blob: ac5f38da2ced902120c30b56b99c7b021cb51924 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 4 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Util; use Exp_Util;
with Fname; use Fname;
with Itypes; use Itypes;
with Lib; use Lib;
with Lib.Xref; use Lib.Xref;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Output; use Output;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Cat; use Sem_Cat;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch8; use Sem_Ch8;
with Sem_Dist; use Sem_Dist;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sem_Type; use Sem_Type;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Tbuild; use Tbuild;
with GNAT.Spelling_Checker; use GNAT.Spelling_Checker;
package body Sem_Ch4 is
-----------------------
-- Local Subprograms --
-----------------------
procedure Analyze_Expression (N : Node_Id);
-- For expressions that are not names, this is just a call to analyze.
-- If the expression is a name, it may be a call to a parameterless
-- function, and if so must be converted into an explicit call node
-- and analyzed as such. This deproceduring must be done during the first
-- pass of overload resolution, because otherwise a procedure call with
-- overloaded actuals may fail to resolve. See 4327-001 for an example.
procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
-- Analyze a call of the form "+"(x, y), etc. The prefix of the call
-- is an operator name or an expanded name whose selector is an operator
-- name, and one possible interpretation is as a predefined operator.
procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
-- If the prefix of a selected_component is overloaded, the proper
-- interpretation that yields a record type with the proper selector
-- name must be selected.
procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
-- Procedure to analyze a user defined binary operator, which is resolved
-- like a function, but instead of a list of actuals it is presented
-- with the left and right operands of an operator node.
procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
-- Procedure to analyze a user defined unary operator, which is resolved
-- like a function, but instead of a list of actuals, it is presented with
-- the operand of the operator node.
procedure Ambiguous_Operands (N : Node_Id);
-- for equality, membership, and comparison operators with overloaded
-- arguments, list possible interpretations.
procedure Analyze_One_Call
(N : Node_Id;
Nam : Entity_Id;
Report : Boolean;
Success : out Boolean;
Skip_First : Boolean := False);
-- Check one interpretation of an overloaded subprogram name for
-- compatibility with the types of the actuals in a call. If there is a
-- single interpretation which does not match, post error if Report is
-- set to True.
--
-- Nam is the entity that provides the formals against which the actuals
-- are checked. Nam is either the name of a subprogram, or the internal
-- subprogram type constructed for an access_to_subprogram. If the actuals
-- are compatible with Nam, then Nam is added to the list of candidate
-- interpretations for N, and Success is set to True.
--
-- The flag Skip_First is used when analyzing a call that was rewritten
-- from object notation. In this case the first actual may have to receive
-- an explicit dereference, depending on the first formal of the operation
-- being called. The caller will have verified that the object is legal
-- for the call. If the remaining parameters match, the first parameter
-- will rewritten as a dereference if needed, prior to completing analysis.
procedure Check_Misspelled_Selector
(Prefix : Entity_Id;
Sel : Node_Id);
-- Give possible misspelling diagnostic if Sel is likely to be
-- a misspelling of one of the selectors of the Prefix.
-- This is called by Analyze_Selected_Component after producing
-- an invalid selector error message.
function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
-- Verify that type T is declared in scope S. Used to find intepretations
-- for operators given by expanded names. This is abstracted as a separate
-- function to handle extensions to System, where S is System, but T is
-- declared in the extension.
procedure Find_Arithmetic_Types
(L, R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id);
-- L and R are the operands of an arithmetic operator. Find
-- consistent pairs of interpretations for L and R that have a
-- numeric type consistent with the semantics of the operator.
procedure Find_Comparison_Types
(L, R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id);
-- L and R are operands of a comparison operator. Find consistent
-- pairs of interpretations for L and R.
procedure Find_Concatenation_Types
(L, R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id);
-- For the four varieties of concatenation
procedure Find_Equality_Types
(L, R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id);
-- Ditto for equality operators
procedure Find_Boolean_Types
(L, R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id);
-- Ditto for binary logical operations
procedure Find_Negation_Types
(R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id);
-- Find consistent interpretation for operand of negation operator
procedure Find_Non_Universal_Interpretations
(N : Node_Id;
R : Node_Id;
Op_Id : Entity_Id;
T1 : Entity_Id);
-- For equality and comparison operators, the result is always boolean,
-- and the legality of the operation is determined from the visibility
-- of the operand types. If one of the operands has a universal interpre-
-- tation, the legality check uses some compatible non-universal
-- interpretation of the other operand. N can be an operator node, or
-- a function call whose name is an operator designator.
procedure Find_Unary_Types
(R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id);
-- Unary arithmetic types: plus, minus, abs
procedure Check_Arithmetic_Pair
(T1, T2 : Entity_Id;
Op_Id : Entity_Id;
N : Node_Id);
-- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
-- types for left and right operand. Determine whether they constitute
-- a valid pair for the given operator, and record the corresponding
-- interpretation of the operator node. The node N may be an operator
-- node (the usual case) or a function call whose prefix is an operator
-- designator. In both cases Op_Id is the operator name itself.
procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
-- Give detailed information on overloaded call where none of the
-- interpretations match. N is the call node, Nam the designator for
-- the overloaded entity being called.
function Junk_Operand (N : Node_Id) return Boolean;
-- Test for an operand that is an inappropriate entity (e.g. a package
-- name or a label). If so, issue an error message and return True. If
-- the operand is not an inappropriate entity kind, return False.
procedure Operator_Check (N : Node_Id);
-- Verify that an operator has received some valid interpretation. If none
-- was found, determine whether a use clause would make the operation
-- legal. The variable Candidate_Type (defined in Sem_Type) is set for
-- every type compatible with the operator, even if the operator for the
-- type is not directly visible. The routine uses this type to emit a more
-- informative message.
procedure Process_Implicit_Dereference_Prefix
(E : Entity_Id;
P : Node_Id);
-- Called when P is the prefix of an implicit dereference, denoting an
-- object E. If in semantics only mode (-gnatc or generic), record that is
-- a reference to E. Normally, such a reference is generated only when the
-- implicit dereference is expanded into an explicit one. E may be empty,
-- in which case this procedure does nothing.
procedure Remove_Abstract_Operations (N : Node_Id);
-- Ada 2005: implementation of AI-310. An abstract non-dispatching
-- operation is not a candidate interpretation.
function Try_Indexed_Call
(N : Node_Id;
Nam : Entity_Id;
Typ : Entity_Id) return Boolean;
-- If a function has defaults for all its actuals, a call to it may
-- in fact be an indexing on the result of the call. Try_Indexed_Call
-- attempts the interpretation as an indexing, prior to analysis as
-- a call. If both are possible, the node is overloaded with both
-- interpretations (same symbol but two different types).
function Try_Indirect_Call
(N : Node_Id;
Nam : Entity_Id;
Typ : Entity_Id) return Boolean;
-- Similarly, a function F that needs no actuals can return an access
-- to a subprogram, and the call F (X) interpreted as F.all (X). In
-- this case the call may be overloaded with both interpretations.
function Try_Object_Operation (N : Node_Id) return Boolean;
-- Ada 2005 (AI-252): Give support to the object operation notation
------------------------
-- Ambiguous_Operands --
------------------------
procedure Ambiguous_Operands (N : Node_Id) is
procedure List_Operand_Interps (Opnd : Node_Id);
--------------------------
-- List_Operand_Interps --
--------------------------
procedure List_Operand_Interps (Opnd : Node_Id) is
Nam : Node_Id;
Err : Node_Id := N;
begin
if Is_Overloaded (Opnd) then
if Nkind (Opnd) in N_Op then
Nam := Opnd;
elsif Nkind (Opnd) = N_Function_Call then
Nam := Name (Opnd);
else
return;
end if;
else
return;
end if;
if Opnd = Left_Opnd (N) then
Error_Msg_N
("\left operand has the following interpretations", N);
else
Error_Msg_N
("\right operand has the following interpretations", N);
Err := Opnd;
end if;
List_Interps (Nam, Err);
end List_Operand_Interps;
-- Start of processing for Ambiguous_Operands
begin
if Nkind (N) = N_In
or else Nkind (N) = N_Not_In
then
Error_Msg_N ("ambiguous operands for membership", N);
elsif Nkind (N) = N_Op_Eq
or else Nkind (N) = N_Op_Ne
then
Error_Msg_N ("ambiguous operands for equality", N);
else
Error_Msg_N ("ambiguous operands for comparison", N);
end if;
if All_Errors_Mode then
List_Operand_Interps (Left_Opnd (N));
List_Operand_Interps (Right_Opnd (N));
else
Error_Msg_N ("\use -gnatf switch for details", N);
end if;
end Ambiguous_Operands;
-----------------------
-- Analyze_Aggregate --
-----------------------
-- Most of the analysis of Aggregates requires that the type be known,
-- and is therefore put off until resolution.
