
-- visibility list (see below).
elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
and then Present (Corresponding_Remote_Type (Def_Id))
then
null;
-- A controller component for a type extension overrides the
-- inherited component.
elsif Chars (E) = Name_uController then
null;
-- Case of an implicit operation or derived literal. The new entity
-- hides the implicit one, which is removed from all visibility,
-- i.e. the entity list of its scope, and homonym chain of its name.
elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
or else Is_Internal (E)
then
declare
Prev : Entity_Id;
Prev_Vis : Entity_Id;
Decl : constant Node_Id := Parent (E);
begin
-- If E is an implicit declaration, it cannot be the first
-- entity in the scope.
Prev := First_Entity (Current_Scope);
while Present (Prev)
and then Next_Entity (Prev) /= E
loop
Next_Entity (Prev);
end loop;
if No (Prev) then
-- If E is not on the entity chain of the current scope,
-- it is an implicit declaration in the generic formal
-- part of a generic subprogram. When analyzing the body,
-- the generic formals are visible but not on the entity
-- chain of the subprogram. The new entity will become
-- the visible one in the body.
pragma Assert
(Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
null;
else
Set_Next_Entity (Prev, Next_Entity (E));
if No (Next_Entity (Prev)) then
Set_Last_Entity (Current_Scope, Prev);
end if;
if E = Current_Entity (E) then
Prev_Vis := Empty;
else
Prev_Vis := Current_Entity (E);
while Homonym (Prev_Vis) /= E loop
Prev_Vis := Homonym (Prev_Vis);
end loop;
end if;
if Present (Prev_Vis) then
-- Skip E in the visibility chain
Set_Homonym (Prev_Vis, Homonym (E));
else
Set_Name_Entity_Id (Chars (E), Homonym (E));
end if;
end if;
end;
-- This section of code could use a comment ???
elsif Present (Etype (E))
and then Is_Concurrent_Type (Etype (E))
and then E = Def_Id
then
return;
elsif Is_Private_Component_Renaming (Parent (Def_Id)) then
return;
-- In the body or private part of an instance, a type extension
-- may introduce a component with the same name as that of an
-- actual. The legality rule is not enforced, but the semantics
-- of the full type with two components of the same name are not
-- clear at this point ???
elsif In_Instance_Not_Visible then
null;
-- When compiling a package body, some child units may have become
-- visible. They cannot conflict with local entities that hide them.
elsif Is_Child_Unit (E)
and then In_Open_Scopes (Scope (E))
and then not Is_Immediately_Visible (E)
then
null;
-- Conversely, with front-end inlining we may compile the parent
-- body first, and a child unit subsequently. The context is now
-- the parent spec, and body entities are not visible.
elsif Is_Child_Unit (Def_Id)
and then Is_Package_Body_Entity (E)
and then not In_Package_Body (Current_Scope)
then
null;
-- Case of genuine duplicate declaration
else
Error_Msg_Sloc := Sloc (E);
-- If the previous declaration is an incomplete type declaration
-- this may be an attempt to complete it with a private type.
-- The following avoids confusing cascaded errors.
if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
then
Error_Msg_N
("incomplete type cannot be completed" &
" with a private declaration",
Parent (Def_Id));
Set_Is_Immediately_Visible (E, False);
Set_Full_View (E, Def_Id);
elsif Ekind (E) = E_Discriminant
and then Present (Scope (Def_Id))
and then Scope (Def_Id) /= Current_Scope
then
-- An inherited component of a record conflicts with
-- a new discriminant. The discriminant is inserted first
-- in the scope, but the error should be posted on it, not
-- on the component.
Error_Msg_Sloc := Sloc (Def_Id);
Error_Msg_N ("& conflicts with declaration#", E);
return;
-- If the name of the unit appears in its own context clause,
-- a dummy package with the name has already been created, and
-- the error emitted. Try to continue quietly.
elsif Error_Posted (E)
and then Sloc (E) = No_Location
and then Nkind (Parent (E)) = N_Package_Specification
and then Current_Scope = Standard_Standard
then
Set_Scope (Def_Id, Current_Scope);
return;
else
Error_Msg_N ("& conflicts with declaration#", Def_Id);
-- Avoid cascaded messages with duplicate components in
-- derived types.
if Ekind (E) = E_Component
or else Ekind (E) = E_Discriminant
then
return;
end if;
end if;
if Nkind (Parent (Parent (Def_Id)))
= N_Generic_Subprogram_Declaration
and then Def_Id =
Defining_Entity (Specification (Parent (Parent (Def_Id))))
then
Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
end if;
-- If entity is in standard, then we are in trouble, because
-- it means that we have a library package with a duplicated
-- name. That's hard to recover from, so abort!
if S = Standard_Standard then
raise Unrecoverable_Error;
-- Otherwise we continue with the declaration. Having two
-- identical declarations should not cause us too much trouble!
else
null;
end if;
end if;
end if;
-- If we fall through, declaration is OK , or OK enough to continue
-- If Def_Id is a discriminant or a record component we are in the
-- midst of inheriting components in a derived record definition.
-- Preserve their Ekind and Etype.
if Ekind (Def_Id) = E_Discriminant
or else Ekind (Def_Id) = E_Component
then
null;
-- If a type is already set, leave it alone (happens whey a type
-- declaration is reanalyzed following a call to the optimizer)
elsif Present (Etype (Def_Id)) then
null;
-- Otherwise, the kind E_Void insures that premature uses of the entity
-- will be detected. Any_Type insures that no cascaded errors will occur
else
Set_Ekind (Def_Id, E_Void);
Set_Etype (Def_Id, Any_Type);
end if;
-- Inherited discriminants and components in derived record types are
-- immediately visible. Itypes are not.
if Ekind (Def_Id) = E_Discriminant
or else Ekind (Def_Id) = E_Component
or else (No (Corresponding_Remote_Type (Def_Id))
and then not Is_Itype (Def_Id))
then
Set_Is_Immediately_Visible (Def_Id);
Set_Current_Entity (Def_Id);
end if;
Set_Homonym (Def_Id, C);
Append_Entity (Def_Id, S);
Set_Public_Status (Def_Id);
-- Warn if new entity hides an old one
if Warn_On_Hiding
and then Present (C)
and then Length_Of_Name (Chars (C)) /= 1
and then Comes_From_Source (C)
and then Comes_From_Source (Def_Id)
and then In_Extended_Main_Source_Unit (Def_Id)
then
Error_Msg_Sloc := Sloc (C);
Error_Msg_N ("declaration hides &#?", Def_Id);
end if;
end Enter_Name;
--------------------------
-- Explain_Limited_Type --
--------------------------
procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
C : Entity_Id;
begin
-- For array, component type must be limited
if Is_Array_Type (T) then
Error_Msg_Node_2 := T;
Error_Msg_NE
("component type& of type& is limited", N, Component_Type (T));
Explain_Limited_Type (Component_Type (T), N);
elsif Is_Record_Type (T) then
-- No need for extra messages if explicit limited record
if Is_Limited_Record (Base_Type (T)) then
return;
end if;
-- Otherwise find a limited component. Check only components that
-- come from source, or inherited components that appear in the
-- source of the ancestor.
C := First_Component (T);
while Present (C) loop
if Is_Limited_Type (Etype (C))
and then
(Comes_From_Source (C)
or else
(Present (Original_Record_Component (C))
and then
Comes_From_Source (Original_Record_Component (C))))
then
Error_Msg_Node_2 := T;
Error_Msg_NE ("\component& of type& has limited type", N, C);
Explain_Limited_Type (Etype (C), N);
return;
end if;
Next_Component (C);
end loop;
-- The type may be declared explicitly limited, even if no component
-- of it is limited, in which case we fall out of the loop.
return;
end if;
end Explain_Limited_Type;
-------------------------------------
-- Find_Corresponding_Discriminant --
-------------------------------------
function Find_Corresponding_Discriminant
(Id : Node_Id;
Typ : Entity_Id) return Entity_Id
is
Par_Disc : Entity_Id;
Old_Disc : Entity_Id;
New_Disc : Entity_Id;
begin
Par_Disc := Original_Record_Component (Original_Discriminant (Id));
-- The original type may currently be private, and the discriminant
-- only appear on its full view.
if Is_Private_Type (Scope (Par_Disc))
and then not Has_Discriminants (Scope (Par_Disc))
and then Present (Full_View (Scope (Par_Disc)))
then
Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
else
Old_Disc := First_Discriminant (Scope (Par_Disc));
end if;
if Is_Class_Wide_Type (Typ) then
New_Disc := First_Discriminant (Root_Type (Typ));
else
New_Disc := First_Discriminant (Typ);
end if;
while Present (Old_Disc) and then Present (New_Disc) loop
if Old_Disc = Par_Disc then
return New_Disc;
else
Next_Discriminant (Old_Disc);
Next_Discriminant (New_Disc);
end if;
end loop;
-- Should always find it
raise Program_Error;
end Find_Corresponding_Discriminant;
-----------------------------
-- Find_Static_Alternative --
-----------------------------
function Find_Static_Alternative (N : Node_Id) return Node_Id is
Expr : constant Node_Id := Expression (N);
Val : constant Uint := Expr_Value (Expr);
Alt : Node_Id;
Choice : Node_Id;
begin
Alt := First (Alternatives (N));
Search : loop
if Nkind (Alt) /= N_Pragma then
Choice := First (Discrete_Choices (Alt));
while Present (Choice) loop
-- Others choice, always matches
if Nkind (Choice) = N_Others_Choice then
exit Search;
-- Range, check if value is in the range
elsif Nkind (Choice) = N_Range then
exit Search when
Val >= Expr_Value (Low_Bound (Choice))
and then
Val <= Expr_Value (High_Bound (Choice));
-- Choice is a subtype name. Note that we know it must
-- be a static subtype, since otherwise it would have
-- been diagnosed as illegal.
elsif Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
then
exit Search when Is_In_Range (Expr, Etype (Choice));
-- Choice is a subtype indication
elsif Nkind (Choice) = N_Subtype_Indication then
declare
C : constant Node_Id := Constraint (Choice);
R : constant Node_Id := Range_Expression (C);
begin
exit Search when
Val >= Expr_Value (Low_Bound (R))
and then
Val <= Expr_Value (High_Bound (R));
end;
-- Choice is a simple expression
else
exit Search when Val = Expr_Value (Choice);
end if;
Next (Choice);
end loop;
end if;
Next (Alt);
pragma Assert (Present (Alt));
end loop Search;
-- The above loop *must* terminate by finding a match, since
-- we know the case statement is valid, and the value of the
-- expression is known at compile time. When we fall out of
-- the loop, Alt points to the alternative that we know will
-- be selected at run time.
return Alt;
end Find_Static_Alternative;
------------------
-- First_Actual --
------------------
function First_Actual (Node : Node_Id) return Node_Id is
N : Node_Id;
begin
if No (Parameter_Associations (Node)) then
return Empty;
end if;
N := First (Parameter_Associations (Node));
if Nkind (N) = N_Parameter_Association then
return First_Named_Actual (Node);
else
return N;
end if;
end First_Actual;
-------------------------
-- Full_Qualified_Name --
-------------------------
function Full_Qualified_Name (E : Entity_Id) return String_Id is
Res : String_Id;
pragma Warnings (Off, Res);
function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id;
-- Compute recursively the qualified name without NUL at the end
----------------------------------
-- Internal_Full_Qualified_Name --
----------------------------------
function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id is
Ent : Entity_Id := E;
Parent_Name : String_Id := No_String;
begin
-- Deals properly with child units
if Nkind (Ent) = N_Defining_Program_Unit_Name then
Ent := Defining_Identifier (Ent);
end if;
-- Compute qualification recursively (only "Standard" has no scope)
if Present (Scope (Scope (Ent))) then
Parent_Name := Internal_Full_Qualified_Name (Scope (Ent));
end if;
-- Every entity should have a name except some expanded blocks
-- don't bother about those.
if Chars (Ent) = No_Name then
return Parent_Name;
end if;
-- Add a period between Name and qualification
if Parent_Name /= No_String then
Start_String (Parent_Name);
Store_String_Char (Get_Char_Code ('.'));
else
Start_String;
end if;
-- Generates the entity name in upper case
Get_Decoded_Name_String (Chars (Ent));
Set_All_Upper_Case;
Store_String_Chars (Name_Buffer (1 .. Name_Len));
return End_String;
end Internal_Full_Qualified_Name;
-- Start of processing for Full_Qualified_Name
begin
Res := Internal_Full_Qualified_Name (E);
Store_String_Char (Get_Char_Code (ASCII.nul));
return End_String;
end Full_Qualified_Name;
-----------------------
-- Gather_Components --
-----------------------
procedure Gather_Components
(Typ : Entity_Id;
Comp_List : Node_Id;
Governed_By : List_Id;
Into : Elist_Id;
Report_Errors : out Boolean)
is
Assoc : Node_Id;
Variant : Node_Id;
Discrete_Choice : Node_Id;
Comp_Item : Node_Id;
Discrim : Entity_Id;
Discrim_Name : Node_Id;
Discrim_Value : Node_Id;
begin
Report_Errors := False;
if No (Comp_List) or else Null_Present (Comp_List) then
return;
elsif Present (Component_Items (Comp_List)) then
Comp_Item := First (Component_Items (Comp_List));
else
Comp_Item := Empty;
end if;
while Present (Comp_Item) loop
-- Skip the tag of a tagged record, the interface tags, as well
-- as all items that are not user components (anonymous types,
-- rep clauses, Parent field, controller field).
if Nkind (Comp_Item) = N_Component_Declaration then
declare
Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
begin
if not Is_Tag (Comp)
and then Chars (Comp) /= Name_uParent
and then Chars (Comp) /= Name_uController
then
Append_Elmt (Comp, Into);
end if;
end;
end if;
Next (Comp_Item);
end loop;
if No (Variant_Part (Comp_List)) then
return;
else
Discrim_Name := Name (Variant_Part (Comp_List));
Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
end if;
-- Look for the discriminant that governs this variant part.
-- The discriminant *must* be in the Governed_By List
Assoc := First (Governed_By);
Find_Constraint : loop
Discrim := First (Choices (Assoc));
exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
or else (Present (Corresponding_Discriminant (Entity (Discrim)))
and then
Chars (Corresponding_Discriminant (Entity (Discrim)))
= Chars (Discrim_Name))
or else Chars (Original_Record_Component (Entity (Discrim)))
= Chars (Discrim_Name);
if No (Next (Assoc)) then
if not Is_Constrained (Typ)
and then Is_Derived_Type (Typ)
and then Present (Stored_Constraint (Typ))
then
-- If the type is a tagged type with inherited discriminants,
-- use the stored constraint on the parent in order to find
-- the values of discriminants that are otherwise hidden by an
-- explicit constraint. Renamed discriminants are handled in
-- the code above.
-- If several parent discriminants are renamed by a single
-- discriminant of the derived type, the call to obtain the
-- Corresponding_Discriminant field only retrieves the last
-- of them. We recover the constraint on the others from the
-- Stored_Constraint as well.
declare
D : Entity_Id;
C : Elmt_Id;
begin
D := First_Discriminant (Etype (Typ));
C := First_Elmt (Stored_Constraint (Typ));
while Present (D)
and then Present (C)
loop
if Chars (Discrim_Name) = Chars (D) then
if Is_Entity_Name (Node (C))
and then Entity (Node (C)) = Entity (Discrim)
then
-- D is renamed by Discrim, whose value is
-- given in Assoc.
null;
else
Assoc :=
Make_Component_Association (Sloc (Typ),
New_List
(New_Occurrence_Of (D, Sloc (Typ))),
Duplicate_Subexpr_No_Checks (Node (C)));
end if;
exit Find_Constraint;
end if;
D := Next_Discriminant (D);
Next_Elmt (C);
end loop;
end;
end if;
end if;
if No (Next (Assoc)) then
Error_Msg_NE (" missing value for discriminant&",
First (Governed_By), Discrim_Name);
Report_Errors := True;
return;
end if;
Next (Assoc);
end loop Find_Constraint;
Discrim_Value := Expression (Assoc);
if not Is_OK_Static_Expression (Discrim_Value) then
Error_Msg_FE
("value for discriminant & must be static!",
Discrim_Value, Discrim);
Why_Not_Static (Discrim_Value);
Report_Errors := True;
return;
end if;
Search_For_Discriminant_Value : declare
Low : Node_Id;
High : Node_Id;
UI_High : Uint;
UI_Low : Uint;
UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
begin
Find_Discrete_Value : while Present (Variant) loop
Discrete_Choice := First (Discrete_Choices (Variant));
while Present (Discrete_Choice) loop
exit Find_Discrete_Value when
Nkind (Discrete_Choice) = N_Others_Choice;
Get_Index_Bounds (Discrete_Choice, Low, High);
UI_Low := Expr_Value (Low);
UI_High := Expr_Value (High);
exit Find_Discrete_Value when
UI_Low <= UI_Discrim_Value
and then
UI_High >= UI_Discrim_Value;
Next (Discrete_Choice);
end loop;
Next_Non_Pragma (Variant);
end loop Find_Discrete_Value;
end Search_For_Discriminant_Value;
if No (Variant) then
Error_Msg_NE
("value of discriminant & is out of range", Discrim_Value, Discrim);
Report_Errors := True;
return;
end if;
-- If we have found the corresponding choice, recursively add its
-- components to the Into list.
Gather_Components (Empty,
Component_List (Variant), Governed_By, Into, Report_Errors);
end Gather_Components;
------------------------
-- Get_Actual_Subtype --
------------------------
function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
Typ : constant Entity_Id := Etype (N);
Utyp : Entity_Id := Underlying_Type (Typ);
Decl : Node_Id;
Atyp : Entity_Id;
begin
if No (Utyp) then
Utyp := Typ;
end if;
-- If what we have is an identifier that references a subprogram
-- formal, or a variable or constant object, then we get the actual
-- subtype from the referenced entity if one has been built.
if Nkind (N) = N_Identifier
and then
(Is_Formal (Entity (N))
or else Ekind (Entity (N)) = E_Constant
or else Ekind (Entity (N)) = E_Variable)
and then Present (Actual_Subtype (Entity (N)))
then
return Actual_Subtype (Entity (N));
-- Actual subtype of unchecked union is always itself. We never need
-- the "real" actual subtype. If we did, we couldn't get it anyway
-- because the discriminant is not available. The restrictions on
-- Unchecked_Union are designed to make sure that this is OK.
elsif Is_Unchecked_Union (Base_Type (Utyp)) then
return Typ;
-- Here for the unconstrained case, we must find actual subtype
-- No actual subtype is available, so we must build it on the fly.
-- Checking the type, not the underlying type, for constrainedness
-- seems to be necessary. Maybe all the tests should be on the type???
elsif (not Is_Constrained (Typ))
and then (Is_Array_Type (Utyp)
or else (Is_Record_Type (Utyp)
and then Has_Discriminants (Utyp)))
and then not Has_Unknown_Discriminants (Utyp)
and then not (Ekind (Utyp) = E_String_Literal_Subtype)
then
-- Nothing to do if in default expression
if In_Default_Expression then
return Typ;
elsif Is_Private_Type (Typ)
and then not Has_Discriminants (Typ)
then
-- If the type has no discriminants, there is no subtype to
-- build, even if the underlying type is discriminated.
return Typ;
-- Else build the actual subtype
else
Decl := Build_Actual_Subtype (Typ, N);
Atyp := Defining_Identifier (Decl);
-- If Build_Actual_Subtype generated a new declaration then use it
if Atyp /= Typ then
-- The actual subtype is an Itype, so analyze the declaration,
-- but do not attach it to the tree, to get the type defined.
Set_Parent (Decl, N);
Set_Is_Itype (Atyp);
Analyze (Decl, Suppress => All_Checks);
Set_Associated_Node_For_Itype (Atyp, N);
Set_Has_Delayed_Freeze (Atyp, False);
-- We need to freeze the actual subtype immediately. This is
-- needed, because otherwise this Itype will not get frozen
-- at all, and it is always safe to freeze on creation because
-- any associated types must be frozen at this point.
Freeze_Itype (Atyp, N);
return Atyp;
-- Otherwise we did not build a declaration, so return original
else
return Typ;
end if;
end if;
-- For all remaining cases, the actual subtype is the same as
-- the nominal type.
else
return Typ;
end if;
end Get_Actual_Subtype;
-------------------------------------
-- Get_Actual_Subtype_If_Available --
-------------------------------------
function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
Typ : constant Entity_Id := Etype (N);
begin
-- If what we have is an identifier that references a subprogram
-- formal, or a variable or constant object, then we get the actual
-- subtype from the referenced entity if one has been built.
if Nkind (N) = N_Identifier
and then
(Is_Formal (Entity (N))
or else Ekind (Entity (N)) = E_Constant
or else Ekind (Entity (N)) = E_Variable)
and then Present (Actual_Subtype (Entity (N)))
then
return Actual_Subtype (Entity (N));
-- Otherwise the Etype of N is returned unchanged
else
return Typ;
end if;
end Get_Actual_Subtype_If_Available;
-------------------------------
-- Get_Default_External_Name --
-------------------------------
function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
begin
Get_Decoded_Name_String (Chars (E));
if Opt.External_Name_Imp_Casing = Uppercase then
Set_Casing (All_Upper_Case);
else
Set_Casing (All_Lower_Case);
end if;
return
Make_String_Literal (Sloc (E),
Strval => String_From_Name_Buffer);
end Get_Default_External_Name;
---------------------------
-- Get_Enum_Lit_From_Pos --
---------------------------
function Get_Enum_Lit_From_Pos
(T : Entity_Id;
Pos : Uint;
Loc : Source_Ptr) return Node_Id
is
Lit : Node_Id;
begin
-- In the case where the literal is of type Character, Wide_Character
-- or Wide_Wide_Character or of a type derived from them, there needs
-- to be some special handling since there is no explicit chain of
-- literals to search. Instead, an N_Character_Literal node is created
-- with the appropriate Char_Code and Chars fields.
if Root_Type (T) = Standard_Character
or else Root_Type (T) = Standard_Wide_Character
or else Root_Type (T) = Standard_Wide_Wide_Character
then
Set_Character_Literal_Name (UI_To_CC (Pos));
return
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => Pos);
-- For all other cases, we have a complete table of literals, and
-- we simply iterate through the chain of literal until the one
-- with the desired position value is found.
--
else
Lit := First_Literal (Base_Type (T));
for J in 1 .. UI_To_Int (Pos) loop
Next_Literal (Lit);
end loop;
return New_Occurrence_Of (Lit, Loc);
end if;
end Get_Enum_Lit_From_Pos;
------------------------
-- Get_Generic_Entity --
------------------------
function Get_Generic_Entity (N : Node_Id) return Entity_Id is
Ent : constant Entity_Id := Entity (Name (N));
begin
if Present (Renamed_Object (Ent)) then
return Renamed_Object (Ent);
else
return Ent;
end if;
end Get_Generic_Entity;
----------------------
-- Get_Index_Bounds --
----------------------
procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
Kind : constant Node_Kind := Nkind (N);
R : Node_Id;
begin
if Kind = N_Range then
L := Low_Bound (N);
H := High_Bound (N);
elsif Kind = N_Subtype_Indication then
R := Range_Expression (Constraint (N));
if R = Error then
L := Error;
H := Error;
return;
else
L := Low_Bound (Range_Expression (Constraint (N)));
H := High_Bound (Range_Expression (Constraint (N)));
end if;
elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
if Error_Posted (Scalar_Range (Entity (N))) then
L := Error;
H := Error;
elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
else
L := Low_Bound (Scalar_Range (Entity (N)));
H := High_Bound (Scalar_Range (Entity (N)));
end if;
else
-- N is an expression, indicating a range with one value
L := N;
H := N;
end if;
end Get_Index_Bounds;
----------------------------------
-- Get_Library_Unit_Name_string --
----------------------------------
procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
begin
Get_Unit_Name_String (Unit_Name_Id);
-- Remove seven last character (" (spec)" or " (body)")
Name_Len := Name_Len - 7;
pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
end Get_Library_Unit_Name_String;
------------------------
-- Get_Name_Entity_Id --
------------------------
function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
begin
return Entity_Id (Get_Name_Table_Info (Id));
end Get_Name_Entity_Id;
---------------------------
-- Get_Referenced_Object --
---------------------------
function Get_Referenced_Object (N : Node_Id) return Node_Id is
R : Node_Id := N;
begin
while Is_Entity_Name (R)
and then Present (Renamed_Object (Entity (R)))
loop
R := Renamed_Object (Entity (R));
end loop;
return R;
end Get_Referenced_Object;
-------------------------
-- Get_Subprogram_Body --
-------------------------
function Get_Subprogram_Body (E : Entity_Id) return Node_Id is
Decl : Node_Id;
begin
Decl := Unit_Declaration_Node (E);
if Nkind (Decl) = N_Subprogram_Body then
return Decl;
-- The below comment is bad, because it is possible for
-- Nkind (Decl) to be an N_Subprogram_Body_Stub ???
else -- Nkind (Decl) = N_Subprogram_Declaration
if Present (Corresponding_Body (Decl)) then
return Unit_Declaration_Node (Corresponding_Body (Decl));
-- Imported subprogram case
else
return Empty;
end if;
end if;
end Get_Subprogram_Body;
-----------------------------
-- Get_Task_Body_Procedure --
-----------------------------
function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
begin
-- Note: A task type may be the completion of a private type with
-- discriminants. when performing elaboration checks on a task
-- declaration, the current view of the type may be the private one,
-- and the procedure that holds the body of the task is held in its
-- underlying type.
return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
end Get_Task_Body_Procedure;
-----------------------
-- Has_Access_Values --
-----------------------
function Has_Access_Values (T : Entity_Id) return Boolean is
Typ : constant Entity_Id := Underlying_Type (T);
begin
-- Case of a private type which is not completed yet. This can only
-- happen in the case of a generic format type appearing directly, or
-- as a component of the type to which this function is being applied
-- at the top level. Return False in this case, since we certainly do
-- not know that the type contains access types.
if No (Typ) then
return False;
elsif Is_Access_Type (Typ) then
return True;
elsif Is_Array_Type (Typ) then
return Has_Access_Values (Component_Type (Typ));
elsif Is_Record_Type (Typ) then
declare
Comp : Entity_Id;
begin
Comp := First_Entity (Typ);
while Present (Comp) loop
if (Ekind (Comp) = E_Component
or else
Ekind (Comp) = E_Discriminant)
and then Has_Access_Values (Etype (Comp))
then
return True;
end if;
Next_Entity (Comp);
end loop;
end;
return False;
else
return False;
end if;
end Has_Access_Values;
----------------------
-- Has_Declarations --
----------------------
function Has_Declarations (N : Node_Id) return Boolean is
K : constant Node_Kind := Nkind (N);
begin
return K = N_Accept_Statement
or else K = N_Block_Statement
or else K = N_Compilation_Unit_Aux
or else K = N_Entry_Body
or else K = N_Package_Body
or else K = N_Protected_Body
or else K = N_Subprogram_Body
or else K = N_Task_Body
or else K = N_Package_Specification;
end Has_Declarations;
-------------------------------------------
-- Has_Discriminant_Dependent_Constraint --
-------------------------------------------
function Has_Discriminant_Dependent_Constraint
(Comp : Entity_Id) return Boolean
is
Comp_Decl : constant Node_Id := Parent (Comp);
Subt_Indic : constant Node_Id :=
Subtype_Indication (Component_Definition (Comp_Decl));
Constr : Node_Id;
Assn : Node_Id;
begin
if Nkind (Subt_Indic) = N_Subtype_Indication then
Constr := Constraint (Subt_Indic);
if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
Assn := First (Constraints (Constr));
while Present (Assn) loop
case Nkind (Assn) is
when N_Subtype_Indication |
N_Range |
N_Identifier
=>
if Depends_On_Discriminant (Assn) then
return True;
end if;
when N_Discriminant_Association =>
if Depends_On_Discriminant (Expression (Assn)) then
return True;
end if;
when others =>
null;
end case;
Next (Assn);
end loop;
end if;
end if;
return False;
end Has_Discriminant_Dependent_Constraint;
--------------------
-- Has_Infinities --
--------------------
function Has_Infinities (E : Entity_Id) return Boolean is
begin
return
Is_Floating_Point_Type (E)
and then Nkind (Scalar_Range (E)) = N_Range
and then Includes_Infinities (Scalar_Range (E));
end Has_Infinities;
------------------------
-- Has_Null_Extension --
------------------------
function Has_Null_Extension (T : Entity_Id) return Boolean is
B : constant Entity_Id := Base_Type (T);
Comps : Node_Id;
Ext : Node_Id;
begin
if Nkind (Parent (B)) = N_Full_Type_Declaration
and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
then
Ext := Record_Extension_Part (Type_Definition (Parent (B)));
if Present (Ext) then
if Null_Present (Ext) then
return True;
else
Comps := Component_List (Ext);
-- The null component list is rewritten during analysis to
-- include the parent component. Any other component indicates
-- that the extension was not originally null.