procedure Analyze_Aggregate (N : Node_Id) is
begin
if No (Etype (N)) then
Set_Etype (N, Any_Composite);
end if;
end Analyze_Aggregate;
-----------------------
-- Analyze_Allocator --
-----------------------
procedure Analyze_Allocator (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Sav_Errs : constant Nat := Serious_Errors_Detected;
E : Node_Id := Expression (N);
Acc_Type : Entity_Id;
Type_Id : Entity_Id;
begin
Check_Restriction (No_Allocators, N);
if Nkind (E) = N_Qualified_Expression then
Acc_Type := Create_Itype (E_Allocator_Type, N);
Set_Etype (Acc_Type, Acc_Type);
Init_Size_Align (Acc_Type);
Find_Type (Subtype_Mark (E));
Type_Id := Entity (Subtype_Mark (E));
Check_Fully_Declared (Type_Id, N);
Set_Directly_Designated_Type (Acc_Type, Type_Id);
if Is_Limited_Type (Type_Id)
and then Comes_From_Source (N)
and then not In_Instance_Body
then
-- Ada 2005 (AI-287): Do not post an error if the expression
-- corresponds to a limited aggregate. Limited aggregates
-- are checked in sem_aggr in a per-component manner
-- (compare with handling of Get_Value subprogram).
if Ada_Version >= Ada_05
and then Nkind (Expression (E)) = N_Aggregate
then
null;
else
Error_Msg_N ("initialization not allowed for limited types", N);
Explain_Limited_Type (Type_Id, N);
end if;
end if;
Analyze_And_Resolve (Expression (E), Type_Id);
-- A qualified expression requires an exact match of the type,
-- class-wide matching is not allowed.
if Is_Class_Wide_Type (Type_Id)
and then Base_Type (Etype (Expression (E))) /= Base_Type (Type_Id)
then
Wrong_Type (Expression (E), Type_Id);
end if;
Check_Non_Static_Context (Expression (E));
-- We don't analyze the qualified expression itself because it's
-- part of the allocator
Set_Etype (E, Type_Id);
-- Case where no qualified expression is present
else
declare
Def_Id : Entity_Id;
Base_Typ : Entity_Id;
begin
-- If the allocator includes a N_Subtype_Indication then a
-- constraint is present, otherwise the node is a subtype mark.
-- Introduce an explicit subtype declaration into the tree
-- defining some anonymous subtype and rewrite the allocator to
-- use this subtype rather than the subtype indication.
-- It is important to introduce the explicit subtype declaration
-- so that the bounds of the subtype indication are attached to
-- the tree in case the allocator is inside a generic unit.
if Nkind (E) = N_Subtype_Indication then
-- A constraint is only allowed for a composite type in Ada
-- 95. In Ada 83, a constraint is also allowed for an
-- access-to-composite type, but the constraint is ignored.
Find_Type (Subtype_Mark (E));
Base_Typ := Entity (Subtype_Mark (E));
if Is_Elementary_Type (Base_Typ) then
if not (Ada_Version = Ada_83
and then Is_Access_Type (Base_Typ))
then
Error_Msg_N ("constraint not allowed here", E);
if Nkind (Constraint (E))
= N_Index_Or_Discriminant_Constraint
then
Error_Msg_N
("\if qualified expression was meant, " &
"use apostrophe", Constraint (E));
end if;
end if;
-- Get rid of the bogus constraint:
Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
Analyze_Allocator (N);
return;
-- Ada 2005, AI-363: if the designated type has a constrained
-- partial view, it cannot receive a discriminant constraint,
-- and the allocated object is unconstrained.
elsif Ada_Version >= Ada_05
and then Has_Constrained_Partial_View (Base_Typ)
then
Error_Msg_N
("constraint no allowed when type " &
"has a constrained partial view", Constraint (E));
end if;
if Expander_Active then
Def_Id :=
Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
Insert_Action (E,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Indication => Relocate_Node (E)));
if Sav_Errs /= Serious_Errors_Detected
and then Nkind (Constraint (E))
= N_Index_Or_Discriminant_Constraint
then
Error_Msg_N
("if qualified expression was meant, " &
"use apostrophe!", Constraint (E));
end if;
E := New_Occurrence_Of (Def_Id, Loc);
Rewrite (Expression (N), E);
end if;
end if;
Type_Id := Process_Subtype (E, N);
Acc_Type := Create_Itype (E_Allocator_Type, N);
Set_Etype (Acc_Type, Acc_Type);
Init_Size_Align (Acc_Type);
Set_Directly_Designated_Type (Acc_Type, Type_Id);
Check_Fully_Declared (Type_Id, N);
-- Ada 2005 (AI-231)
if Can_Never_Be_Null (Type_Id) then
Error_Msg_N ("(Ada 2005) qualified expression required",
Expression (N));
end if;
-- Check restriction against dynamically allocated protected
-- objects. Note that when limited aggregates are supported,
-- a similar test should be applied to an allocator with a
-- qualified expression ???
if Is_Protected_Type (Type_Id) then
Check_Restriction (No_Protected_Type_Allocators, N);
end if;
-- Check for missing initialization. Skip this check if we already
-- had errors on analyzing the allocator, since in that case these
-- are probably cascaded errors
if Is_Indefinite_Subtype (Type_Id)
and then Serious_Errors_Detected = Sav_Errs
then
if Is_Class_Wide_Type (Type_Id) then
Error_Msg_N
("initialization required in class-wide allocation", N);
else
Error_Msg_N
("initialization required in unconstrained allocation", N);
end if;
end if;
end;
end if;
if Is_Abstract (Type_Id) then
Error_Msg_N ("cannot allocate abstract object", E);
end if;
if Has_Task (Designated_Type (Acc_Type)) then
Check_Restriction (No_Tasking, N);
Check_Restriction (Max_Tasks, N);
Check_Restriction (No_Task_Allocators, N);
end if;
-- If the No_Streams restriction is set, check that the type of the
-- object is not, and does not contain, any subtype derived from
-- Ada.Streams.Root_Stream_Type. Note that we guard the call to
-- Has_Stream just for efficiency reasons. There is no point in
-- spending time on a Has_Stream check if the restriction is not set.
if Restrictions.Set (No_Streams) then
if Has_Stream (Designated_Type (Acc_Type)) then
Check_Restriction (No_Streams, N);
end if;
end if;
Set_Etype (N, Acc_Type);
if not Is_Library_Level_Entity (Acc_Type) then
Check_Restriction (No_Local_Allocators, N);
end if;
if Serious_Errors_Detected > Sav_Errs then
Set_Error_Posted (N);
Set_Etype (N, Any_Type);
end if;
end Analyze_Allocator;
---------------------------
-- Analyze_Arithmetic_Op --
---------------------------
procedure Analyze_Arithmetic_Op (N : Node_Id) is
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
Op_Id : Entity_Id;
begin
Candidate_Type := Empty;
Analyze_Expression (L);
Analyze_Expression (R);
-- If the entity is already set, the node is the instantiation of
-- a generic node with a non-local reference, or was manufactured
-- by a call to Make_Op_xxx. In either case the entity is known to
-- be valid, and we do not need to collect interpretations, instead
-- we just get the single possible interpretation.
Op_Id := Entity (N);
if Present (Op_Id) then
if Ekind (Op_Id) = E_Operator then
if (Nkind (N) = N_Op_Divide or else
Nkind (N) = N_Op_Mod or else
Nkind (N) = N_Op_Multiply or else
Nkind (N) = N_Op_Rem)
and then Treat_Fixed_As_Integer (N)
then
null;
else
Set_Etype (N, Any_Type);
Find_Arithmetic_Types (L, R, Op_Id, N);
end if;
else
Set_Etype (N, Any_Type);
Add_One_Interp (N, Op_Id, Etype (Op_Id));
end if;
-- Entity is not already set, so we do need to collect interpretations
else
Op_Id := Get_Name_Entity_Id (Chars (N));
Set_Etype (N, Any_Type);
while Present (Op_Id) loop
if Ekind (Op_Id) = E_Operator
and then Present (Next_Entity (First_Entity (Op_Id)))
then
Find_Arithmetic_Types (L, R, Op_Id, N);
-- The following may seem superfluous, because an operator cannot
-- be generic, but this ignores the cleverness of the author of
-- ACVC bc1013a.
elsif Is_Overloadable (Op_Id) then
Analyze_User_Defined_Binary_Op (N, Op_Id);
end if;
Op_Id := Homonym (Op_Id);
end loop;
end if;
Operator_Check (N);
end Analyze_Arithmetic_Op;
------------------
-- Analyze_Call --
------------------
-- Function, procedure, and entry calls are checked here. The Name in
-- the call may be overloaded. The actuals have been analyzed and may
-- themselves be overloaded. On exit from this procedure, the node N
-- may have zero, one or more interpretations. In the first case an
-- error message is produced. In the last case, the node is flagged
-- as overloaded and the interpretations are collected in All_Interp.
-- If the name is an Access_To_Subprogram, it cannot be overloaded, but
-- the type-checking is similar to that of other calls.
procedure Analyze_Call (N : Node_Id) is
Actuals : constant List_Id := Parameter_Associations (N);
Nam : Node_Id := Name (N);
X : Interp_Index;
It : Interp;
Nam_Ent : Entity_Id;
Success : Boolean := False;
function Name_Denotes_Function return Boolean;
-- If the type of the name is an access to subprogram, this may be
-- the type of a name, or the return type of the function being called.
-- If the name is not an entity then it can denote a protected function.
-- Until we distinguish Etype from Return_Type, we must use this
-- routine to resolve the meaning of the name in the call.
---------------------------
-- Name_Denotes_Function --
---------------------------
function Name_Denotes_Function return Boolean is
begin
if Is_Entity_Name (Nam) then
return Ekind (Entity (Nam)) = E_Function;
elsif Nkind (Nam) = N_Selected_Component then
return Ekind (Entity (Selector_Name (Nam))) = E_Function;
else
return False;
end if;
end Name_Denotes_Function;
-- Start of processing for Analyze_Call
begin
-- Initialize the type of the result of the call to the error type,
-- which will be reset if the type is successfully resolved.
Set_Etype (N, Any_Type);
if not Is_Overloaded (Nam) then
-- Only one interpretation to check
if Ekind (Etype (Nam)) = E_Subprogram_Type then
Nam_Ent := Etype (Nam);
-- If the prefix is an access_to_subprogram, this may be an indirect
-- call. This is the case if the name in the call is not an entity
-- name, or if it is a function name in the context of a procedure
-- call. In this latter case, we have a call to a parameterless
-- function that returns a pointer_to_procedure which is the entity
-- being called.
elsif Is_Access_Type (Etype (Nam))
and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
and then
(not Name_Denotes_Function
or else Nkind (N) = N_Procedure_Call_Statement)
then
Nam_Ent := Designated_Type (Etype (Nam));
Insert_Explicit_Dereference (Nam);
-- Selected component case. Simple entry or protected operation,
-- where the entry name is given by the selector name.
elsif Nkind (Nam) = N_Selected_Component then
Nam_Ent := Entity (Selector_Name (Nam));
if Ekind (Nam_Ent) /= E_Entry
and then Ekind (Nam_Ent) /= E_Entry_Family
and then Ekind (Nam_Ent) /= E_Function
and then Ekind (Nam_Ent) /= E_Procedure
then
Error_Msg_N ("name in call is not a callable entity", Nam);
Set_Etype (N, Any_Type);
return;
end if;
-- If the name is an Indexed component, it can be a call to a member
-- of an entry family. The prefix must be a selected component whose
-- selector is the entry. Analyze_Procedure_Call normalizes several
-- kinds of call into this form.
elsif Nkind (Nam) = N_Indexed_Component then
if Nkind (Prefix (Nam)) = N_Selected_Component then
Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
else
Error_Msg_N ("name in call is not a callable entity", Nam);
Set_Etype (N, Any_Type);
return;
end if;
elsif not Is_Entity_Name (Nam) then
Error_Msg_N ("name in call is not a callable entity", Nam);
Set_Etype (N, Any_Type);
return;
else
Nam_Ent := Entity (Nam);
-- If no interpretations, give error message
if not Is_Overloadable (Nam_Ent) then
declare
L : constant Boolean := Is_List_Member (N);
K : constant Node_Kind := Nkind (Parent (N));
begin
-- If the node is in a list whose parent is not an
-- expression then it must be an attempted procedure call.
if L and then K not in N_Subexpr then
if Ekind (Entity (Nam)) = E_Generic_Procedure then
Error_Msg_NE
("must instantiate generic procedure& before call",
Nam, Entity (Nam));
else
Error_Msg_N
("procedure or entry name expected", Nam);
end if;
-- Check for tasking cases where only an entry call will do
elsif not L
and then (K = N_Entry_Call_Alternative
or else K = N_Triggering_Alternative)
then
Error_Msg_N ("entry name expected", Nam);
-- Otherwise give general error message
else
Error_Msg_N ("invalid prefix in call", Nam);
end if;
return;
end;
end if;
end if;
Analyze_One_Call (N, Nam_Ent, True, Success);
-- If this is an indirect call, the return type of the access_to
-- subprogram may be an incomplete type. At the point of the call,
-- use the full type if available, and at the same time update
-- the return type of the access_to_subprogram.
if Success
and then Nkind (Nam) = N_Explicit_Dereference
and then Ekind (Etype (N)) = E_Incomplete_Type
and then Present (Full_View (Etype (N)))
then
Set_Etype (N, Full_View (Etype (N)));
Set_Etype (Nam_Ent, Etype (N));
end if;
else
-- An overloaded selected component must denote overloaded
-- operations of a concurrent type. The interpretations are
-- attached to the simple name of those operations.
if Nkind (Nam) = N_Selected_Component then
Nam := Selector_Name (Nam);
end if;
Get_First_Interp (Nam, X, It);
while Present (It.Nam) loop
Nam_Ent := It.Nam;
-- Name may be call that returns an access to subprogram, or more
-- generally an overloaded expression one of whose interpretations
-- yields an access to subprogram. If the name is an entity, we
-- do not dereference, because the node is a call that returns
-- the access type: note difference between f(x), where the call
-- may return an access subprogram type, and f(x)(y), where the
-- type returned by the call to f is implicitly dereferenced to
-- analyze the outer call.
if Is_Access_Type (Nam_Ent) then
Nam_Ent := Designated_Type (Nam_Ent);
elsif Is_Access_Type (Etype (Nam_Ent))
and then not Is_Entity_Name (Nam)
and then Ekind (Designated_Type (Etype (Nam_Ent)))
= E_Subprogram_Type
then
Nam_Ent := Designated_Type (Etype (Nam_Ent));
end if;
Analyze_One_Call (N, Nam_Ent, False, Success);
-- If the interpretation succeeds, mark the proper type of the
-- prefix (any valid candidate will do). If not, remove the
-- candidate interpretation. This only needs to be done for
-- overloaded protected operations, for other entities disambi-
-- guation is done directly in Resolve.
if Success then
Set_Etype (Nam, It.Typ);
elsif Nkind (Name (N)) = N_Selected_Component
or else Nkind (Name (N)) = N_Function_Call
then
Remove_Interp (X);
end if;
Get_Next_Interp (X, It);
end loop;
-- If the name is the result of a function call, it can only
-- be a call to a function returning an access to subprogram.