return Null_Present (Comps)
or else No (Next (First (Component_Items (Comps))));
end if;
else
return False;
end if;
else
return False;
end if;
end Has_Null_Extension;
---------------------------
-- Has_Private_Component --
---------------------------
function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
Btype : Entity_Id := Base_Type (Type_Id);
Component : Entity_Id;
begin
if Error_Posted (Type_Id)
or else Error_Posted (Btype)
then
return False;
end if;
if Is_Class_Wide_Type (Btype) then
Btype := Root_Type (Btype);
end if;
if Is_Private_Type (Btype) then
declare
UT : constant Entity_Id := Underlying_Type (Btype);
begin
if No (UT) then
if No (Full_View (Btype)) then
return not Is_Generic_Type (Btype)
and then not Is_Generic_Type (Root_Type (Btype));
else
return not Is_Generic_Type (Root_Type (Full_View (Btype)));
end if;
else
return not Is_Frozen (UT) and then Has_Private_Component (UT);
end if;
end;
elsif Is_Array_Type (Btype) then
return Has_Private_Component (Component_Type (Btype));
elsif Is_Record_Type (Btype) then
Component := First_Component (Btype);
while Present (Component) loop
if Has_Private_Component (Etype (Component)) then
return True;
end if;
Next_Component (Component);
end loop;
return False;
elsif Is_Protected_Type (Btype)
and then Present (Corresponding_Record_Type (Btype))
then
return Has_Private_Component (Corresponding_Record_Type (Btype));
else
return False;
end if;
end Has_Private_Component;
----------------
-- Has_Stream --
----------------
function Has_Stream (T : Entity_Id) return Boolean is
E : Entity_Id;
begin
if No (T) then
return False;
elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
return True;
elsif Is_Array_Type (T) then
return Has_Stream (Component_Type (T));
elsif Is_Record_Type (T) then
E := First_Component (T);
while Present (E) loop
if Has_Stream (Etype (E)) then
return True;
else
Next_Component (E);
end if;
end loop;
return False;
elsif Is_Private_Type (T) then
return Has_Stream (Underlying_Type (T));
else
return False;
end if;
end Has_Stream;
--------------------------
-- Has_Tagged_Component --
--------------------------
function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
Comp : Entity_Id;
begin
if Is_Private_Type (Typ)
and then Present (Underlying_Type (Typ))
then
return Has_Tagged_Component (Underlying_Type (Typ));
elsif Is_Array_Type (Typ) then
return Has_Tagged_Component (Component_Type (Typ));
elsif Is_Tagged_Type (Typ) then
return True;
elsif Is_Record_Type (Typ) then
Comp := First_Component (Typ);
while Present (Comp) loop
if Has_Tagged_Component (Etype (Comp)) then
return True;
end if;
Comp := Next_Component (Typ);
end loop;
return False;
else
return False;
end if;
end Has_Tagged_Component;
-----------------
-- In_Instance --
-----------------
function In_Instance return Boolean is
S : Entity_Id := Current_Scope;
begin
while Present (S)
and then S /= Standard_Standard
loop
if (Ekind (S) = E_Function
or else Ekind (S) = E_Package
or else Ekind (S) = E_Procedure)
and then Is_Generic_Instance (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance;
----------------------
-- In_Instance_Body --
----------------------
function In_Instance_Body return Boolean is
S : Entity_Id := Current_Scope;
begin
while Present (S)
and then S /= Standard_Standard
loop
if (Ekind (S) = E_Function
or else Ekind (S) = E_Procedure)
and then Is_Generic_Instance (S)
then
return True;
elsif Ekind (S) = E_Package
and then In_Package_Body (S)
and then Is_Generic_Instance (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance_Body;
-----------------------------
-- In_Instance_Not_Visible --
-----------------------------
function In_Instance_Not_Visible return Boolean is
S : Entity_Id := Current_Scope;
begin
while Present (S)
and then S /= Standard_Standard
loop
if (Ekind (S) = E_Function
or else Ekind (S) = E_Procedure)
and then Is_Generic_Instance (S)
then
return True;
elsif Ekind (S) = E_Package
and then (In_Package_Body (S) or else In_Private_Part (S))
and then Is_Generic_Instance (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance_Not_Visible;
------------------------------
-- In_Instance_Visible_Part --
------------------------------
function In_Instance_Visible_Part return Boolean is
S : Entity_Id := Current_Scope;
begin
while Present (S)
and then S /= Standard_Standard
loop
if Ekind (S) = E_Package
and then Is_Generic_Instance (S)
and then not In_Package_Body (S)
and then not In_Private_Part (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance_Visible_Part;
----------------------
-- In_Packiage_Body --
----------------------
function In_Package_Body return Boolean is
S : Entity_Id := Current_Scope;
begin
while Present (S)
and then S /= Standard_Standard
loop
if Ekind (S) = E_Package
and then In_Package_Body (S)
then
return True;
else
S := Scope (S);
end if;
end loop;
return False;
end In_Package_Body;
--------------------------------------
-- In_Subprogram_Or_Concurrent_Unit --
--------------------------------------
function In_Subprogram_Or_Concurrent_Unit return Boolean is
E : Entity_Id;
K : Entity_Kind;
begin
-- Use scope chain to check successively outer scopes
E := Current_Scope;
loop
K := Ekind (E);
if K in Subprogram_Kind
or else K in Concurrent_Kind
or else K in Generic_Subprogram_Kind
then
return True;
elsif E = Standard_Standard then
return False;
end if;
E := Scope (E);
end loop;
end In_Subprogram_Or_Concurrent_Unit;
---------------------
-- In_Visible_Part --
---------------------
function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
begin
return
Is_Package_Or_Generic_Package (Scope_Id)
and then In_Open_Scopes (Scope_Id)
and then not In_Package_Body (Scope_Id)
and then not In_Private_Part (Scope_Id);
end In_Visible_Part;
---------------------------------
-- Insert_Explicit_Dereference --
---------------------------------
procedure Insert_Explicit_Dereference (N : Node_Id) is
New_Prefix : constant Node_Id := Relocate_Node (N);
Ent : Entity_Id := Empty;
Pref : Node_Id;
I : Interp_Index;
It : Interp;
T : Entity_Id;
begin
Save_Interps (N, New_Prefix);
Rewrite (N,
Make_Explicit_Dereference (Sloc (N), Prefix => New_Prefix));
Set_Etype (N, Designated_Type (Etype (New_Prefix)));
if Is_Overloaded (New_Prefix) then
-- The deference is also overloaded, and its interpretations are the
-- designated types of the interpretations of the original node.
Set_Etype (N, Any_Type);
Get_First_Interp (New_Prefix, I, It);
while Present (It.Nam) loop
T := It.Typ;
if Is_Access_Type (T) then
Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
end if;
Get_Next_Interp (I, It);
end loop;
End_Interp_List;
else
-- Prefix is unambiguous: mark the original prefix (which might
-- Come_From_Source) as a reference, since the new (relocated) one
-- won't be taken into account.
if Is_Entity_Name (New_Prefix) then
Ent := Entity (New_Prefix);
-- For a retrieval of a subcomponent of some composite object,
-- retrieve the ultimate entity if there is one.
elsif Nkind (New_Prefix) = N_Selected_Component
or else Nkind (New_Prefix) = N_Indexed_Component
then
Pref := Prefix (New_Prefix);
while Present (Pref)
and then
(Nkind (Pref) = N_Selected_Component
or else Nkind (Pref) = N_Indexed_Component)
loop
Pref := Prefix (Pref);
end loop;
if Present (Pref) and then Is_Entity_Name (Pref) then
Ent := Entity (Pref);
end if;
end if;
if Present (Ent) then
Generate_Reference (Ent, New_Prefix);
end if;
end if;
end Insert_Explicit_Dereference;
-------------------
-- Is_AAMP_Float --
-------------------
function Is_AAMP_Float (E : Entity_Id) return Boolean is
begin
pragma Assert (Is_Type (E));
return AAMP_On_Target
and then Is_Floating_Point_Type (E)
and then E = Base_Type (E);
end Is_AAMP_Float;
-------------------------
-- Is_Actual_Parameter --
-------------------------
function Is_Actual_Parameter (N : Node_Id) return Boolean is
PK : constant Node_Kind := Nkind (Parent (N));
begin
case PK is
when N_Parameter_Association =>
return N = Explicit_Actual_Parameter (Parent (N));
when N_Function_Call | N_Procedure_Call_Statement =>
return Is_List_Member (N)
and then
List_Containing (N) = Parameter_Associations (Parent (N));
when others =>
return False;
end case;
end Is_Actual_Parameter;
---------------------
-- Is_Aliased_View --
---------------------
function Is_Aliased_View (Obj : Node_Id) return Boolean is
E : Entity_Id;
begin
if Is_Entity_Name (Obj) then
E := Entity (Obj);
return
(Is_Object (E)
and then
(Is_Aliased (E)
or else (Present (Renamed_Object (E))
and then Is_Aliased_View (Renamed_Object (E)))))
or else ((Is_Formal (E)
or else Ekind (E) = E_Generic_In_Out_Parameter
or else Ekind (E) = E_Generic_In_Parameter)
and then Is_Tagged_Type (Etype (E)))
or else ((Ekind (E) = E_Task_Type
or else Ekind (E) = E_Protected_Type)
and then In_Open_Scopes (E))
-- Current instance of type
or else (Is_Type (E) and then E = Current_Scope)
or else (Is_Incomplete_Or_Private_Type (E)
and then Full_View (E) = Current_Scope);
elsif Nkind (Obj) = N_Selected_Component then
return Is_Aliased (Entity (Selector_Name (Obj)));
elsif Nkind (Obj) = N_Indexed_Component then
return Has_Aliased_Components (Etype (Prefix (Obj)))
or else
(Is_Access_Type (Etype (Prefix (Obj)))
and then
Has_Aliased_Components
(Designated_Type (Etype (Prefix (Obj)))));
elsif Nkind (Obj) = N_Unchecked_Type_Conversion
or else Nkind (Obj) = N_Type_Conversion
then
return Is_Tagged_Type (Etype (Obj))
and then Is_Aliased_View (Expression (Obj));
elsif Nkind (Obj) = N_Explicit_Dereference then
return Nkind (Original_Node (Obj)) /= N_Function_Call;
else
return False;
end if;
end Is_Aliased_View;
-------------------------
-- Is_Ancestor_Package --
-------------------------
function Is_Ancestor_Package
(E1 : Entity_Id;
E2 : Entity_Id) return Boolean
is
Par : Entity_Id;
begin
Par := E2;
while Present (Par)
and then Par /= Standard_Standard
loop
if Par = E1 then
return True;
end if;
Par := Scope (Par);
end loop;
return False;
end Is_Ancestor_Package;
----------------------
-- Is_Atomic_Object --
----------------------
function Is_Atomic_Object (N : Node_Id) return Boolean is
function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
-- Determines if given object has atomic components
function Is_Atomic_Prefix (N : Node_Id) return Boolean;
-- If prefix is an implicit dereference, examine designated type
function Is_Atomic_Prefix (N : Node_Id) return Boolean is
begin
if Is_Access_Type (Etype (N)) then
return
Has_Atomic_Components (Designated_Type (Etype (N)));
else
return Object_Has_Atomic_Components (N);
end if;
end Is_Atomic_Prefix;
function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
begin
if Has_Atomic_Components (Etype (N))
or else Is_Atomic (Etype (N))
then
return True;
elsif Is_Entity_Name (N)
and then (Has_Atomic_Components (Entity (N))
or else Is_Atomic (Entity (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Atomic_Prefix (Prefix (N));
else
return False;
end if;
end Object_Has_Atomic_Components;
-- Start of processing for Is_Atomic_Object
begin
if Is_Atomic (Etype (N))
or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Atomic_Prefix (Prefix (N));
else
return False;
end if;
end Is_Atomic_Object;
--------------------------------------
-- Is_Controlling_Limited_Procedure --
--------------------------------------
function Is_Controlling_Limited_Procedure
(Proc_Nam : Entity_Id) return Boolean
is
Param_Typ : Entity_Id := Empty;
begin
if Ekind (Proc_Nam) = E_Procedure
and then Present (Parameter_Specifications (Parent (Proc_Nam)))
then
Param_Typ := Etype (Parameter_Type (First (
Parameter_Specifications (Parent (Proc_Nam)))));
-- In this case where an Itype was created, the procedure call has been
-- rewritten.
elsif Present (Associated_Node_For_Itype (Proc_Nam))
and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
and then
Present (Parameter_Associations
(Associated_Node_For_Itype (Proc_Nam)))
then
Param_Typ :=
Etype (First (Parameter_Associations
(Associated_Node_For_Itype (Proc_Nam))));
end if;
if Present (Param_Typ) then
return
Is_Interface (Param_Typ)
and then Is_Limited_Record (Param_Typ);
end if;
return False;
end Is_Controlling_Limited_Procedure;
----------------------------------------------
-- Is_Dependent_Component_Of_Mutable_Object --
----------------------------------------------
function Is_Dependent_Component_Of_Mutable_Object
(Object : Node_Id) return Boolean
is
P : Node_Id;
Prefix_Type : Entity_Id;
P_Aliased : Boolean := False;
Comp : Entity_Id;
function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
-- Returns True if and only if Comp is declared within a variant part
--------------------------------
-- Is_Declared_Within_Variant --
--------------------------------
function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
Comp_Decl : constant Node_Id := Parent (Comp);
Comp_List : constant Node_Id := Parent (Comp_Decl);
begin
return Nkind (Parent (Comp_List)) = N_Variant;
end Is_Declared_Within_Variant;
-- Start of processing for Is_Dependent_Component_Of_Mutable_Object
begin
if Is_Variable (Object) then
if Nkind (Object) = N_Selected_Component then
P := Prefix (Object);
Prefix_Type := Etype (P);
if Is_Entity_Name (P) then
if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
Prefix_Type := Base_Type (Prefix_Type);
end if;
if Is_Aliased (Entity (P)) then
P_Aliased := True;
end if;
-- A discriminant check on a selected component may be
-- expanded into a dereference when removing side-effects.
-- Recover the original node and its type, which may be
-- unconstrained.
elsif Nkind (P) = N_Explicit_Dereference
and then not (Comes_From_Source (P))
then
P := Original_Node (P);
Prefix_Type := Etype (P);
else
-- Check for prefix being an aliased component ???
null;
end if;
-- A heap object is constrained by its initial value
-- Ada 2005 AI-363:if the designated type is a type with a
-- constrained partial view, the resulting heap object is not
-- constrained, and a renaming of the component is now unsafe.
if Is_Access_Type (Prefix_Type)
and then
not Has_Constrained_Partial_View
(Designated_Type (Prefix_Type))
then
return False;
elsif Nkind (P) = N_Explicit_Dereference
and then not Has_Constrained_Partial_View (Prefix_Type)
then
return False;
end if;
Comp :=
Original_Record_Component (Entity (Selector_Name (Object)));
-- As per AI-0017, the renaming is illegal in a generic body,
-- even if the subtype is indefinite.
if not Is_Constrained (Prefix_Type)
and then (not Is_Indefinite_Subtype (Prefix_Type)
or else
(Is_Generic_Type (Prefix_Type)
and then Ekind (Current_Scope) = E_Generic_Package
and then In_Package_Body (Current_Scope)))
and then (Is_Declared_Within_Variant (Comp)
or else Has_Discriminant_Dependent_Constraint (Comp))
and then not P_Aliased
then
return True;
else
return
Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
end if;
elsif Nkind (Object) = N_Indexed_Component
or else Nkind (Object) = N_Slice
then
return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
-- A type conversion that Is_Variable is a view conversion:
-- go back to the denoted object.
elsif Nkind (Object) = N_Type_Conversion then
return
Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
end if;
end if;
return False;
end Is_Dependent_Component_Of_Mutable_Object;
---------------------
-- Is_Dereferenced --
---------------------
function Is_Dereferenced (N : Node_Id) return Boolean is
P : constant Node_Id := Parent (N);
begin
return
(Nkind (P) = N_Selected_Component
or else
Nkind (P) = N_Explicit_Dereference
or else
Nkind (P) = N_Indexed_Component
or else
Nkind (P) = N_Slice)
and then Prefix (P) = N;
end Is_Dereferenced;
----------------------
-- Is_Descendent_Of --
----------------------
function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
T : Entity_Id;
Etyp : Entity_Id;
begin
pragma Assert (Nkind (T1) in N_Entity);
pragma Assert (Nkind (T2) in N_Entity);
T := Base_Type (T1);
-- Immediate return if the types match
if T = T2 then
return True;
-- Comment needed here ???
elsif Ekind (T) = E_Class_Wide_Type then
return Etype (T) = T2;
-- All other cases
else
loop
Etyp := Etype (T);
-- Done if we found the type we are looking for
if Etyp = T2 then
return True;
-- Done if no more derivations to check
elsif T = T1
or else T = Etyp
then
return False;
-- Following test catches error cases resulting from prev errors
elsif No (Etyp) then
return False;
elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
return False;
elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
return False;
end if;
T := Base_Type (Etyp);
end loop;
end if;
-- LLVM local deleted unreachable line
end Is_Descendent_Of;
------------------------------
-- Is_Descendent_Of_Address --
------------------------------
function Is_Descendent_Of_Address (T1 : Entity_Id) return Boolean is
begin
-- If Address has not been loaded, answer must be False
if not RTU_Loaded (System) then
return False;
-- Otherwise we can get the entity we are interested in without
-- causing an unwanted dependency on System, and do the test.