-- Insert explicit dereference.
if Nkind (Nam) = N_Function_Call then
Insert_Explicit_Dereference (Nam);
end if;
if Etype (N) = Any_Type then
-- None of the interpretations is compatible with the actuals
Diagnose_Call (N, Nam);
-- Special checks for uninstantiated put routines
if Nkind (N) = N_Procedure_Call_Statement
and then Is_Entity_Name (Nam)
and then Chars (Nam) = Name_Put
and then List_Length (Actuals) = 1
then
declare
Arg : constant Node_Id := First (Actuals);
Typ : Entity_Id;
begin
if Nkind (Arg) = N_Parameter_Association then
Typ := Etype (Explicit_Actual_Parameter (Arg));
else
Typ := Etype (Arg);
end if;
if Is_Signed_Integer_Type (Typ) then
Error_Msg_N
("possible missing instantiation of " &
"'Text_'I'O.'Integer_'I'O!", Nam);
elsif Is_Modular_Integer_Type (Typ) then
Error_Msg_N
("possible missing instantiation of " &
"'Text_'I'O.'Modular_'I'O!", Nam);
elsif Is_Floating_Point_Type (Typ) then
Error_Msg_N
("possible missing instantiation of " &
"'Text_'I'O.'Float_'I'O!", Nam);
elsif Is_Ordinary_Fixed_Point_Type (Typ) then
Error_Msg_N
("possible missing instantiation of " &
"'Text_'I'O.'Fixed_'I'O!", Nam);
elsif Is_Decimal_Fixed_Point_Type (Typ) then
Error_Msg_N
("possible missing instantiation of " &
"'Text_'I'O.'Decimal_'I'O!", Nam);
elsif Is_Enumeration_Type (Typ) then
Error_Msg_N
("possible missing instantiation of " &
"'Text_'I'O.'Enumeration_'I'O!", Nam);
end if;
end;
end if;
elsif not Is_Overloaded (N)
and then Is_Entity_Name (Nam)
then
-- Resolution yields a single interpretation. Verify that
-- is has the proper capitalization.
Set_Entity_With_Style_Check (Nam, Entity (Nam));
Generate_Reference (Entity (Nam), Nam);
Set_Etype (Nam, Etype (Entity (Nam)));
else
Remove_Abstract_Operations (N);
end if;
End_Interp_List;
end if;
end Analyze_Call;
---------------------------
-- Analyze_Comparison_Op --
---------------------------
procedure Analyze_Comparison_Op (N : Node_Id) is
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
Op_Id : Entity_Id := Entity (N);
begin
Set_Etype (N, Any_Type);
Candidate_Type := Empty;
Analyze_Expression (L);
Analyze_Expression (R);
if Present (Op_Id) then
if Ekind (Op_Id) = E_Operator then
Find_Comparison_Types (L, R, Op_Id, N);
else
Add_One_Interp (N, Op_Id, Etype (Op_Id));
end if;
if Is_Overloaded (L) then
Set_Etype (L, Intersect_Types (L, R));
end if;
else
Op_Id := Get_Name_Entity_Id (Chars (N));
while Present (Op_Id) loop
if Ekind (Op_Id) = E_Operator then
Find_Comparison_Types (L, R, Op_Id, N);
else
Analyze_User_Defined_Binary_Op (N, Op_Id);
end if;
Op_Id := Homonym (Op_Id);
end loop;
end if;
Operator_Check (N);
end Analyze_Comparison_Op;
---------------------------
-- Analyze_Concatenation --
---------------------------
-- If the only one-dimensional array type in scope is String,
-- this is the resulting type of the operation. Otherwise there
-- will be a concatenation operation defined for each user-defined
-- one-dimensional array.
procedure Analyze_Concatenation (N : Node_Id) is
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
Op_Id : Entity_Id := Entity (N);
LT : Entity_Id;
RT : Entity_Id;
begin
Set_Etype (N, Any_Type);
Candidate_Type := Empty;
Analyze_Expression (L);
Analyze_Expression (R);
-- If the entity is present, the node appears in an instance,
-- and denotes a predefined concatenation operation. The resulting
-- type is obtained from the arguments when possible. If the arguments
-- are aggregates, the array type and the concatenation type must be
-- visible.
if Present (Op_Id) then
if Ekind (Op_Id) = E_Operator then
LT := Base_Type (Etype (L));
RT := Base_Type (Etype (R));
if Is_Array_Type (LT)
and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
then
Add_One_Interp (N, Op_Id, LT);
elsif Is_Array_Type (RT)
and then LT = Base_Type (Component_Type (RT))
then
Add_One_Interp (N, Op_Id, RT);
-- If one operand is a string type or a user-defined array type,
-- and the other is a literal, result is of the specific type.
elsif
(Root_Type (LT) = Standard_String
or else Scope (LT) /= Standard_Standard)
and then Etype (R) = Any_String
then
Add_One_Interp (N, Op_Id, LT);
elsif
(Root_Type (RT) = Standard_String
or else Scope (RT) /= Standard_Standard)
and then Etype (L) = Any_String
then
Add_One_Interp (N, Op_Id, RT);
elsif not Is_Generic_Type (Etype (Op_Id)) then
Add_One_Interp (N, Op_Id, Etype (Op_Id));
else
-- Type and its operations must be visible
Set_Entity (N, Empty);
Analyze_Concatenation (N);
end if;
else
Add_One_Interp (N, Op_Id, Etype (Op_Id));
end if;
else
Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
while Present (Op_Id) loop
if Ekind (Op_Id) = E_Operator then
-- Do not consider operators declared in dead code, they can
-- not be part of the resolution.
if Is_Eliminated (Op_Id) then
null;
else
Find_Concatenation_Types (L, R, Op_Id, N);
end if;
else
Analyze_User_Defined_Binary_Op (N, Op_Id);
end if;
Op_Id := Homonym (Op_Id);
end loop;
end if;
Operator_Check (N);
end Analyze_Concatenation;
------------------------------------
-- Analyze_Conditional_Expression --
------------------------------------
procedure Analyze_Conditional_Expression (N : Node_Id) is
Condition : constant Node_Id := First (Expressions (N));
Then_Expr : constant Node_Id := Next (Condition);
Else_Expr : constant Node_Id := Next (Then_Expr);
begin
Analyze_Expression (Condition);
Analyze_Expression (Then_Expr);
Analyze_Expression (Else_Expr);
Set_Etype (N, Etype (Then_Expr));
end Analyze_Conditional_Expression;
-------------------------
-- Analyze_Equality_Op --
-------------------------
procedure Analyze_Equality_Op (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
Op_Id : Entity_Id;
begin
Set_Etype (N, Any_Type);
Candidate_Type := Empty;
Analyze_Expression (L);
Analyze_Expression (R);
-- If the entity is set, the node is a generic instance with a non-local
-- reference to the predefined operator or to a user-defined function.
-- It can also be an inequality that is expanded into the negation of a
-- call to a user-defined equality operator.