else
return Is_Descendent_Of (T1, Base_Type (RTE (RE_Address)));
end if;
end Is_Descendent_Of_Address;
--------------
-- Is_False --
--------------
function Is_False (U : Uint) return Boolean is
begin
return (U = 0);
end Is_False;
---------------------------
-- Is_Fixed_Model_Number --
---------------------------
function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
S : constant Ureal := Small_Value (T);
M : Urealp.Save_Mark;
R : Boolean;
begin
M := Urealp.Mark;
R := (U = UR_Trunc (U / S) * S);
Urealp.Release (M);
return R;
end Is_Fixed_Model_Number;
-------------------------------
-- Is_Fully_Initialized_Type --
-------------------------------
function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
begin
if Is_Scalar_Type (Typ) then
return False;
elsif Is_Access_Type (Typ) then
return True;
elsif Is_Array_Type (Typ) then
if Is_Fully_Initialized_Type (Component_Type (Typ)) then
return True;
end if;
-- An interesting case, if we have a constrained type one of whose
-- bounds is known to be null, then there are no elements to be
-- initialized, so all the elements are initialized!
if Is_Constrained (Typ) then
declare
Indx : Node_Id;
Indx_Typ : Entity_Id;
Lbd, Hbd : Node_Id;
begin
Indx := First_Index (Typ);
while Present (Indx) loop
if Etype (Indx) = Any_Type then
return False;
-- If index is a range, use directly
elsif Nkind (Indx) = N_Range then
Lbd := Low_Bound (Indx);
Hbd := High_Bound (Indx);
else
Indx_Typ := Etype (Indx);
if Is_Private_Type (Indx_Typ) then
Indx_Typ := Full_View (Indx_Typ);
end if;
if No (Indx_Typ) then
return False;
else
Lbd := Type_Low_Bound (Indx_Typ);
Hbd := Type_High_Bound (Indx_Typ);
end if;
end if;
if Compile_Time_Known_Value (Lbd)
and then Compile_Time_Known_Value (Hbd)
then
if Expr_Value (Hbd) < Expr_Value (Lbd) then
return True;
end if;
end if;
Next_Index (Indx);
end loop;
end;
end if;
-- If no null indexes, then type is not fully initialized
return False;
-- Record types
elsif Is_Record_Type (Typ) then
if Has_Discriminants (Typ)
and then
Present (Discriminant_Default_Value (First_Discriminant (Typ)))
and then Is_Fully_Initialized_Variant (Typ)
then
return True;
end if;
-- Controlled records are considered to be fully initialized if
-- there is a user defined Initialize routine. This may not be
-- entirely correct, but as the spec notes, we are guessing here
-- what is best from the point of view of issuing warnings.
if Is_Controlled (Typ) then
declare
Utyp : constant Entity_Id := Underlying_Type (Typ);
begin
if Present (Utyp) then
declare
Init : constant Entity_Id :=
(Find_Prim_Op
(Underlying_Type (Typ), Name_Initialize));
begin
if Present (Init)
and then Comes_From_Source (Init)
and then not
Is_Predefined_File_Name
(File_Name (Get_Source_File_Index (Sloc (Init))))
then
return True;
elsif Has_Null_Extension (Typ)
and then
Is_Fully_Initialized_Type
(Etype (Base_Type (Typ)))
then
return True;
end if;
end;
end if;
end;
end if;
-- Otherwise see if all record components are initialized
declare
Ent : Entity_Id;
begin
Ent := First_Entity (Typ);
while Present (Ent) loop
if Chars (Ent) = Name_uController then
null;
elsif Ekind (Ent) = E_Component
and then (No (Parent (Ent))
or else No (Expression (Parent (Ent))))
and then not Is_Fully_Initialized_Type (Etype (Ent))
then
return False;
end if;
Next_Entity (Ent);
end loop;
end;
-- No uninitialized components, so type is fully initialized.
-- Note that this catches the case of no components as well.
return True;
elsif Is_Concurrent_Type (Typ) then
return True;
elsif Is_Private_Type (Typ) then
declare
U : constant Entity_Id := Underlying_Type (Typ);
begin
if No (U) then
return False;
else
return Is_Fully_Initialized_Type (U);
end if;
end;
else
return False;
end if;
end Is_Fully_Initialized_Type;
----------------------------------
-- Is_Fully_Initialized_Variant --
----------------------------------
function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (Typ);
Constraints : constant List_Id := New_List;
Components : constant Elist_Id := New_Elmt_List;
Comp_Elmt : Elmt_Id;
Comp_Id : Node_Id;
Comp_List : Node_Id;
Discr : Entity_Id;
Discr_Val : Node_Id;
Report_Errors : Boolean;
begin
if Serious_Errors_Detected > 0 then
return False;
end if;
if Is_Record_Type (Typ)
and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
then
Comp_List := Component_List (Type_Definition (Parent (Typ)));
Discr := First_Discriminant (Typ);
while Present (Discr) loop
if Nkind (Parent (Discr)) = N_Discriminant_Specification then
Discr_Val := Expression (Parent (Discr));
if Present (Discr_Val)
and then Is_OK_Static_Expression (Discr_Val)
then
Append_To (Constraints,
Make_Component_Association (Loc,
Choices => New_List (New_Occurrence_Of (Discr, Loc)),
Expression => New_Copy (Discr_Val)));
else
return False;
end if;
else
return False;
end if;
Next_Discriminant (Discr);
end loop;
Gather_Components
(Typ => Typ,
Comp_List => Comp_List,
Governed_By => Constraints,
Into => Components,
Report_Errors => Report_Errors);
-- Check that each component present is fully initialized
Comp_Elmt := First_Elmt (Components);
while Present (Comp_Elmt) loop
Comp_Id := Node (Comp_Elmt);
if Ekind (Comp_Id) = E_Component
and then (No (Parent (Comp_Id))
or else No (Expression (Parent (Comp_Id))))
and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
then
return False;
end if;
Next_Elmt (Comp_Elmt);
end loop;
return True;
elsif Is_Private_Type (Typ) then
declare
U : constant Entity_Id := Underlying_Type (Typ);
begin
if No (U) then
return False;
else
return Is_Fully_Initialized_Variant (U);
end if;
end;
else
return False;
end if;
end Is_Fully_Initialized_Variant;
----------------------------
-- Is_Inherited_Operation --
----------------------------
function Is_Inherited_Operation (E : Entity_Id) return Boolean is
Kind : constant Node_Kind := Nkind (Parent (E));
begin
pragma Assert (Is_Overloadable (E));
return Kind = N_Full_Type_Declaration
or else Kind = N_Private_Extension_Declaration
or else Kind = N_Subtype_Declaration
or else (Ekind (E) = E_Enumeration_Literal
and then Is_Derived_Type (Etype (E)));
end Is_Inherited_Operation;
-----------------------------
-- Is_Library_Level_Entity --
-----------------------------
function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
begin
-- The following is a small optimization, and it also handles
-- properly discriminals, which in task bodies might appear in
-- expressions before the corresponding procedure has been
-- created, and which therefore do not have an assigned scope.
if Ekind (E) in Formal_Kind then
return False;
end if;
-- Normal test is simply that the enclosing dynamic scope is Standard
return Enclosing_Dynamic_Scope (E) = Standard_Standard;
end Is_Library_Level_Entity;
---------------------------------
-- Is_Local_Variable_Reference --
---------------------------------
function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
begin
if not Is_Entity_Name (Expr) then
return False;
else
declare
Ent : constant Entity_Id := Entity (Expr);
Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
begin
if Ekind (Ent) /= E_Variable
and then
Ekind (Ent) /= E_In_Out_Parameter
then
return False;
else
return Present (Sub) and then Sub = Current_Subprogram;
end if;
end;
end if;
end Is_Local_Variable_Reference;
---------------
-- Is_Lvalue --
---------------
function Is_Lvalue (N : Node_Id) return Boolean is
P : constant Node_Id := Parent (N);
begin
case Nkind (P) is
-- Test left side of assignment
when N_Assignment_Statement =>
return N = Name (P);
-- Test prefix of component or attribute
when N_Attribute_Reference |
N_Expanded_Name |
N_Explicit_Dereference |
N_Indexed_Component |
N_Reference |
N_Selected_Component |
N_Slice =>
return N = Prefix (P);
-- Test subprogram parameter (we really should check the
-- parameter mode, but it is not worth the trouble)
when N_Function_Call |
N_Procedure_Call_Statement |
N_Accept_Statement |
N_Parameter_Association =>
return True;
-- Test for appearing in a conversion that itself appears
-- in an lvalue context, since this should be an lvalue.
when N_Type_Conversion =>
return Is_Lvalue (P);
-- Test for appearence in object renaming declaration
when N_Object_Renaming_Declaration =>
return True;
-- All other references are definitely not Lvalues
when others =>
return False;
end case;
end Is_Lvalue;
-------------------------
-- Is_Object_Reference --
-------------------------
function Is_Object_Reference (N : Node_Id) return Boolean is
begin
if Is_Entity_Name (N) then
return Is_Object (Entity (N));
else
case Nkind (N) is
when N_Indexed_Component | N_Slice =>
return
Is_Object_Reference (Prefix (N))
or else Is_Access_Type (Etype (Prefix (N)));
-- In Ada95, a function call is a constant object; a procedure
-- call is not.
when N_Function_Call =>
return Etype (N) /= Standard_Void_Type;
-- A reference to the stream attribute Input is a function call
when N_Attribute_Reference =>
return Attribute_Name (N) = Name_Input;
when N_Selected_Component =>
return
Is_Object_Reference (Selector_Name (N))
and then
(Is_Object_Reference (Prefix (N))
or else Is_Access_Type (Etype (Prefix (N))));
when N_Explicit_Dereference =>
return True;
-- A view conversion of a tagged object is an object reference
when N_Type_Conversion =>
return Is_Tagged_Type (Etype (Subtype_Mark (N)))
and then Is_Tagged_Type (Etype (Expression (N)))
and then Is_Object_Reference (Expression (N));
-- An unchecked type conversion is considered to be an object if
-- the operand is an object (this construction arises only as a
-- result of expansion activities).
when N_Unchecked_Type_Conversion =>
return True;
when others =>
return False;
end case;
end if;
end Is_Object_Reference;
-----------------------------------
-- Is_OK_Variable_For_Out_Formal --
-----------------------------------
function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
begin
Note_Possible_Modification (AV);
-- We must reject parenthesized variable names. The check for
-- Comes_From_Source is present because there are currently
-- cases where the compiler violates this rule (e.g. passing
-- a task object to its controlled Initialize routine).
if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
return False;
-- A variable is always allowed
elsif Is_Variable (AV) then
return True;
-- Unchecked conversions are allowed only if they come from the
-- generated code, which sometimes uses unchecked conversions for out
-- parameters in cases where code generation is unaffected. We tell
-- source unchecked conversions by seeing if they are rewrites of an
-- original Unchecked_Conversion function call, or of an explicit
-- conversion of a function call.
elsif Nkind (AV) = N_Unchecked_Type_Conversion then
if Nkind (Original_Node (AV)) = N_Function_Call then
return False;
elsif Comes_From_Source (AV)
and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
then
return False;
elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
return Is_OK_Variable_For_Out_Formal (Expression (AV));
else
return True;
end if;
-- Normal type conversions are allowed if argument is a variable
elsif Nkind (AV) = N_Type_Conversion then
if Is_Variable (Expression (AV))
and then Paren_Count (Expression (AV)) = 0
then
Note_Possible_Modification (Expression (AV));
return True;
-- We also allow a non-parenthesized expression that raises
-- constraint error if it rewrites what used to be a variable
elsif Raises_Constraint_Error (Expression (AV))
and then Paren_Count (Expression (AV)) = 0
and then Is_Variable (Original_Node (Expression (AV)))
then
return True;
-- Type conversion of something other than a variable
else
return False;
end if;
-- If this node is rewritten, then test the original form, if that is
-- OK, then we consider the rewritten node OK (for example, if the
-- original node is a conversion, then Is_Variable will not be true
-- but we still want to allow the conversion if it converts a variable).
elsif Original_Node (AV) /= AV then
return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
-- All other non-variables are rejected
else
return False;
end if;
end Is_OK_Variable_For_Out_Formal;
-----------------------------------
-- Is_Partially_Initialized_Type --
-----------------------------------
function Is_Partially_Initialized_Type (Typ : Entity_Id) return Boolean is
begin
if Is_Scalar_Type (Typ) then
return False;
elsif Is_Access_Type (Typ) then
return True;
elsif Is_Array_Type (Typ) then
-- If component type is partially initialized, so is array type
if Is_Partially_Initialized_Type (Component_Type (Typ)) then
return True;
-- Otherwise we are only partially initialized if we are fully
-- initialized (this is the empty array case, no point in us
-- duplicating that code here).
else
return Is_Fully_Initialized_Type (Typ);
end if;
elsif Is_Record_Type (Typ) then
-- A discriminated type is always partially initialized
if Has_Discriminants (Typ) then
return True;
-- A tagged type is always partially initialized
elsif Is_Tagged_Type (Typ) then
return True;
-- Case of non-discriminated record
else
declare
Ent : Entity_Id;
Component_Present : Boolean := False;
-- Set True if at least one component is present. If no
-- components are present, then record type is fully
-- initialized (another odd case, like the null array).
begin
-- Loop through components
Ent := First_Entity (Typ);
while Present (Ent) loop
if Ekind (Ent) = E_Component then
Component_Present := True;
-- If a component has an initialization expression then
-- the enclosing record type is partially initialized
if Present (Parent (Ent))
and then Present (Expression (Parent (Ent)))
then
return True;
-- If a component is of a type which is itself partially
-- initialized, then the enclosing record type is also.
elsif Is_Partially_Initialized_Type (Etype (Ent)) then
return True;
end if;
end if;
Next_Entity (Ent);
end loop;
-- No initialized components found. If we found any components
-- they were all uninitialized so the result is false.
if Component_Present then
return False;
-- But if we found no components, then all the components are
-- initialized so we consider the type to be initialized.
else
return True;
end if;
end;
end if;
-- Concurrent types are always fully initialized
elsif Is_Concurrent_Type (Typ) then
return True;
-- For a private type, go to underlying type. If there is no underlying
-- type then just assume this partially initialized. Not clear if this
-- can happen in a non-error case, but no harm in testing for this.
elsif Is_Private_Type (Typ) then
declare
U : constant Entity_Id := Underlying_Type (Typ);
begin
if No (U) then
return True;
else
return Is_Partially_Initialized_Type (U);
end if;
end;
-- For any other type (are there any?) assume partially initialized
else
return True;
end if;
end Is_Partially_Initialized_Type;
------------------------------------
-- Is_Potentially_Persistent_Type --
------------------------------------
function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
Comp : Entity_Id;
Indx : Node_Id;
begin
-- For private type, test corrresponding full type
if Is_Private_Type (T) then
return Is_Potentially_Persistent_Type (Full_View (T));
-- Scalar types are potentially persistent
elsif Is_Scalar_Type (T) then
return True;
-- Record type is potentially persistent if not tagged and the types of
-- all it components are potentially persistent, and no component has
-- an initialization expression.
elsif Is_Record_Type (T)
and then not Is_Tagged_Type (T)
and then not Is_Partially_Initialized_Type (T)
then
Comp := First_Component (T);
while Present (Comp) loop
if not Is_Potentially_Persistent_Type (Etype (Comp)) then
return False;
else
Next_Entity (Comp);
end if;
end loop;
return True;
-- Array type is potentially persistent if its component type is
-- potentially persistent and if all its constraints are static.
elsif Is_Array_Type (T) then
if not Is_Potentially_Persistent_Type (Component_Type (T)) then
return False;
end if;
Indx := First_Index (T);
while Present (Indx) loop
if not Is_OK_Static_Subtype (Etype (Indx)) then
return False;
else
Next_Index (Indx);
end if;
end loop;
return True;
-- All other types are not potentially persistent
else
return False;
end if;
end Is_Potentially_Persistent_Type;
-----------------------------
-- Is_RCI_Pkg_Spec_Or_Body --
-----------------------------
function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
-- Return True if the unit of Cunit is an RCI package declaration
---------------------------
-- Is_RCI_Pkg_Decl_Cunit --
---------------------------
function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
The_Unit : constant Node_Id := Unit (Cunit);
begin
if Nkind (The_Unit) /= N_Package_Declaration then
return False;
end if;
return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
end Is_RCI_Pkg_Decl_Cunit;
-- Start of processing for Is_RCI_Pkg_Spec_Or_Body
begin
return Is_RCI_Pkg_Decl_Cunit (Cunit)
or else
(Nkind (Unit (Cunit)) = N_Package_Body
and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
end Is_RCI_Pkg_Spec_Or_Body;
-----------------------------------------
-- Is_Remote_Access_To_Class_Wide_Type --
-----------------------------------------
function Is_Remote_Access_To_Class_Wide_Type
(E : Entity_Id) return Boolean
is
D : Entity_Id;
function Comes_From_Limited_Private_Type_Declaration
(E : Entity_Id) return Boolean;
-- Check that the type is declared by a limited type declaration,
-- or else is derived from a Remote_Type ancestor through private
-- extensions.