-- For the predefined case, the result is Boolean, regardless of the
-- type of the operands. The operands may even be limited, if they are
-- generic actuals. If they are overloaded, label the left argument with
-- the common type that must be present, or with the type of the formal
-- of the user-defined function.
if Present (Entity (N)) then
Op_Id := Entity (N);
if Ekind (Op_Id) = E_Operator then
Add_One_Interp (N, Op_Id, Standard_Boolean);
else
Add_One_Interp (N, Op_Id, Etype (Op_Id));
end if;
if Is_Overloaded (L) then
if Ekind (Op_Id) = E_Operator then
Set_Etype (L, Intersect_Types (L, R));
else
Set_Etype (L, Etype (First_Formal (Op_Id)));
end if;
end if;
else
Op_Id := Get_Name_Entity_Id (Chars (N));
while Present (Op_Id) loop
if Ekind (Op_Id) = E_Operator then
Find_Equality_Types (L, R, Op_Id, N);
else
Analyze_User_Defined_Binary_Op (N, Op_Id);
end if;
Op_Id := Homonym (Op_Id);
end loop;
end if;
-- If there was no match, and the operator is inequality, this may
-- be a case where inequality has not been made explicit, as for
-- tagged types. Analyze the node as the negation of an equality
-- operation. This cannot be done earlier, because before analysis
-- we cannot rule out the presence of an explicit inequality.
if Etype (N) = Any_Type
and then Nkind (N) = N_Op_Ne
then
Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
while Present (Op_Id) loop
if Ekind (Op_Id) = E_Operator then
Find_Equality_Types (L, R, Op_Id, N);
else
Analyze_User_Defined_Binary_Op (N, Op_Id);
end if;
Op_Id := Homonym (Op_Id);
end loop;
if Etype (N) /= Any_Type then
Op_Id := Entity (N);
Rewrite (N,
Make_Op_Not (Loc,
Right_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => Relocate_Node (Left_Opnd (N)),
Right_Opnd => Relocate_Node (Right_Opnd (N)))));
Set_Entity (Right_Opnd (N), Op_Id);
Analyze (N);
end if;
end if;
Operator_Check (N);
end Analyze_Equality_Op;
----------------------------------
-- Analyze_Explicit_Dereference --
----------------------------------
procedure Analyze_Explicit_Dereference (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
P : constant Node_Id := Prefix (N);
T : Entity_Id;
I : Interp_Index;
It : Interp;
New_N : Node_Id;
function Is_Function_Type return Boolean;
-- Check whether node may be interpreted as an implicit function call
----------------------
-- Is_Function_Type --
----------------------
function Is_Function_Type return Boolean is
I : Interp_Index;
It : Interp;
begin
if not Is_Overloaded (N) then
return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
else
Get_First_Interp (N, I, It);
while Present (It.Nam) loop
if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
then
return False;
end if;
Get_Next_Interp (I, It);
end loop;
return True;
end if;
end Is_Function_Type;
-- Start of processing for Analyze_Explicit_Dereference
begin
Analyze (P);
Set_Etype (N, Any_Type);
-- Test for remote access to subprogram type, and if so return
-- after rewriting the original tree.
if Remote_AST_E_Dereference (P) then
return;
end if;
-- Normal processing for other than remote access to subprogram type
if not Is_Overloaded (P) then
if Is_Access_Type (Etype (P)) then
-- Set the Etype. We need to go thru Is_For_Access_Subtypes
-- to avoid other problems caused by the Private_Subtype
-- and it is safe to go to the Base_Type because this is the
-- same as converting the access value to its Base_Type.
declare
DT : Entity_Id := Designated_Type (Etype (P));
begin
if Ekind (DT) = E_Private_Subtype
and then Is_For_Access_Subtype (DT)
then
DT := Base_Type (DT);
end if;
Set_Etype (N, DT);
end;
elsif Etype (P) /= Any_Type then
Error_Msg_N ("prefix of dereference must be an access type", N);
return;
end if;
else
Get_First_Interp (P, I, It);
while Present (It.Nam) loop
T := It.Typ;
if Is_Access_Type (T) then
Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
end if;
Get_Next_Interp (I, It);
end loop;
-- Error if no interpretation of the prefix has an access type
if Etype (N) = Any_Type then
Error_Msg_N
("access type required in prefix of explicit dereference", P);
Set_Etype (N, Any_Type);
return;
end if;
end if;
if Is_Function_Type
and then Nkind (Parent (N)) /= N_Indexed_Component
and then (Nkind (Parent (N)) /= N_Function_Call
or else N /= Name (Parent (N)))
and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
or else N /= Name (Parent (N)))
and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
and then (Nkind (Parent (N)) /= N_Attribute_Reference
or else
(Attribute_Name (Parent (N)) /= Name_Address
and then
Attribute_Name (Parent (N)) /= Name_Access))
then
-- Name is a function call with no actuals, in a context that
-- requires deproceduring (including as an actual in an enclosing
-- function or procedure call). There are some pathological cases
-- where the prefix might include functions that return access to
-- subprograms and others that return a regular type. Disambiguation
-- of those has to take place in Resolve.
-- See e.g. 7117-014 and E317-001.
New_N :=
Make_Function_Call (Loc,
Name => Make_Explicit_Dereference (Loc, P),
Parameter_Associations => New_List);
-- If the prefix is overloaded, remove operations that have formals,
-- we know that this is a parameterless call.
if Is_Overloaded (P) then
Get_First_Interp (P, I, It);
while Present (It.Nam) loop
T := It.Typ;
if No (First_Formal (Base_Type (Designated_Type (T)))) then
Set_Etype (P, T);
else
Remove_Interp (I);
end if;
Get_Next_Interp (I, It);
end loop;
end if;
Rewrite (N, New_N);
Analyze (N);
elsif not Is_Function_Type
and then Is_Overloaded (N)
then
-- The prefix may include access to subprograms and other access
-- types. If the context selects the interpretation that is a call,
-- we cannot rewrite the node yet, but we include the result of
-- the call interpretation.
Get_First_Interp (N, I, It);
while Present (It.Nam) loop
if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
then
Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
end if;
Get_Next_Interp (I, It);
end loop;
end if;
-- A value of remote access-to-class-wide must not be dereferenced
-- (RM E.2.2(16)).
Validate_Remote_Access_To_Class_Wide_Type (N);
end Analyze_Explicit_Dereference;
------------------------
-- Analyze_Expression --
------------------------
procedure Analyze_Expression (N : Node_Id) is
begin
Analyze (N);
Check_Parameterless_Call (N);
end Analyze_Expression;
------------------------------------
-- Analyze_Indexed_Component_Form --
------------------------------------
procedure Analyze_Indexed_Component_Form (N : Node_Id) is
P : constant Node_Id := Prefix (N);
Exprs : constant List_Id := Expressions (N);
Exp : Node_Id;
P_T : Entity_Id;
E : Node_Id;
U_N : Entity_Id;
procedure Process_Function_Call;
-- Prefix in indexed component form is an overloadable entity,
-- so the node is a function call. Reformat it as such.
procedure Process_Indexed_Component;
-- Prefix in indexed component form is actually an indexed component.
-- This routine processes it, knowing that the prefix is already
-- resolved.
procedure Process_Indexed_Component_Or_Slice;
-- An indexed component with a single index may designate a slice if
-- the index is a subtype mark. This routine disambiguates these two
-- cases by resolving the prefix to see if it is a subtype mark.
procedure Process_Overloaded_Indexed_Component;
-- If the prefix of an indexed component is overloaded, the proper
-- interpretation is selected by the index types and the context.
---------------------------
-- Process_Function_Call --
---------------------------
procedure Process_Function_Call is
Actual : Node_Id;
begin
Change_Node (N, N_Function_Call);
Set_Name (N, P);
Set_Parameter_Associations (N, Exprs);
Actual := First (Parameter_Associations (N));
while Present (Actual) loop
Analyze (Actual);
Check_Parameterless_Call (Actual);
Next_Actual (Actual);
end loop;
Analyze_Call (N);
end Process_Function_Call;
-------------------------------
-- Process_Indexed_Component --
-------------------------------
procedure Process_Indexed_Component is
Exp : Node_Id;
Array_Type : Entity_Id;
Index : Node_Id;
Pent : Entity_Id := Empty;
begin
Exp := First (Exprs);
if Is_Overloaded (P) then
Process_Overloaded_Indexed_Component;
else
Array_Type := Etype (P);
if Is_Entity_Name (P) then
Pent := Entity (P);
elsif Nkind (P) = N_Selected_Component
and then Is_Entity_Name (Selector_Name (P))
then
Pent := Entity (Selector_Name (P));
end if;
-- Prefix must be appropriate for an array type, taking into
-- account a possible implicit dereference.
if Is_Access_Type (Array_Type) then
Array_Type := Designated_Type (Array_Type);
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
Process_Implicit_Dereference_Prefix (Pent, P);
end if;
if Is_Array_Type (Array_Type) then
null;
elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
Analyze (Exp);
Set_Etype (N, Any_Type);
if not Has_Compatible_Type
(Exp, Entry_Index_Type (Pent))
then
Error_Msg_N ("invalid index type in entry name", N);
elsif Present (Next (Exp)) then
Error_Msg_N ("too many subscripts in entry reference", N);
else
Set_Etype (N, Etype (P));
end if;
return;
elsif Is_Record_Type (Array_Type)
and then Remote_AST_I_Dereference (P)
then
return;
elsif Array_Type = Any_Type then
Set_Etype (N, Any_Type);
return;
-- Here we definitely have a bad indexing
else
if Nkind (Parent (N)) = N_Requeue_Statement
and then Present (Pent) and then Ekind (Pent) = E_Entry
then
Error_Msg_N
("REQUEUE does not permit parameters", First (Exprs));
elsif Is_Entity_Name (P)
and then Etype (P) = Standard_Void_Type
then
Error_Msg_NE ("incorrect use of&", P, Entity (P));
else
Error_Msg_N ("array type required in indexed component", P);
end if;
Set_Etype (N, Any_Type);
return;
end if;
Index := First_Index (Array_Type);
while Present (Index) and then Present (Exp) loop
if not Has_Compatible_Type (Exp, Etype (Index)) then
Wrong_Type (Exp, Etype (Index));
Set_Etype (N, Any_Type);
return;
end if;
Next_Index (Index);
Next (Exp);
end loop;
Set_Etype (N, Component_Type (Array_Type));
if Present (Index) then
Error_Msg_N
("too few subscripts in array reference", First (Exprs));
elsif Present (Exp) then
Error_Msg_N ("too many subscripts in array reference", Exp);
end if;
end if;
end Process_Indexed_Component;
----------------------------------------
-- Process_Indexed_Component_Or_Slice --
----------------------------------------
procedure Process_Indexed_Component_Or_Slice is
begin
Exp := First (Exprs);
while Present (Exp) loop
Analyze_Expression (Exp);
Next (Exp);
end loop;
Exp := First (Exprs);
-- If one index is present, and it is a subtype name, then the
-- node denotes a slice (note that the case of an explicit range
-- for a slice was already built as an N_Slice node in the first
-- place, so that case is not handled here).
-- We use a replace rather than a rewrite here because this is one
-- of the cases in which the tree built by the parser is plain wrong.
if No (Next (Exp))
and then Is_Entity_Name (Exp)
and then Is_Type (Entity (Exp))
then
Replace (N,
Make_Slice (Sloc (N),
Prefix => P,
Discrete_Range => New_Copy (Exp)));
Analyze (N);
-- Otherwise (more than one index present, or single index is not
-- a subtype name), then we have the indexed component case.
else
Process_Indexed_Component;
end if;
end Process_Indexed_Component_Or_Slice;
------------------------------------------
-- Process_Overloaded_Indexed_Component --
------------------------------------------
procedure Process_Overloaded_Indexed_Component is
Exp : Node_Id;
I : Interp_Index;
It : Interp;
Typ : Entity_Id;
Index : Node_Id;
Found : Boolean;
begin
Set_Etype (N, Any_Type);
Get_First_Interp (P, I, It);
while Present (It.Nam) loop
Typ := It.Typ;
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
end if;
if Is_Array_Type (Typ) then
-- Got a candidate: verify that index types are compatible
Index := First_Index (Typ);
Found := True;
Exp := First (Exprs);
while Present (Index) and then Present (Exp) loop
if Has_Compatible_Type (Exp, Etype (Index)) then
null;
else
Found := False;
Remove_Interp (I);
exit;
end if;
Next_Index (Index);
Next (Exp);
end loop;
if Found and then No (Index) and then No (Exp) then
Add_One_Interp (N,
Etype (Component_Type (Typ)),
Etype (Component_Type (Typ)));
end if;
end if;
Get_Next_Interp (I, It);
end loop;
if Etype (N) = Any_Type then
Error_Msg_N ("no legal interpetation for indexed component", N);
Set_Is_Overloaded (N, False);
end if;
End_Interp_List;
end Process_Overloaded_Indexed_Component;
-- Start of processing for Analyze_Indexed_Component_Form
begin
-- Get name of array, function or type
Analyze (P);
if Nkind (N) = N_Function_Call
or else Nkind (N) = N_Procedure_Call_Statement
then
-- If P is an explicit dereference whose prefix is of a
-- remote access-to-subprogram type, then N has already
-- been rewritten as a subprogram call and analyzed.
return;
end if;
pragma Assert (Nkind (N) = N_Indexed_Component);
P_T := Base_Type (Etype (P));
if Is_Entity_Name (P)
or else Nkind (P) = N_Operator_Symbol
then
U_N := Entity (P);
if Ekind (U_N) in Type_Kind then
-- Reformat node as a type conversion
E := Remove_Head (Exprs);
if Present (First (Exprs)) then
Error_Msg_N
("argument of type conversion must be single expression", N);
end if;
Change_Node (N, N_Type_Conversion);
Set_Subtype_Mark (N, P);
Set_Etype (N, U_N);
Set_Expression (N, E);
-- After changing the node, call for the specific Analysis
-- routine directly, to avoid a double call to the expander.
Analyze_Type_Conversion (N);
return;
end if;
if Is_Overloadable (U_N) then
Process_Function_Call;
elsif Ekind (Etype (P)) = E_Subprogram_Type
or else (Is_Access_Type (Etype (P))
and then
Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type)
then
-- Call to access_to-subprogram with possible implicit dereference
Process_Function_Call;
elsif Is_Generic_Subprogram (U_N) then
-- A common beginner's (or C++ templates fan) error
Error_Msg_N ("generic subprogram cannot be called", N);
Set_Etype (N, Any_Type);
return;
else
Process_Indexed_Component_Or_Slice;
end if;
-- If not an entity name, prefix is an expression that may denote
-- an array or an access-to-subprogram.
else
if Ekind (P_T) = E_Subprogram_Type
or else (Is_Access_Type (P_T)
and then
Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
then
Process_Function_Call;
elsif Nkind (P) = N_Selected_Component
and then Is_Overloadable (Entity (Selector_Name (P)))
then
Process_Function_Call;
else
-- Indexed component, slice, or a call to a member of a family
-- entry, which will be converted to an entry call later.
Process_Indexed_Component_Or_Slice;
end if;
end if;
end Analyze_Indexed_Component_Form;
------------------------
-- Analyze_Logical_Op --
------------------------
procedure Analyze_Logical_Op (N : Node_Id) is
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
Op_Id : Entity_Id := Entity (N);
begin
Set_Etype (N, Any_Type);
Candidate_Type := Empty;
Analyze_Expression (L);
Analyze_Expression (R);
if Present (Op_Id) then
if Ekind (Op_Id) = E_Operator then
Find_Boolean_Types (L, R, Op_Id, N);
else
Add_One_Interp (N, Op_Id, Etype (Op_Id));
end if;
else
Op_Id := Get_Name_Entity_Id (Chars (N));
while Present (Op_Id) loop
if Ekind (Op_Id) = E_Operator then
Find_Boolean_Types (L, R, Op_Id, N);
else
Analyze_User_Defined_Binary_Op (N, Op_Id);
end if;
Op_Id := Homonym (Op_Id);
end loop;
end if;
Operator_Check (N);
end Analyze_Logical_Op;
---------------------------
-- Analyze_Membership_Op --
---------------------------
procedure Analyze_Membership_Op (N : Node_Id) is
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
Index : Interp_Index;
It : Interp;
Found : Boolean := False;
I_F : Interp_Index;
T_F : Entity_Id;
procedure Try_One_Interp (T1 : Entity_Id);
-- Routine to try one proposed interpretation. Note that the context
-- of the operation plays no role in resolving the arguments, so that
-- if there is more than one interpretation of the operands that is
-- compatible with a membership test, the operation is ambiguous.