-------------------------------------------------
-- Comes_From_Limited_Private_Type_Declaration --
-------------------------------------------------
function Comes_From_Limited_Private_Type_Declaration
(E : Entity_Id) return Boolean
is
N : constant Node_Id := Declaration_Node (E);
begin
if Nkind (N) = N_Private_Type_Declaration
and then Limited_Present (N)
then
return True;
end if;
if Nkind (N) = N_Private_Extension_Declaration then
return
Comes_From_Limited_Private_Type_Declaration (Etype (E))
or else
(Is_Remote_Types (Etype (E))
and then Is_Limited_Record (Etype (E))
and then Has_Private_Declaration (Etype (E)));
end if;
return False;
end Comes_From_Limited_Private_Type_Declaration;
-- Start of processing for Is_Remote_Access_To_Class_Wide_Type
begin
if not (Is_Remote_Call_Interface (E)
or else Is_Remote_Types (E))
or else Ekind (E) /= E_General_Access_Type
then
return False;
end if;
D := Designated_Type (E);
if Ekind (D) /= E_Class_Wide_Type then
return False;
end if;
return Comes_From_Limited_Private_Type_Declaration
(Defining_Identifier (Parent (D)));
end Is_Remote_Access_To_Class_Wide_Type;
-----------------------------------------
-- Is_Remote_Access_To_Subprogram_Type --
-----------------------------------------
function Is_Remote_Access_To_Subprogram_Type
(E : Entity_Id) return Boolean
is
begin
return (Ekind (E) = E_Access_Subprogram_Type
or else (Ekind (E) = E_Record_Type
and then Present (Corresponding_Remote_Type (E))))
and then (Is_Remote_Call_Interface (E)
or else Is_Remote_Types (E));
end Is_Remote_Access_To_Subprogram_Type;
--------------------
-- Is_Remote_Call --
--------------------
function Is_Remote_Call (N : Node_Id) return Boolean is
begin
if Nkind (N) /= N_Procedure_Call_Statement
and then Nkind (N) /= N_Function_Call
then
-- An entry call cannot be remote
return False;
elsif Nkind (Name (N)) in N_Has_Entity
and then Is_Remote_Call_Interface (Entity (Name (N)))
then
-- A subprogram declared in the spec of a RCI package is remote
return True;
elsif Nkind (Name (N)) = N_Explicit_Dereference
and then Is_Remote_Access_To_Subprogram_Type
(Etype (Prefix (Name (N))))
then
-- The dereference of a RAS is a remote call
return True;
elsif Present (Controlling_Argument (N))
and then Is_Remote_Access_To_Class_Wide_Type
(Etype (Controlling_Argument (N)))
then
-- Any primitive operation call with a controlling argument of
-- a RACW type is a remote call.
return True;
end if;
-- All other calls are local calls
return False;
end Is_Remote_Call;
----------------------
-- Is_Renamed_Entry --
----------------------
function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
Orig_Node : Node_Id := Empty;
Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
function Is_Entry (Nam : Node_Id) return Boolean;
-- Determine whether Nam is an entry. Traverse selectors
-- if there are nested selected components.
--------------
-- Is_Entry --
--------------
function Is_Entry (Nam : Node_Id) return Boolean is
begin
if Nkind (Nam) = N_Selected_Component then
return Is_Entry (Selector_Name (Nam));
end if;
return Ekind (Entity (Nam)) = E_Entry;
end Is_Entry;
-- Start of processing for Is_Renamed_Entry
begin
if Present (Alias (Proc_Nam)) then
Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
end if;
-- Look for a rewritten subprogram renaming declaration
if Nkind (Subp_Decl) = N_Subprogram_Declaration
and then Present (Original_Node (Subp_Decl))
then
Orig_Node := Original_Node (Subp_Decl);
end if;
-- The rewritten subprogram is actually an entry
if Present (Orig_Node)
and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
and then Is_Entry (Name (Orig_Node))
then
return True;
end if;
return False;
end Is_Renamed_Entry;
----------------------
-- Is_Selector_Name --
----------------------
function Is_Selector_Name (N : Node_Id) return Boolean is
begin
if not Is_List_Member (N) then
declare
P : constant Node_Id := Parent (N);
K : constant Node_Kind := Nkind (P);
begin
return
(K = N_Expanded_Name or else
K = N_Generic_Association or else
K = N_Parameter_Association or else
K = N_Selected_Component)
and then Selector_Name (P) = N;
end;
else
declare
L : constant List_Id := List_Containing (N);
P : constant Node_Id := Parent (L);
begin
return (Nkind (P) = N_Discriminant_Association
and then Selector_Names (P) = L)
or else
(Nkind (P) = N_Component_Association
and then Choices (P) = L);
end;
end if;
end Is_Selector_Name;
------------------
-- Is_Statement --
------------------
function Is_Statement (N : Node_Id) return Boolean is
begin
return
Nkind (N) in N_Statement_Other_Than_Procedure_Call
or else Nkind (N) = N_Procedure_Call_Statement;
end Is_Statement;
-----------------
-- Is_Transfer --
-----------------
function Is_Transfer (N : Node_Id) return Boolean is
Kind : constant Node_Kind := Nkind (N);
begin
if Kind = N_Return_Statement
or else
Kind = N_Goto_Statement
or else
Kind = N_Raise_Statement
or else
Kind = N_Requeue_Statement
then
return True;
elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
and then No (Condition (N))
then
return True;
elsif Kind = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (N))
and then Present (Entity (Name (N)))
and then No_Return (Entity (Name (N)))
then
return True;
elsif Nkind (Original_Node (N)) = N_Raise_Statement then
return True;
else
return False;
end if;
end Is_Transfer;
-------------
-- Is_True --
-------------
function Is_True (U : Uint) return Boolean is
begin
return (U /= 0);
end Is_True;
-----------------
-- Is_Variable --
-----------------
function Is_Variable (N : Node_Id) return Boolean is
Orig_Node : constant Node_Id := Original_Node (N);
-- We do the test on the original node, since this is basically a
-- test of syntactic categories, so it must not be disturbed by
-- whatever rewriting might have occurred. For example, an aggregate,
-- which is certainly NOT a variable, could be turned into a variable
-- by expansion.
function In_Protected_Function (E : Entity_Id) return Boolean;
-- Within a protected function, the private components of the
-- enclosing protected type are constants. A function nested within
-- a (protected) procedure is not itself protected.
function Is_Variable_Prefix (P : Node_Id) return Boolean;
-- Prefixes can involve implicit dereferences, in which case we
-- must test for the case of a reference of a constant access
-- type, which can never be a variable.
---------------------------
-- In_Protected_Function --
---------------------------
function In_Protected_Function (E : Entity_Id) return Boolean is
Prot : constant Entity_Id := Scope (E);
S : Entity_Id;
begin
if not Is_Protected_Type (Prot) then
return False;
else
S := Current_Scope;
while Present (S) and then S /= Prot loop
if Ekind (S) = E_Function
and then Scope (S) = Prot
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end if;
end In_Protected_Function;
------------------------
-- Is_Variable_Prefix --
------------------------
function Is_Variable_Prefix (P : Node_Id) return Boolean is
begin
if Is_Access_Type (Etype (P)) then
return not Is_Access_Constant (Root_Type (Etype (P)));
-- For the case of an indexed component whose prefix has a packed
-- array type, the prefix has been rewritten into a type conversion.
-- Determine variable-ness from the converted expression.
elsif Nkind (P) = N_Type_Conversion
and then not Comes_From_Source (P)
and then Is_Array_Type (Etype (P))
and then Is_Packed (Etype (P))
then
return Is_Variable (Expression (P));
else
return Is_Variable (P);
end if;
end Is_Variable_Prefix;
-- Start of processing for Is_Variable
begin
-- Definitely OK if Assignment_OK is set. Since this is something that
-- only gets set for expanded nodes, the test is on N, not Orig_Node.
if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
return True;
-- Normally we go to the original node, but there is one exception
-- where we use the rewritten node, namely when it is an explicit
-- dereference. The generated code may rewrite a prefix which is an
-- access type with an explicit dereference. The dereference is a
-- variable, even though the original node may not be (since it could
-- be a constant of the access type).
elsif Nkind (N) = N_Explicit_Dereference
and then Nkind (Orig_Node) /= N_Explicit_Dereference
and then Is_Access_Type (Etype (Orig_Node))
then
return Is_Variable_Prefix (Original_Node (Prefix (N)));
-- A function call is never a variable
elsif Nkind (N) = N_Function_Call then
return False;
-- All remaining checks use the original node
elsif Is_Entity_Name (Orig_Node) then
declare
E : constant Entity_Id := Entity (Orig_Node);
K : constant Entity_Kind := Ekind (E);
begin
return (K = E_Variable
and then Nkind (Parent (E)) /= N_Exception_Handler)
or else (K = E_Component
and then not In_Protected_Function (E))
or else K = E_Out_Parameter
or else K = E_In_Out_Parameter
or else K = E_Generic_In_Out_Parameter
-- Current instance of type:
or else (Is_Type (E) and then In_Open_Scopes (E))
or else (Is_Incomplete_Or_Private_Type (E)
and then In_Open_Scopes (Full_View (E)));
end;
else
case Nkind (Orig_Node) is
when N_Indexed_Component | N_Slice =>
return Is_Variable_Prefix (Prefix (Orig_Node));
when N_Selected_Component =>
return Is_Variable_Prefix (Prefix (Orig_Node))
and then Is_Variable (Selector_Name (Orig_Node));
-- For an explicit dereference, the type of the prefix cannot
-- be an access to constant or an access to subprogram.
when N_Explicit_Dereference =>
declare
Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
begin
return Is_Access_Type (Typ)
and then not Is_Access_Constant (Root_Type (Typ))
and then Ekind (Typ) /= E_Access_Subprogram_Type;
end;
-- The type conversion is the case where we do not deal with the
-- context dependent special case of an actual parameter. Thus
-- the type conversion is only considered a variable for the
-- purposes of this routine if the target type is tagged. However,
-- a type conversion is considered to be a variable if it does not
-- come from source (this deals for example with the conversions
-- of expressions to their actual subtypes).
when N_Type_Conversion =>
return Is_Variable (Expression (Orig_Node))
and then
(not Comes_From_Source (Orig_Node)
or else
(Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
and then
Is_Tagged_Type (Etype (Expression (Orig_Node)))));
-- GNAT allows an unchecked type conversion as a variable. This
-- only affects the generation of internal expanded code, since
-- calls to instantiations of Unchecked_Conversion are never
-- considered variables (since they are function calls).
-- This is also true for expression actions.
when N_Unchecked_Type_Conversion =>
return Is_Variable (Expression (Orig_Node));
when others =>
return False;
end case;
end if;
end Is_Variable;
------------------------
-- Is_Volatile_Object --
------------------------
function Is_Volatile_Object (N : Node_Id) return Boolean is
function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
-- Determines if given object has volatile components
function Is_Volatile_Prefix (N : Node_Id) return Boolean;
-- If prefix is an implicit dereference, examine designated type
------------------------
-- Is_Volatile_Prefix --
------------------------
function Is_Volatile_Prefix (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (N);
begin
if Is_Access_Type (Typ) then
declare
Dtyp : constant Entity_Id := Designated_Type (Typ);
begin
return Is_Volatile (Dtyp)
or else Has_Volatile_Components (Dtyp);
end;
else
return Object_Has_Volatile_Components (N);
end if;
end Is_Volatile_Prefix;
------------------------------------
-- Object_Has_Volatile_Components --
------------------------------------
function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (N);
begin
if Is_Volatile (Typ)
or else Has_Volatile_Components (Typ)
then
return True;
elsif Is_Entity_Name (N)
and then (Has_Volatile_Components (Entity (N))
or else Is_Volatile (Entity (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Volatile_Prefix (Prefix (N));
else
return False;
end if;
end Object_Has_Volatile_Components;
-- Start of processing for Is_Volatile_Object
begin
if Is_Volatile (Etype (N))
or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Volatile_Prefix (Prefix (N));
else
return False;
end if;
end Is_Volatile_Object;
-------------------------
-- Kill_Current_Values --
-------------------------
procedure Kill_Current_Values (Ent : Entity_Id) is
begin
if Is_Object (Ent) then
Kill_Checks (Ent);
Set_Current_Value (Ent, Empty);
if not Can_Never_Be_Null (Ent) then
Set_Is_Known_Non_Null (Ent, False);
end if;
Set_Is_Known_Null (Ent, False);
end if;
end Kill_Current_Values;
procedure Kill_Current_Values is
S : Entity_Id;
procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
-- Clear current value for entity E and all entities chained to E
------------------------------------------
-- Kill_Current_Values_For_Entity_Chain --
------------------------------------------
procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
Ent : Entity_Id;
begin
Ent := E;
while Present (Ent) loop
Kill_Current_Values (Ent);
Next_Entity (Ent);
end loop;
end Kill_Current_Values_For_Entity_Chain;
-- Start of processing for Kill_Current_Values
begin
-- Kill all saved checks, a special case of killing saved values
Kill_All_Checks;
-- Loop through relevant scopes, which includes the current scope and
-- any parent scopes if the current scope is a block or a package.
S := Current_Scope;
Scope_Loop : loop
-- Clear current values of all entities in current scope
Kill_Current_Values_For_Entity_Chain (First_Entity (S));
-- If scope is a package, also clear current values of all
-- private entities in the scope.
if Ekind (S) = E_Package
or else
Ekind (S) = E_Generic_Package
or else
Is_Concurrent_Type (S)
then
Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
end if;
-- If this is a block or nested package, deal with parent
if Ekind (S) = E_Block
or else (Ekind (S) = E_Package
and then not Is_Library_Level_Entity (S))
then
S := Scope (S);
else
exit Scope_Loop;
end if;
end loop Scope_Loop;
end Kill_Current_Values;
--------------------------
-- Kill_Size_Check_Code --
--------------------------
procedure Kill_Size_Check_Code (E : Entity_Id) is
begin
if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
and then Present (Size_Check_Code (E))
then
Remove (Size_Check_Code (E));
Set_Size_Check_Code (E, Empty);
end if;
end Kill_Size_Check_Code;
-------------------------
-- New_External_Entity --
-------------------------
function New_External_Entity
(Kind : Entity_Kind;
Scope_Id : Entity_Id;
Sloc_Value : Source_Ptr;
Related_Id : Entity_Id;
Suffix : Character;
Suffix_Index : Nat := 0;
Prefix : Character := ' ') return Entity_Id
is
N : constant Entity_Id :=
Make_Defining_Identifier (Sloc_Value,
New_External_Name
(Chars (Related_Id), Suffix, Suffix_Index, Prefix));
begin
Set_Ekind (N, Kind);
Set_Is_Internal (N, True);
Append_Entity (N, Scope_Id);
Set_Public_Status (N);
if Kind in Type_Kind then
Init_Size_Align (N);
end if;
return N;
end New_External_Entity;
-------------------------
-- New_Internal_Entity --
-------------------------
function New_Internal_Entity
(Kind : Entity_Kind;
Scope_Id : Entity_Id;
Sloc_Value : Source_Ptr;
Id_Char : Character) return Entity_Id
is
N : constant Entity_Id :=
Make_Defining_Identifier (Sloc_Value, New_Internal_Name (Id_Char));
begin
Set_Ekind (N, Kind);
Set_Is_Internal (N, True);
Append_Entity (N, Scope_Id);
if Kind in Type_Kind then
Init_Size_Align (N);
end if;
return N;
end New_Internal_Entity;
-----------------
-- Next_Actual --
-----------------
function Next_Actual (Actual_Id : Node_Id) return Node_Id is
N : Node_Id;
begin
-- If we are pointing at a positional parameter, it is a member of
-- a node list (the list of parameters), and the next parameter
-- is the next node on the list, unless we hit a parameter
-- association, in which case we shift to using the chain whose
-- head is the First_Named_Actual in the parent, and then is
-- threaded using the Next_Named_Actual of the Parameter_Association.
-- All this fiddling is because the original node list is in the
-- textual call order, and what we need is the declaration order.
if Is_List_Member (Actual_Id) then
N := Next (Actual_Id);
if Nkind (N) = N_Parameter_Association then
return First_Named_Actual (Parent (Actual_Id));
else
return N;
end if;
else
return Next_Named_Actual (Parent (Actual_Id));
end if;
end Next_Actual;
procedure Next_Actual (Actual_Id : in out Node_Id) is
begin
Actual_Id := Next_Actual (Actual_Id);
end Next_Actual;
-----------------------
-- Normalize_Actuals --
-----------------------
-- Chain actuals according to formals of subprogram. If there are no named
-- associations, the chain is simply the list of Parameter Associations,
-- since the order is the same as the declaration order. If there are named
-- associations, then the First_Named_Actual field in the N_Function_Call
-- or N_Procedure_Call_Statement node points to the Parameter_Association
-- node for the parameter that comes first in declaration order. The
-- remaining named parameters are then chained in declaration order using
-- Next_Named_Actual.
-- This routine also verifies that the number of actuals is compatible with
-- the number and default values of formals, but performs no type checking
-- (type checking is done by the caller).
-- If the matching succeeds, Success is set to True and the caller proceeds
-- with type-checking. If the match is unsuccessful, then Success is set to
-- False, and the caller attempts a different interpretation, if there is
-- one.
-- If the flag Report is on, the call is not overloaded, and a failure to
-- match can be reported here, rather than in the caller.
procedure Normalize_Actuals
(N : Node_Id;
S : Entity_Id;
Report : Boolean;
Success : out Boolean)
is
Actuals : constant List_Id := Parameter_Associations (N);
Actual : Node_Id := Empty;
Formal : Entity_Id;
Last : Node_Id := Empty;
First_Named : Node_Id := Empty;
Found : Boolean;
Formals_To_Match : Integer := 0;
Actuals_To_Match : Integer := 0;
procedure Chain (A : Node_Id);
-- Add named actual at the proper place in the list, using the
-- Next_Named_Actual link.
function Reporting return Boolean;
-- Determines if an error is to be reported. To report an error, we
-- need Report to be True, and also we do not report errors caused
-- by calls to init procs that occur within other init procs. Such
-- errors must always be cascaded errors, since if all the types are
-- declared correctly, the compiler will certainly build decent calls!
-----------
-- Chain --
-----------
procedure Chain (A : Node_Id) is
begin
if No (Last) then
-- Call node points to first actual in list
Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
else
Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
end if;
Last := A;
Set_Next_Named_Actual (Last, Empty);
end Chain;
---------------
-- Reporting --
---------------
function Reporting return Boolean is
begin
if not Report then
return False;
elsif not Within_Init_Proc then
return True;
elsif Is_Init_Proc (Entity (Name (N))) then
return False;
else
return True;
end if;
end Reporting;
-- Start of processing for Normalize_Actuals
begin
if Is_Access_Type (S) then
-- The name in the call is a function call that returns an access
-- to subprogram. The designated type has the list of formals.
Formal := First_Formal (Designated_Type (S));
else
Formal := First_Formal (S);
end if;
while Present (Formal) loop
Formals_To_Match := Formals_To_Match + 1;
Next_Formal (Formal);
end loop;
-- Find if there is a named association, and verify that no positional
-- associations appear after named ones.
if Present (Actuals) then
Actual := First (Actuals);
end if;
while Present (Actual)
and then Nkind (Actual) /= N_Parameter_Association
loop
Actuals_To_Match := Actuals_To_Match + 1;
Next (Actual);
end loop;
if No (Actual) and Actuals_To_Match = Formals_To_Match then
-- Most common case: positional notation, no defaults
Success := True;
return;
elsif Actuals_To_Match > Formals_To_Match then
-- Too many actuals: will not work
if Reporting then
if Is_Entity_Name (Name (N)) then
Error_Msg_N ("too many arguments in call to&", Name (N));
else
Error_Msg_N ("too many arguments in call", N);
end if;
end if;
Success := False;
return;
end if;
First_Named := Actual;
while Present (Actual) loop
if Nkind (Actual) /= N_Parameter_Association then
Error_Msg_N
("positional parameters not allowed after named ones", Actual);
Success := False;
return;
else
Actuals_To_Match := Actuals_To_Match + 1;
end if;
Next (Actual);
end loop;
if Present (Actuals) then
Actual := First (Actuals);
end if;
Formal := First_Formal (S);
while Present (Formal) loop
-- Match the formals in order. If the corresponding actual
-- is positional, nothing to do. Else scan the list of named
-- actuals to find the one with the right name.
if Present (Actual)
and then Nkind (Actual) /= N_Parameter_Association
then
Next (Actual);
Actuals_To_Match := Actuals_To_Match - 1;
Formals_To_Match := Formals_To_Match - 1;
else
-- For named parameters, search the list of actuals to find
-- one that matches the next formal name.
Actual := First_Named;
Found := False;
while Present (Actual) loop
if Chars (Selector_Name (Actual)) = Chars (Formal) then
Found := True;
Chain (Actual);
Actuals_To_Match := Actuals_To_Match - 1;
Formals_To_Match := Formals_To_Match - 1;
exit;
end if;
Next (Actual);
end loop;
if not Found then
if Ekind (Formal) /= E_In_Parameter
or else No (Default_Value (Formal))
then
if Reporting then
if (Comes_From_Source (S)
or else Sloc (S) = Standard_Location)
and then Is_Overloadable (S)
then
if No (Actuals)
and then
(Nkind (Parent (N)) = N_Procedure_Call_Statement
or else
(Nkind (Parent (N)) = N_Function_Call
or else
Nkind (Parent (N)) = N_Parameter_Association))
and then Ekind (S) /= E_Function
then
Set_Etype (N, Etype (S));
else
Error_Msg_Name_1 := Chars (S);
Error_Msg_Sloc := Sloc (S);
Error_Msg_NE
("missing argument for parameter & " &
"in call to % declared #", N, Formal);
end if;
elsif Is_Overloadable (S) then
Error_Msg_Name_1 := Chars (S);
-- Point to type derivation that generated the
-- operation.
Error_Msg_Sloc := Sloc (Parent (S));
Error_Msg_NE
("missing argument for parameter & " &
"in call to % (inherited) #", N, Formal);
else
Error_Msg_NE
("missing argument for parameter &", N, Formal);
end if;
end if;
Success := False;
return;
else
Formals_To_Match := Formals_To_Match - 1;
end if;
end if;
end if;
Next_Formal (Formal);
end loop;
if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
Success := True;
return;
else
if Reporting then
-- Find some superfluous named actual that did not get
-- attached to the list of associations.
Actual := First (Actuals);
while Present (Actual) loop
if Nkind (Actual) = N_Parameter_Association
and then Actual /= Last
and then No (Next_Named_Actual (Actual))
then
Error_Msg_N ("unmatched actual & in call",
Selector_Name (Actual));
exit;
end if;
Next (Actual);
end loop;
end if;
Success := False;
return;
end if;
end Normalize_Actuals;
--------------------------------
-- Note_Possible_Modification --
--------------------------------
procedure Note_Possible_Modification (N : Node_Id) is
Modification_Comes_From_Source : constant Boolean :=
Comes_From_Source (Parent (N));
Ent : Entity_Id;
Exp : Node_Id;
begin
-- Loop to find referenced entity, if there is one
Exp := N;
loop
<<Continue>>
Ent := Empty;
if Is_Entity_Name (Exp) then
Ent := Entity (Exp);
-- If the entity is missing, it is an undeclared identifier,
-- and there is nothing to annotate.
if No (Ent) then
return;
end if;
elsif Nkind (Exp) = N_Explicit_Dereference then
declare
P : constant Node_Id := Prefix (Exp);
begin
if Nkind (P) = N_Selected_Component
and then Present (
Entry_Formal (Entity (Selector_Name (P))))
then
-- Case of a reference to an entry formal
Ent := Entry_Formal (Entity (Selector_Name (P)));
elsif Nkind (P) = N_Identifier
and then Nkind (Parent (Entity (P))) = N_Object_Declaration
and then Present (Expression (Parent (Entity (P))))
and then Nkind (Expression (Parent (Entity (P))))
= N_Reference
then
-- Case of a reference to a value on which
-- side effects have been removed.
Exp := Prefix (Expression (Parent (Entity (P))));
goto Continue;
else
return;
end if;
end;
elsif Nkind (Exp) = N_Type_Conversion
or else Nkind (Exp) = N_Unchecked_Type_Conversion
then
Exp := Expression (Exp);
goto Continue;
elsif Nkind (Exp) = N_Slice
or else Nkind (Exp) = N_Indexed_Component
or else Nkind (Exp) = N_Selected_Component
then
Exp := Prefix (Exp);
goto Continue;
else
return;
end if;
-- Now look for entity being referenced
if Present (Ent) then
if Is_Object (Ent) then
if Comes_From_Source (Exp)
or else Modification_Comes_From_Source
then
Set_Never_Set_In_Source (Ent, False);
end if;
Set_Is_True_Constant (Ent, False);
Set_Current_Value (Ent, Empty);
Set_Is_Known_Null (Ent, False);
if not Can_Never_Be_Null (Ent) then
Set_Is_Known_Non_Null (Ent, False);
end if;
-- Follow renaming chain
if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
and then Present (Renamed_Object (Ent))
then
Exp := Renamed_Object (Ent);
goto Continue;
end if;
-- Generate a reference only if the assignment comes from
-- source. This excludes, for example, calls to a dispatching
-- assignment operation when the left-hand side is tagged.
if Modification_Comes_From_Source then
Generate_Reference (Ent, Exp, 'm');
end if;
end if;
Kill_Checks (Ent);
return;
end if;
end loop;
end Note_Possible_Modification;
-------------------------
-- Object_Access_Level --
-------------------------
function Object_Access_Level (Obj : Node_Id) return Uint is
E : Entity_Id;
-- Returns the static accessibility level of the view denoted
-- by Obj. Note that the value returned is the result of a
-- call to Scope_Depth. Only scope depths associated with
-- dynamic scopes can actually be returned. Since only
-- relative levels matter for accessibility checking, the fact
-- that the distance between successive levels of accessibility
-- is not always one is immaterial (invariant: if level(E2) is
-- deeper than level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
begin
if Is_Entity_Name (Obj) then
E := Entity (Obj);
-- If E is a type then it denotes a current instance.
-- For this case we add one to the normal accessibility
-- level of the type to ensure that current instances
-- are treated as always being deeper than than the level
-- of any visible named access type (see 3.10.2(21)).
if Is_Type (E) then
return Type_Access_Level (E) + 1;
elsif Present (Renamed_Object (E)) then
return Object_Access_Level (Renamed_Object (E));
-- Similarly, if E is a component of the current instance of a
-- protected type, any instance of it is assumed to be at a deeper
-- level than the type. For a protected object (whose type is an
-- anonymous protected type) its components are at the same level
-- as the type itself.
elsif not Is_Overloadable (E)
and then Ekind (Scope (E)) = E_Protected_Type
and then Comes_From_Source (Scope (E))
then
return Type_Access_Level (Scope (E)) + 1;
else
return Scope_Depth (Enclosing_Dynamic_Scope (E));
end if;
elsif Nkind (Obj) = N_Selected_Component then
if Is_Access_Type (Etype (Prefix (Obj))) then
return Type_Access_Level (Etype (Prefix (Obj)));
else
return Object_Access_Level (Prefix (Obj));
end if;
elsif Nkind (Obj) = N_Indexed_Component then
if Is_Access_Type (Etype (Prefix (Obj))) then
return Type_Access_Level (Etype (Prefix (Obj)));
else
return Object_Access_Level (Prefix (Obj));
end if;
elsif Nkind (Obj) = N_Explicit_Dereference then
-- If the prefix is a selected access discriminant then
-- we make a recursive call on the prefix, which will
-- in turn check the level of the prefix object of
-- the selected discriminant.
if Nkind (Prefix (Obj)) = N_Selected_Component
and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
and then
Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
then
return Object_Access_Level (Prefix (Obj));
else
return Type_Access_Level (Etype (Prefix (Obj)));
end if;
elsif Nkind (Obj) = N_Type_Conversion
or else Nkind (Obj) = N_Unchecked_Type_Conversion
then
return Object_Access_Level (Expression (Obj));
-- Function results are objects, so we get either the access level
-- of the function or, in the case of an indirect call, the level of
-- of the access-to-subprogram type.
elsif Nkind (Obj) = N_Function_Call then
if Is_Entity_Name (Name (Obj)) then
return Subprogram_Access_Level (Entity (Name (Obj)));
else
return Type_Access_Level (Etype (Prefix (Name (Obj))));
end if;
-- For convenience we handle qualified expressions, even though
-- they aren't technically object names.
elsif Nkind (Obj) = N_Qualified_Expression then
return Object_Access_Level (Expression (Obj));
-- Otherwise return the scope level of Standard.
-- (If there are cases that fall through
-- to this point they will be treated as
-- having global accessibility for now. ???)
else
return Scope_Depth (Standard_Standard);
end if;
end Object_Access_Level;
-----------------------
-- Private_Component --
-----------------------
function Private_Component (Type_Id : Entity_Id) return Entity_Id is
Ancestor : constant Entity_Id := Base_Type (Type_Id);
function Trace_Components
(T : Entity_Id;
Check : Boolean) return Entity_Id;
-- Recursive function that does the work, and checks against circular
-- definition for each subcomponent type.
----------------------
-- Trace_Components --
----------------------
function Trace_Components
(T : Entity_Id;
Check : Boolean) return Entity_Id
is
Btype : constant Entity_Id := Base_Type (T);
Component : Entity_Id;
P : Entity_Id;
Candidate : Entity_Id := Empty;
begin
if Check and then Btype = Ancestor then
Error_Msg_N ("circular type definition", Type_Id);
return Any_Type;
end if;
if Is_Private_Type (Btype)
and then not Is_Generic_Type (Btype)
then
if Present (Full_View (Btype))
and then Is_Record_Type (Full_View (Btype))
and then not Is_Frozen (Btype)
then
-- To indicate that the ancestor depends on a private type,
-- the current Btype is sufficient. However, to check for
-- circular definition we must recurse on the full view.