--------------------
-- Try_One_Interp --
--------------------
procedure Try_One_Interp (T1 : Entity_Id) is
begin
if Has_Compatible_Type (R, T1) then
if Found
and then Base_Type (T1) /= Base_Type (T_F)
then
It := Disambiguate (L, I_F, Index, Any_Type);
if It = No_Interp then
Ambiguous_Operands (N);
Set_Etype (L, Any_Type);
return;
else
T_F := It.Typ;
end if;
else
Found := True;
T_F := T1;
I_F := Index;
end if;
Set_Etype (L, T_F);
end if;
end Try_One_Interp;
-- Start of processing for Analyze_Membership_Op
begin
Analyze_Expression (L);
if Nkind (R) = N_Range
or else (Nkind (R) = N_Attribute_Reference
and then Attribute_Name (R) = Name_Range)
then
Analyze (R);
if not Is_Overloaded (L) then
Try_One_Interp (Etype (L));
else
Get_First_Interp (L, Index, It);
while Present (It.Typ) loop
Try_One_Interp (It.Typ);
Get_Next_Interp (Index, It);
end loop;
end if;
-- If not a range, it can only be a subtype mark, or else there
-- is a more basic error, to be diagnosed in Find_Type.
else
Find_Type (R);
if Is_Entity_Name (R) then
Check_Fully_Declared (Entity (R), R);
end if;
end if;
-- Compatibility between expression and subtype mark or range is
-- checked during resolution. The result of the operation is Boolean
-- in any case.
Set_Etype (N, Standard_Boolean);
if Comes_From_Source (N)
and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
then
Error_Msg_N ("membership test not applicable to cpp-class types", N);
end if;
end Analyze_Membership_Op;
----------------------
-- Analyze_Negation --
----------------------
procedure Analyze_Negation (N : Node_Id) is
R : constant Node_Id := Right_Opnd (N);
Op_Id : Entity_Id := Entity (N);
begin
Set_Etype (N, Any_Type);
Candidate_Type := Empty;
Analyze_Expression (R);
if Present (Op_Id) then
if Ekind (Op_Id) = E_Operator then
Find_Negation_Types (R, Op_Id, N);
else
Add_One_Interp (N, Op_Id, Etype (Op_Id));
end if;
else
Op_Id := Get_Name_Entity_Id (Chars (N));
while Present (Op_Id) loop
if Ekind (Op_Id) = E_Operator then
Find_Negation_Types (R, Op_Id, N);
else
Analyze_User_Defined_Unary_Op (N, Op_Id);
end if;
Op_Id := Homonym (Op_Id);
end loop;
end if;
Operator_Check (N);
end Analyze_Negation;
------------------
-- Analyze_Null --
------------------
procedure Analyze_Null (N : Node_Id) is
begin
Set_Etype (N, Any_Access);
end Analyze_Null;
----------------------
-- Analyze_One_Call --
----------------------
procedure Analyze_One_Call
(N : Node_Id;
Nam : Entity_Id;
Report : Boolean;
Success : out Boolean;
Skip_First : Boolean := False)
is
Actuals : constant List_Id := Parameter_Associations (N);
Prev_T : constant Entity_Id := Etype (N);
Formal : Entity_Id;
Actual : Node_Id;
Is_Indexed : Boolean := False;
Subp_Type : constant Entity_Id := Etype (Nam);
Norm_OK : Boolean;
procedure Indicate_Name_And_Type;
-- If candidate interpretation matches, indicate name and type of
-- result on call node.
----------------------------
-- Indicate_Name_And_Type --
----------------------------
procedure Indicate_Name_And_Type is
begin
Add_One_Interp (N, Nam, Etype (Nam));
Success := True;
-- If the prefix of the call is a name, indicate the entity
-- being called. If it is not a name, it is an expression that
-- denotes an access to subprogram or else an entry or family. In
-- the latter case, the name is a selected component, and the entity
-- being called is noted on the selector.
if not Is_Type (Nam) then
if Is_Entity_Name (Name (N))
or else Nkind (Name (N)) = N_Operator_Symbol
then
Set_Entity (Name (N), Nam);
elsif Nkind (Name (N)) = N_Selected_Component then
Set_Entity (Selector_Name (Name (N)), Nam);
end if;
end if;
if Debug_Flag_E and not Report then
Write_Str (" Overloaded call ");
Write_Int (Int (N));
Write_Str (" compatible with ");
Write_Int (Int (Nam));
Write_Eol;
end if;
end Indicate_Name_And_Type;
-- Start of processing for Analyze_One_Call
begin
Success := False;
-- If the subprogram has no formals, or if all the formals have
-- defaults, and the return type is an array type, the node may
-- denote an indexing of the result of a parameterless call.
if Needs_No_Actuals (Nam)
and then Present (Actuals)
then
if Is_Array_Type (Subp_Type) then
Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type);
elsif Is_Access_Type (Subp_Type)
and then Is_Array_Type (Designated_Type (Subp_Type))
then
Is_Indexed :=
Try_Indexed_Call (N, Nam, Designated_Type (Subp_Type));
-- The prefix can also be a parameterless function that returns an
-- access to subprogram. in which case this is an indirect call.
elsif Is_Access_Type (Subp_Type)
and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
then
Is_Indexed := Try_Indirect_Call (N, Nam, Subp_Type);
end if;
end if;
Normalize_Actuals (N, Nam, (Report and not Is_Indexed), Norm_OK);
if not Norm_OK then
-- Mismatch in number or names of parameters
if Debug_Flag_E then
Write_Str (" normalization fails in call ");
Write_Int (Int (N));
Write_Str (" with subprogram ");
Write_Int (Int (Nam));
Write_Eol;
end if;
-- If the context expects a function call, discard any interpretation
-- that is a procedure. If the node is not overloaded, leave as is for
-- better error reporting when type mismatch is found.
elsif Nkind (N) = N_Function_Call
and then Is_Overloaded (Name (N))
and then Ekind (Nam) = E_Procedure
then
return;
-- Ditto for function calls in a procedure context
elsif Nkind (N) = N_Procedure_Call_Statement
and then Is_Overloaded (Name (N))
and then Etype (Nam) /= Standard_Void_Type
then
return;
elsif No (Actuals) then
-- If Normalize succeeds, then there are default parameters for
-- all formals.
Indicate_Name_And_Type;
elsif Ekind (Nam) = E_Operator then
if Nkind (N) = N_Procedure_Call_Statement then
return;
end if;
-- This can occur when the prefix of the call is an operator
-- name or an expanded name whose selector is an operator name.
Analyze_Operator_Call (N, Nam);
if Etype (N) /= Prev_T then
-- There may be a user-defined operator that hides the
-- current interpretation. We must check for this independently
-- of the analysis of the call with the user-defined operation,
-- because the parameter names may be wrong and yet the hiding
-- takes place. Fixes b34014o.
if Is_Overloaded (Name (N)) then
declare
I : Interp_Index;
It : Interp;
begin
Get_First_Interp (Name (N), I, It);
while Present (It.Nam) loop
if Ekind (It.Nam) /= E_Operator
and then Hides_Op (It.Nam, Nam)
and then
Has_Compatible_Type
(First_Actual (N), Etype (First_Formal (It.Nam)))
and then (No (Next_Actual (First_Actual (N)))
or else Has_Compatible_Type
(Next_Actual (First_Actual (N)),
Etype (Next_Formal (First_Formal (It.Nam)))))
then
Set_Etype (N, Prev_T);
return;
end if;
Get_Next_Interp (I, It);
end loop;
end;
end if;
-- If operator matches formals, record its name on the call.
-- If the operator is overloaded, Resolve will select the
-- correct one from the list of interpretations. The call
-- node itself carries the first candidate.
Set_Entity (Name (N), Nam);
Success := True;
elsif Report and then Etype (N) = Any_Type then
Error_Msg_N ("incompatible arguments for operator", N);
end if;
else
-- Normalize_Actuals has chained the named associations in the
-- correct order of the formals.