Candidate := Trace_Components (Full_View (Btype), True);
if Candidate = Any_Type then
return Any_Type;
else
return Btype;
end if;
else
return Btype;
end if;
elsif Is_Array_Type (Btype) then
return Trace_Components (Component_Type (Btype), True);
elsif Is_Record_Type (Btype) then
Component := First_Entity (Btype);
while Present (Component) loop
-- Skip anonymous types generated by constrained components
if not Is_Type (Component) then
P := Trace_Components (Etype (Component), True);
if Present (P) then
if P = Any_Type then
return P;
else
Candidate := P;
end if;
end if;
end if;
Next_Entity (Component);
end loop;
return Candidate;
else
return Empty;
end if;
end Trace_Components;
-- Start of processing for Private_Component
begin
return Trace_Components (Type_Id, False);
end Private_Component;
-----------------------
-- Process_End_Label --
-----------------------
procedure Process_End_Label
(N : Node_Id;
Typ : Character;
Ent : Entity_Id)
is
Loc : Source_Ptr;
Nam : Node_Id;
Label_Ref : Boolean;
-- Set True if reference to end label itself is required
Endl : Node_Id;
-- Gets set to the operator symbol or identifier that references
-- the entity Ent. For the child unit case, this is the identifier
-- from the designator. For other cases, this is simply Endl.
procedure Generate_Parent_Ref (N : Node_Id);
-- N is an identifier node that appears as a parent unit reference
-- in the case where Ent is a child unit. This procedure generates
-- an appropriate cross-reference entry.
-------------------------
-- Generate_Parent_Ref --
-------------------------
procedure Generate_Parent_Ref (N : Node_Id) is
Parent_Ent : Entity_Id;
begin
-- Search up scope stack. The reason we do this is that normal
-- visibility analysis would not work for two reasons. First in
-- some subunit cases, the entry for the parent unit may not be
-- visible, and in any case there can be a local entity that
-- hides the scope entity.
Parent_Ent := Current_Scope;
while Present (Parent_Ent) loop
if Chars (Parent_Ent) = Chars (N) then
-- Generate the reference. We do NOT consider this as a
-- reference for unreferenced symbol purposes, but we do
-- force a cross-reference even if the end line does not
-- come from source (the caller already generated the
-- appropriate Typ for this situation).
Generate_Reference
(Parent_Ent, N, 'r', Set_Ref => False, Force => True);
Style.Check_Identifier (N, Parent_Ent);
return;
end if;
Parent_Ent := Scope (Parent_Ent);
end loop;
-- Fall through means entity was not found -- that's odd, but
-- the appropriate thing is simply to ignore and not generate
-- any cross-reference for this entry.
return;
end Generate_Parent_Ref;
-- Start of processing for Process_End_Label
begin
-- If no node, ignore. This happens in some error situations,
-- and also for some internally generated structures where no
-- end label references are required in any case.
if No (N) then
return;
end if;
-- Nothing to do if no End_Label, happens for internally generated
-- constructs where we don't want an end label reference anyway.
-- Also nothing to do if Endl is a string literal, which means
-- there was some prior error (bad operator symbol)
Endl := End_Label (N);
if No (Endl) or else Nkind (Endl) = N_String_Literal then
return;
end if;
-- Reference node is not in extended main source unit
if not In_Extended_Main_Source_Unit (N) then
-- Generally we do not collect references except for the
-- extended main source unit. The one exception is the 'e'
-- entry for a package spec, where it is useful for a client
-- to have the ending information to define scopes.
if Typ /= 'e' then
return;
else
Label_Ref := False;
-- For this case, we can ignore any parent references,
-- but we need the package name itself for the 'e' entry.
if Nkind (Endl) = N_Designator then
Endl := Identifier (Endl);
end if;
end if;
-- Reference is in extended main source unit
else
Label_Ref := True;
-- For designator, generate references for the parent entries
if Nkind (Endl) = N_Designator then
-- Generate references for the prefix if the END line comes
-- from source (otherwise we do not need these references)
if Comes_From_Source (Endl) then
Nam := Name (Endl);
while Nkind (Nam) = N_Selected_Component loop
Generate_Parent_Ref (Selector_Name (Nam));
Nam := Prefix (Nam);
end loop;
Generate_Parent_Ref (Nam);
end if;
Endl := Identifier (Endl);
end if;
end if;
-- If the end label is not for the given entity, then either we have
-- some previous error, or this is a generic instantiation for which
-- we do not need to make a cross-reference in this case anyway. In
-- either case we simply ignore the call.
if Chars (Ent) /= Chars (Endl) then
return;
end if;
-- If label was really there, then generate a normal reference
-- and then adjust the location in the end label to point past
-- the name (which should almost always be the semicolon).
Loc := Sloc (Endl);
if Comes_From_Source (Endl) then
-- If a label reference is required, then do the style check
-- and generate an l-type cross-reference entry for the label
if Label_Ref then
if Style_Check then
Style.Check_Identifier (Endl, Ent);
end if;
Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
end if;
-- Set the location to point past the label (normally this will
-- mean the semicolon immediately following the label). This is
-- done for the sake of the 'e' or 't' entry generated below.
Get_Decoded_Name_String (Chars (Endl));
Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
end if;
-- Now generate the e/t reference
Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
-- Restore Sloc, in case modified above, since we have an identifier
-- and the normal Sloc should be left set in the tree.
Set_Sloc (Endl, Loc);
end Process_End_Label;
------------------
-- Real_Convert --
------------------
-- We do the conversion to get the value of the real string by using
-- the scanner, see Sinput for details on use of the internal source
-- buffer for scanning internal strings.
function Real_Convert (S : String) return Node_Id is
Save_Src : constant Source_Buffer_Ptr := Source;
Negative : Boolean;
begin
Source := Internal_Source_Ptr;
Scan_Ptr := 1;
for J in S'Range loop
Source (Source_Ptr (J)) := S (J);
end loop;
Source (S'Length + 1) := EOF;
if Source (Scan_Ptr) = '-' then
Negative := True;
Scan_Ptr := Scan_Ptr + 1;
else
Negative := False;
end if;
Scan;
if Negative then
Set_Realval (Token_Node, UR_Negate (Realval (Token_Node)));
end if;
Source := Save_Src;
return Token_Node;
end Real_Convert;
---------------------
-- Rep_To_Pos_Flag --
---------------------
function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
begin
return New_Occurrence_Of
(Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
end Rep_To_Pos_Flag;
--------------------
-- Require_Entity --
--------------------
procedure Require_Entity (N : Node_Id) is
begin
if Is_Entity_Name (N) and then No (Entity (N)) then
if Total_Errors_Detected /= 0 then
Set_Entity (N, Any_Id);
else
raise Program_Error;
end if;
end if;
end Require_Entity;
------------------------------
-- Requires_Transient_Scope --
------------------------------
-- A transient scope is required when variable-sized temporaries are
-- allocated in the primary or secondary stack, or when finalization
-- actions must be generated before the next instruction.
function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
Typ : constant Entity_Id := Underlying_Type (Id);
-- Start of processing for Requires_Transient_Scope
begin
-- This is a private type which is not completed yet. This can only
-- happen in a default expression (of a formal parameter or of a
-- record component). Do not expand transient scope in this case
if No (Typ) then
return False;
-- Do not expand transient scope for non-existent procedure return
elsif Typ = Standard_Void_Type then
return False;
-- Elementary types do not require a transient scope
elsif Is_Elementary_Type (Typ) then
return False;
-- Generally, indefinite subtypes require a transient scope, since the
-- back end cannot generate temporaries, since this is not a valid type
-- for declaring an object. It might be possible to relax this in the
-- future, e.g. by declaring the maximum possible space for the type.
elsif Is_Indefinite_Subtype (Typ) then
return True;
-- Functions returning tagged types may dispatch on result so their
-- returned value is allocated on the secondary stack. Controlled
-- type temporaries need finalization.
elsif Is_Tagged_Type (Typ)
or else Has_Controlled_Component (Typ)
then
return True;
-- Record type
elsif Is_Record_Type (Typ) then
-- In GCC 2, discriminated records always require a transient
-- scope because the back end otherwise tries to allocate a
-- variable length temporary for the particular variant.
if Opt.GCC_Version = 2
and then Has_Discriminants (Typ)
then
return True;
-- For GCC 3, or for a non-discriminated record in GCC 2, we are
-- OK if none of the component types requires a transient scope.
-- Note that we already know that this is a definite type (i.e.
-- has discriminant defaults if it is a discriminated record).
else
declare
Comp : Entity_Id;
begin
Comp := First_Entity (Typ);
while Present (Comp) loop
if Ekind (Comp) = E_Component
and then Requires_Transient_Scope (Etype (Comp))
then
return True;
else
Next_Entity (Comp);
end if;
end loop;
end;
return False;
end if;
-- String literal types never require transient scope
elsif Ekind (Typ) = E_String_Literal_Subtype then
return False;
-- Array type. Note that we already know that this is a constrained
-- array, since unconstrained arrays will fail the indefinite test.
elsif Is_Array_Type (Typ) then
-- If component type requires a transient scope, the array does too
if Requires_Transient_Scope (Component_Type (Typ)) then
return True;
-- Otherwise, we only need a transient scope if the size is not
-- known at compile time.
else
return not Size_Known_At_Compile_Time (Typ);
end if;
-- All other cases do not require a transient scope
else
return False;
end if;
end Requires_Transient_Scope;
--------------------------
-- Reset_Analyzed_Flags --
--------------------------
procedure Reset_Analyzed_Flags (N : Node_Id) is
function Clear_Analyzed
(N : Node_Id) return Traverse_Result;
-- Function used to reset Analyzed flags in tree. Note that we do
-- not reset Analyzed flags in entities, since there is no need to
-- renalalyze entities, and indeed, it is wrong to do so, since it
-- can result in generating auxiliary stuff more than once.
--------------------
-- Clear_Analyzed --
--------------------
function Clear_Analyzed
(N : Node_Id) return Traverse_Result
is
begin
if not Has_Extension (N) then
Set_Analyzed (N, False);
end if;
return OK;
end Clear_Analyzed;
function Reset_Analyzed is
new Traverse_Func (Clear_Analyzed);
Discard : Traverse_Result;
pragma Warnings (Off, Discard);
-- Start of processing for Reset_Analyzed_Flags
begin
Discard := Reset_Analyzed (N);
end Reset_Analyzed_Flags;
---------------------------
-- Safe_To_Capture_Value --
---------------------------
function Safe_To_Capture_Value
(N : Node_Id;
Ent : Entity_Id) return Boolean
is
begin
-- The only entities for which we track constant values are variables,
-- out parameters and in out parameters, so check if we have this case.
if Ekind (Ent) /= E_Variable
and then
Ekind (Ent) /= E_Out_Parameter
and then
Ekind (Ent) /= E_In_Out_Parameter
then
return False;
end if;
-- Skip volatile and aliased variables, since funny things might
-- be going on in these cases which we cannot necessarily track.
-- Also skip any variable for which an address clause is given.
-- Should we have a flag Has_Address_Clause ???
if Treat_As_Volatile (Ent)
or else Is_Aliased (Ent)
or else Present (Address_Clause (Ent))
then
return False;
end if;
-- OK, all above conditions are met. We also require that the scope
-- of the reference be the same as the scope of the entity, not
-- counting packages and blocks.
declare
E_Scope : constant Entity_Id := Scope (Ent);
R_Scope : Entity_Id;
begin
R_Scope := Current_Scope;
while R_Scope /= Standard_Standard loop
exit when R_Scope = E_Scope;
if Ekind (R_Scope) /= E_Package
and then
Ekind (R_Scope) /= E_Block
then
return False;
else
R_Scope := Scope (R_Scope);
end if;
end loop;
end;
-- We also require that the reference does not appear in a context
-- where it is not sure to be executed (i.e. a conditional context
-- or an exception handler).
declare
Desc : Node_Id;
P : Node_Id;
begin
Desc := N;
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_If_Statement
or else Nkind (P) = N_Case_Statement
or else (Nkind (P) = N_And_Then and then Desc = Right_Opnd (P))
or else (Nkind (P) = N_Or_Else and then Desc = Right_Opnd (P))
or else Nkind (P) = N_Exception_Handler
or else Nkind (P) = N_Selective_Accept
or else Nkind (P) = N_Conditional_Entry_Call
or else Nkind (P) = N_Timed_Entry_Call
or else Nkind (P) = N_Asynchronous_Select
then
return False;
else
Desc := P;
P := Parent (P);
end if;
end loop;
end;
-- OK, looks safe to set value
return True;
end Safe_To_Capture_Value;
---------------
-- Same_Name --
---------------
function Same_Name (N1, N2 : Node_Id) return Boolean is
K1 : constant Node_Kind := Nkind (N1);
K2 : constant Node_Kind := Nkind (N2);
begin
if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
then
return Chars (N1) = Chars (N2);
elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
then
return Same_Name (Selector_Name (N1), Selector_Name (N2))
and then Same_Name (Prefix (N1), Prefix (N2));
else
return False;
end if;
end Same_Name;
---------------
-- Same_Type --
---------------
function Same_Type (T1, T2 : Entity_Id) return Boolean is
begin
if T1 = T2 then
return True;
elsif not Is_Constrained (T1)
and then not Is_Constrained (T2)
and then Base_Type (T1) = Base_Type (T2)
then
return True;
-- For now don't bother with case of identical constraints, to be
-- fiddled with later on perhaps (this is only used for optimization
-- purposes, so it is not critical to do a best possible job)
else
return False;
end if;
end Same_Type;
------------------------
-- Scope_Is_Transient --
------------------------
function Scope_Is_Transient return Boolean is
begin
return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
end Scope_Is_Transient;
------------------
-- Scope_Within --
------------------
function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
Scop : Entity_Id;
begin
Scop := Scope1;
while Scop /= Standard_Standard loop
Scop := Scope (Scop);
if Scop = Scope2 then
return True;
end if;
end loop;
return False;
end Scope_Within;
--------------------------
-- Scope_Within_Or_Same --
--------------------------
function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
Scop : Entity_Id;
begin
Scop := Scope1;
while Scop /= Standard_Standard loop
if Scop = Scope2 then
return True;
else
Scop := Scope (Scop);
end if;
end loop;
return False;
end Scope_Within_Or_Same;
------------------------
-- Set_Current_Entity --
------------------------
-- The given entity is to be set as the currently visible definition
-- of its associated name (i.e. the Node_Id associated with its name).
-- All we have to do is to get the name from the identifier, and
-- then set the associated Node_Id to point to the given entity.
procedure Set_Current_Entity (E : Entity_Id) is
begin
Set_Name_Entity_Id (Chars (E), E);
end Set_Current_Entity;
---------------------------------
-- Set_Entity_With_Style_Check --
---------------------------------
procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id) is
Val_Actual : Entity_Id;
Nod : Node_Id;
begin
Set_Entity (N, Val);
if Style_Check
and then not Suppress_Style_Checks (Val)
and then not In_Instance
then
if Nkind (N) = N_Identifier then
Nod := N;
elsif Nkind (N) = N_Expanded_Name then
Nod := Selector_Name (N);
else
return;
end if;
-- A special situation arises for derived operations, where we want
-- to do the check against the parent (since the Sloc of the derived
-- operation points to the derived type declaration itself).
Val_Actual := Val;
while not Comes_From_Source (Val_Actual)
and then Nkind (Val_Actual) in N_Entity
and then (Ekind (Val_Actual) = E_Enumeration_Literal
or else Is_Subprogram (Val_Actual)
or else Is_Generic_Subprogram (Val_Actual))
and then Present (Alias (Val_Actual))
loop
Val_Actual := Alias (Val_Actual);
end loop;
-- Renaming declarations for generic actuals do not come from source,
-- and have a different name from that of the entity they rename, so
-- there is no style check to perform here.
if Chars (Nod) = Chars (Val_Actual) then
Style.Check_Identifier (Nod, Val_Actual);
end if;
end if;
Set_Entity (N, Val);
end Set_Entity_With_Style_Check;
------------------------
-- Set_Name_Entity_Id --
------------------------
procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
begin
Set_Name_Table_Info (Id, Int (Val));
end Set_Name_Entity_Id;
---------------------
-- Set_Next_Actual --
---------------------
procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
begin
if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
end if;
end Set_Next_Actual;
-----------------------
-- Set_Public_Status --
-----------------------
procedure Set_Public_Status (Id : Entity_Id) is
S : constant Entity_Id := Current_Scope;
begin
-- Everything in the scope of Standard is public
if S = Standard_Standard then
Set_Is_Public (Id);
-- Entity is definitely not public if enclosing scope is not public
elsif not Is_Public (S) then
return;
-- An object declaration that occurs in a handled sequence of statements
-- is the declaration for a temporary object generated by the expander.
-- It never needs to be made public and furthermore, making it public
-- can cause back end problems if it is of variable size.
elsif Nkind (Parent (Id)) = N_Object_Declaration
and then
Nkind (Parent (Parent (Id))) = N_Handled_Sequence_Of_Statements
then
return;
-- Entities in public packages or records are public
elsif Ekind (S) = E_Package or Is_Record_Type (S) then
Set_Is_Public (Id);
-- The bounds of an entry family declaration can generate object
-- declarations that are visible to the back-end, e.g. in the
-- the declaration of a composite type that contains tasks.
elsif Is_Concurrent_Type (S)
and then not Has_Completion (S)
and then Nkind (Parent (Id)) = N_Object_Declaration
then
Set_Is_Public (Id);
end if;
end Set_Public_Status;
----------------------------
-- Set_Scope_Is_Transient --
----------------------------
procedure Set_Scope_Is_Transient (V : Boolean := True) is
begin
Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
end Set_Scope_Is_Transient;
-------------------
-- Set_Size_Info --
-------------------
procedure Set_Size_Info (T1, T2 : Entity_Id) is
begin
-- We copy Esize, but not RM_Size, since in general RM_Size is
-- subtype specific and does not get inherited by all subtypes.
Set_Esize (T1, Esize (T2));
Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
if Is_Discrete_Or_Fixed_Point_Type (T1)
and then
Is_Discrete_Or_Fixed_Point_Type (T2)
then
Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
end if;
Set_Alignment (T1, Alignment (T2));
end Set_Size_Info;
--------------------
-- Static_Integer --
--------------------
function Static_Integer (N : Node_Id) return Uint is
begin
Analyze_And_Resolve (N, Any_Integer);
if N = Error
or else Error_Posted (N)
or else Etype (N) = Any_Type
then
return No_Uint;
end if;
if Is_Static_Expression (N) then
if not Raises_Constraint_Error (N) then
return Expr_Value (N);
else
return No_Uint;
end if;
elsif Etype (N) = Any_Type then
return No_Uint;
else
Flag_Non_Static_Expr
("static integer expression required here", N);
return No_Uint;
end if;
end Static_Integer;
--------------------------
-- Statically_Different --
--------------------------
function Statically_Different (E1, E2 : Node_Id) return Boolean is
R1 : constant Node_Id := Get_Referenced_Object (E1);
R2 : constant Node_Id := Get_Referenced_Object (E2);
begin
return Is_Entity_Name (R1)
and then Is_Entity_Name (R2)
and then Entity (R1) /= Entity (R2)
and then not Is_Formal (Entity (R1))
and then not Is_Formal (Entity (R2));
end Statically_Different;
-----------------------------
-- Subprogram_Access_Level --
-----------------------------
function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
begin
if Present (Alias (Subp)) then
return Subprogram_Access_Level (Alias (Subp));
else
return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
end if;
end Subprogram_Access_Level;
-----------------
-- Trace_Scope --
-----------------
procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
begin
if Debug_Flag_W then
for J in 0 .. Scope_Stack.Last loop
Write_Str (" ");
end loop;
Write_Str (Msg);
Write_Name (Chars (E));
Write_Str (" line ");
Write_Int (Int (Get_Logical_Line_Number (Sloc (N))));
Write_Eol;
end if;
end Trace_Scope;
-----------------------
-- Transfer_Entities --
-----------------------
procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
Ent : Entity_Id := First_Entity (From);
begin
if No (Ent) then
return;
end if;
if (Last_Entity (To)) = Empty then
Set_First_Entity (To, Ent);
else
Set_Next_Entity (Last_Entity (To), Ent);
end if;
Set_Last_Entity (To, Last_Entity (From));
while Present (Ent) loop
Set_Scope (Ent, To);
if not Is_Public (Ent) then
Set_Public_Status (Ent);
if Is_Public (Ent)
and then Ekind (Ent) = E_Record_Subtype
then
-- The components of the propagated Itype must be public
-- as well.
declare
Comp : Entity_Id;
begin
Comp := First_Entity (Ent);
while Present (Comp) loop
Set_Is_Public (Comp);
Next_Entity (Comp);
end loop;
end;
end if;
end if;
Next_Entity (Ent);
end loop;
Set_First_Entity (From, Empty);
Set_Last_Entity (From, Empty);
end Transfer_Entities;
-----------------------
-- Type_Access_Level --
-----------------------
function Type_Access_Level (Typ : Entity_Id) return Uint is
Btyp : Entity_Id;
begin
-- If the type is an anonymous access type we treat it as being
-- declared at the library level to ensure that names such as
-- X.all'access don't fail static accessibility checks.
-- Ada 2005 (AI-230): In case of anonymous access types that are
-- component_definition or discriminants of a nonlimited type,
-- the level is the same as that of the enclosing component type.
Btyp := Base_Type (Typ);
if Ekind (Btyp) in Access_Kind then
if Ekind (Btyp) = E_Anonymous_Access_Type
and then not Is_Local_Anonymous_Access (Typ) -- Ada 2005 (AI-230)
then
return Scope_Depth (Standard_Standard);
end if;
Btyp := Root_Type (Btyp);
-- The accessibility level of anonymous acccess types associated with
-- discriminants is that of the current instance of the type, and
-- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
if Ekind (Typ) = E_Anonymous_Access_Type
and then Present (Associated_Node_For_Itype (Typ))
and then Nkind (Associated_Node_For_Itype (Typ)) =
N_Discriminant_Specification
then
return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
end if;
end if;
return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
end Type_Access_Level;
--------------------------
-- Unit_Declaration_Node --
--------------------------
function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id is
N : Node_Id := Parent (Unit_Id);
begin
-- Predefined operators do not have a full function declaration
if Ekind (Unit_Id) = E_Operator then
return N;
end if;
while Nkind (N) /= N_Abstract_Subprogram_Declaration
and then Nkind (N) /= N_Formal_Package_Declaration
and then Nkind (N) /= N_Function_Instantiation
and then Nkind (N) /= N_Generic_Package_Declaration
and then Nkind (N) /= N_Generic_Subprogram_Declaration
and then Nkind (N) /= N_Package_Declaration
and then Nkind (N) /= N_Package_Body
and then Nkind (N) /= N_Package_Instantiation
and then Nkind (N) /= N_Package_Renaming_Declaration
and then Nkind (N) /= N_Procedure_Instantiation
and then Nkind (N) /= N_Protected_Body
and then Nkind (N) /= N_Subprogram_Declaration
and then Nkind (N) /= N_Subprogram_Body
and then Nkind (N) /= N_Subprogram_Body_Stub
and then Nkind (N) /= N_Subprogram_Renaming_Declaration
and then Nkind (N) /= N_Task_Body
and then Nkind (N) /= N_Task_Type_Declaration
and then Nkind (N) not in N_Formal_Subprogram_Declaration
and then Nkind (N) not in N_Generic_Renaming_Declaration
loop
N := Parent (N);
pragma Assert (Present (N));
end loop;
return N;
end Unit_Declaration_Node;
------------------------------
-- Universal_Interpretation --
------------------------------
function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
Index : Interp_Index;
It : Interp;
begin
-- The argument may be a formal parameter of an operator or subprogram
-- with multiple interpretations, or else an expression for an actual.
if Nkind (Opnd) = N_Defining_Identifier
or else not Is_Overloaded (Opnd)
then
if Etype (Opnd) = Universal_Integer
or else Etype (Opnd) = Universal_Real
then
return Etype (Opnd);
else
return Empty;
end if;
else
Get_First_Interp (Opnd, Index, It);
while Present (It.Typ) loop
if It.Typ = Universal_Integer
or else It.Typ = Universal_Real
then
return It.Typ;
end if;
Get_Next_Interp (Index, It);
end loop;
return Empty;
end if;
end Universal_Interpretation;
----------------------
-- Within_Init_Proc --
----------------------
function Within_Init_Proc return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while not Is_Overloadable (S) loop
if S = Standard_Standard then
return False;
else
S := Scope (S);
end if;
end loop;
return Is_Init_Proc (S);
end Within_Init_Proc;
----------------
-- Wrong_Type --
----------------
procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
function Has_One_Matching_Field return Boolean;
-- Determines if Expec_Type is a record type with a single component or
-- discriminant whose type matches the found type or is one dimensional
-- array whose component type matches the found type.
----------------------------
-- Has_One_Matching_Field --
----------------------------
function Has_One_Matching_Field return Boolean is
E : Entity_Id;
begin
if Is_Array_Type (Expec_Type)
and then Number_Dimensions (Expec_Type) = 1
and then
Covers (Etype (Component_Type (Expec_Type)), Found_Type)
then
return True;
elsif not Is_Record_Type (Expec_Type) then
return False;
else
E := First_Entity (Expec_Type);
loop
if No (E) then
return False;
elsif (Ekind (E) /= E_Discriminant
and then Ekind (E) /= E_Component)
or else (Chars (E) = Name_uTag
or else Chars (E) = Name_uParent)
then
Next_Entity (E);
else
exit;
end if;
end loop;
if not Covers (Etype (E), Found_Type) then
return False;
elsif Present (Next_Entity (E)) then
return False;
else
return True;
end if;
end if;
end Has_One_Matching_Field;
-- Start of processing for Wrong_Type
begin
-- Don't output message if either type is Any_Type, or if a message
-- has already been posted for this node. We need to do the latter
-- check explicitly (it is ordinarily done in Errout), because we
-- are using ! to force the output of the error messages.
if Expec_Type = Any_Type
or else Found_Type = Any_Type
or else Error_Posted (Expr)
then
return;
-- In an instance, there is an ongoing problem with completion of
-- type derived from private types. Their structure is what Gigi
-- expects, but the Etype is the parent type rather than the
-- derived private type itself. Do not flag error in this case. The
-- private completion is an entity without a parent, like an Itype.
-- Similarly, full and partial views may be incorrect in the instance.
-- There is no simple way to insure that it is consistent ???
elsif In_Instance then
if Etype (Etype (Expr)) = Etype (Expected_Type)
and then
(Has_Private_Declaration (Expected_Type)
or else Has_Private_Declaration (Etype (Expr)))
and then No (Parent (Expected_Type))
then
return;
end if;
end if;
-- An interesting special check. If the expression is parenthesized
-- and its type corresponds to the type of the sole component of the
-- expected record type, or to the component type of the expected one
-- dimensional array type, then assume we have a bad aggregate attempt.
if Nkind (Expr) in N_Subexpr
and then Paren_Count (Expr) /= 0
and then Has_One_Matching_Field
then
Error_Msg_N ("positional aggregate cannot have one component", Expr);
-- Another special check, if we are looking for a pool-specific access
-- type and we found an E_Access_Attribute_Type, then we have the case
-- of an Access attribute being used in a context which needs a pool-
-- specific type, which is never allowed. The one extra check we make
-- is that the expected designated type covers the Found_Type.
elsif Is_Access_Type (Expec_Type)
and then Ekind (Found_Type) = E_Access_Attribute_Type
and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
and then Covers
(Designated_Type (Expec_Type), Designated_Type (Found_Type))
then
Error_Msg_N ("result must be general access type!", Expr);
Error_Msg_NE ("add ALL to }!", Expr, Expec_Type);
-- If the expected type is an anonymous access type, as for access
-- parameters and discriminants, the error is on the designated types.
elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
if Comes_From_Source (Expec_Type) then
Error_Msg_NE ("expected}!", Expr, Expec_Type);
else
Error_Msg_NE
("expected an access type with designated}",
Expr, Designated_Type (Expec_Type));
end if;
if Is_Access_Type (Found_Type)
and then not Comes_From_Source (Found_Type)
then
Error_Msg_NE
("found an access type with designated}!",
Expr, Designated_Type (Found_Type));
else
if From_With_Type (Found_Type) then
Error_Msg_NE ("found incomplete}!", Expr, Found_Type);
Error_Msg_NE
("\possibly missing with_clause on&", Expr,
Scope (Found_Type));
else
Error_Msg_NE ("found}!", Expr, Found_Type);
end if;
end if;
-- Normal case of one type found, some other type expected
else
-- If the names of the two types are the same, see if some
-- number of levels of qualification will help. Don't try
-- more than three levels, and if we get to standard, it's
-- no use (and probably represents an error in the compiler)
-- Also do not bother with internal scope names.
declare
Expec_Scope : Entity_Id;
Found_Scope : Entity_Id;
begin
Expec_Scope := Expec_Type;
Found_Scope := Found_Type;
for Levels in Int range 0 .. 3 loop
if Chars (Expec_Scope) /= Chars (Found_Scope) then
Error_Msg_Qual_Level := Levels;
exit;
end if;
Expec_Scope := Scope (Expec_Scope);
Found_Scope := Scope (Found_Scope);
exit when Expec_Scope = Standard_Standard
or else Found_Scope = Standard_Standard
or else not Comes_From_Source (Expec_Scope)
or else not Comes_From_Source (Found_Scope);
end loop;
end;
if Is_Record_Type (Expec_Type)
and then Present (Corresponding_Remote_Type (Expec_Type))
then
Error_Msg_NE ("expected}!", Expr,
Corresponding_Remote_Type (Expec_Type));
else
Error_Msg_NE ("expected}!", Expr, Expec_Type);
end if;
if Is_Entity_Name (Expr)
and then Is_Package_Or_Generic_Package (Entity (Expr))
then
Error_Msg_N ("found package name!", Expr);
elsif Is_Entity_Name (Expr)
and then
(Ekind (Entity (Expr)) = E_Procedure
or else
Ekind (Entity (Expr)) = E_Generic_Procedure)
then
if Ekind (Expec_Type) = E_Access_Subprogram_Type then
Error_Msg_N
("found procedure name, possibly missing Access attribute!",
Expr);
else
Error_Msg_N ("found procedure name instead of function!", Expr);
end if;
elsif Nkind (Expr) = N_Function_Call
and then Ekind (Expec_Type) = E_Access_Subprogram_Type
and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
and then No (Parameter_Associations (Expr))
then
Error_Msg_N
("found function name, possibly missing Access attribute!",
Expr);
-- Catch common error: a prefix or infix operator which is not
-- directly visible because the type isn't.
elsif Nkind (Expr) in N_Op
and then Is_Overloaded (Expr)
and then not Is_Immediately_Visible (Expec_Type)
and then not Is_Potentially_Use_Visible (Expec_Type)
and then not In_Use (Expec_Type)
and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
then
Error_Msg_N
("operator of the type is not directly visible!", Expr);
elsif Ekind (Found_Type) = E_Void
and then Present (Parent (Found_Type))
and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
then
Error_Msg_NE ("found premature usage of}!", Expr, Found_Type);
else
Error_Msg_NE ("found}!", Expr, Found_Type);
end if;
Error_Msg_Qual_Level := 0;
end if;
end Wrong_Type;
end Sem_Util;