Actual := First_Actual (N);
Formal := First_Formal (Nam);
-- If we are analyzing a call rewritten from object notation,
-- skip first actual, which may be rewritten later as an
-- explicit dereference.
if Skip_First then
Next_Actual (Actual);
Next_Formal (Formal);
end if;
while Present (Actual) and then Present (Formal) loop
if Nkind (Parent (Actual)) /= N_Parameter_Association
or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
then
if Has_Compatible_Type (Actual, Etype (Formal)) then
Next_Actual (Actual);
Next_Formal (Formal);
else
if Debug_Flag_E then
Write_Str (" type checking fails in call ");
Write_Int (Int (N));
Write_Str (" with formal ");
Write_Int (Int (Formal));
Write_Str (" in subprogram ");
Write_Int (Int (Nam));
Write_Eol;
end if;
if Report and not Is_Indexed then
-- Ada 2005 (AI-251): Complete the error notification
-- to help new Ada 2005 users
if Is_Class_Wide_Type (Etype (Formal))
and then Is_Interface (Etype (Etype (Formal)))
and then not Interface_Present_In_Ancestor
(Typ => Etype (Actual),
Iface => Etype (Etype (Formal)))
then
Error_Msg_NE
("(Ada 2005) does not implement interface }",
Actual, Etype (Etype (Formal)));
end if;
Wrong_Type (Actual, Etype (Formal));
if Nkind (Actual) = N_Op_Eq
and then Nkind (Left_Opnd (Actual)) = N_Identifier
then
Formal := First_Formal (Nam);
while Present (Formal) loop
if Chars (Left_Opnd (Actual)) = Chars (Formal) then
Error_Msg_N
("possible misspelling of `='>`!", Actual);
exit;
end if;
Next_Formal (Formal);
end loop;
end if;
if All_Errors_Mode then
Error_Msg_Sloc := Sloc (Nam);
if Is_Overloadable (Nam)
and then Present (Alias (Nam))
and then not Comes_From_Source (Nam)
then
Error_Msg_NE
(" =='> in call to &#(inherited)!", Actual, Nam);
elsif Ekind (Nam) = E_Subprogram_Type then
declare
Access_To_Subprogram_Typ :
constant Entity_Id :=
Defining_Identifier
(Associated_Node_For_Itype (Nam));
begin
Error_Msg_NE (
" =='> in call to dereference of &#!",
Actual, Access_To_Subprogram_Typ);
end;
else
Error_Msg_NE (" =='> in call to &#!", Actual, Nam);
end if;
end if;
end if;
return;
end if;
else
-- Normalize_Actuals has verified that a default value exists
-- for this formal. Current actual names a subsequent formal.
Next_Formal (Formal);
end if;
end loop;
-- On exit, all actuals match
Indicate_Name_And_Type;
end if;
end Analyze_One_Call;
---------------------------
-- Analyze_Operator_Call --
---------------------------
procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
Op_Name : constant Name_Id := Chars (Op_Id);
Act1 : constant Node_Id := First_Actual (N);
Act2 : constant Node_Id := Next_Actual (Act1);
begin
-- Binary operator case
if Present (Act2) then
-- If more than two operands, then not binary operator after all
if Present (Next_Actual (Act2)) then
return;
elsif Op_Name = Name_Op_Add
or else Op_Name = Name_Op_Subtract
or else Op_Name = Name_Op_Multiply
or else Op_Name = Name_Op_Divide
or else Op_Name = Name_Op_Mod
or else Op_Name = Name_Op_Rem
or else Op_Name = Name_Op_Expon
then
Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
elsif Op_Name = Name_Op_And
or else Op_Name = Name_Op_Or
or else Op_Name = Name_Op_Xor
then
Find_Boolean_Types (Act1, Act2, Op_Id, N);
elsif Op_Name = Name_Op_Lt
or else Op_Name = Name_Op_Le
or else Op_Name = Name_Op_Gt
or else Op_Name = Name_Op_Ge
then
Find_Comparison_Types (Act1, Act2, Op_Id, N);
elsif Op_Name = Name_Op_Eq
or else Op_Name = Name_Op_Ne
then
Find_Equality_Types (Act1, Act2, Op_Id, N);
elsif Op_Name = Name_Op_Concat then
Find_Concatenation_Types (Act1, Act2, Op_Id, N);
-- Is this else null correct, or should it be an abort???
else
null;
end if;
-- Unary operator case
else
if Op_Name = Name_Op_Subtract or else
Op_Name = Name_Op_Add or else
Op_Name = Name_Op_Abs
then
Find_Unary_Types (Act1, Op_Id, N);
elsif
Op_Name = Name_Op_Not
then
Find_Negation_Types (Act1, Op_Id, N);
-- Is this else null correct, or should it be an abort???
else
null;
end if;
end if;
end Analyze_Operator_Call;
-------------------------------------------
-- Analyze_Overloaded_Selected_Component --
-------------------------------------------
procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
Nam : constant Node_Id := Prefix (N);
Sel : constant Node_Id := Selector_Name (N);
Comp : Entity_Id;
I : Interp_Index;
It : Interp;
T : Entity_Id;
begin
Set_Etype (Sel, Any_Type);
Get_First_Interp (Nam, I, It);
while Present (It.Typ) loop
if Is_Access_Type (It.Typ) then
T := Designated_Type (It.Typ);
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
else
T := It.Typ;
end if;
if Is_Record_Type (T) then
Comp := First_Entity (T);
while Present (Comp) loop
if Chars (Comp) = Chars (Sel)
and then Is_Visible_Component (Comp)
then
Set_Entity_With_Style_Check (Sel, Comp);
Generate_Reference (Comp, Sel);
Set_Etype (Sel, Etype (Comp));
Add_One_Interp (N, Etype (Comp), Etype (Comp));
-- This also specifies a candidate to resolve the name.
-- Further overloading will be resolved from context.
Set_Etype (Nam, It.Typ);
end if;
Next_Entity (Comp);
end loop;
elsif Is_Concurrent_Type (T) then
Comp := First_Entity (T);
while Present (Comp)
and then Comp /= First_Private_Entity (T)
loop
if Chars (Comp) = Chars (Sel) then
if Is_Overloadable (Comp) then
Add_One_Interp (Sel, Comp, Etype (Comp));
else
Set_Entity_With_Style_Check (Sel, Comp);
Generate_Reference (Comp, Sel);
end if;
Set_Etype (Sel, Etype (Comp));
Set_Etype (N, Etype (Comp));
Set_Etype (Nam, It.Typ);
-- For access type case, introduce explicit deference for
-- more uniform treatment of entry calls.
if Is_Access_Type (Etype (Nam)) then
Insert_Explicit_Dereference (Nam);
Error_Msg_NW
(Warn_On_Dereference, "?implicit dereference", N);
end if;
end if;
Next_Entity (Comp);
end loop;
Set_Is_Overloaded (N, Is_Overloaded (Sel));
end if;
Get_Next_Interp (I, It);
end loop;
if Etype (N) = Any_Type then
Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
Set_Entity (Sel, Any_Id);
Set_Etype (Sel, Any_Type);
end if;
end Analyze_Overloaded_Selected_Component;
----------------------------------
-- Analyze_Qualified_Expression --
----------------------------------
procedure Analyze_Qualified_Expression (N : Node_Id) is
Mark : constant Entity_Id := Subtype_Mark (N);
T : Entity_Id;
begin
Set_Etype (N, Any_Type);
Find_Type (Mark);
T := Entity (Mark);
if T = Any_Type then
return;
end if;
Check_Fully_Declared (T, N);
Analyze_Expression (Expression (N));
Set_Etype (N, T);
end Analyze_Qualified_Expression;
-------------------
-- Analyze_Range --
-------------------
procedure Analyze_Range (N : Node_Id) is
L : constant Node_Id := Low_Bound (N);
H : constant Node_Id := High_Bound (N);
I1, I2 : Interp_Index;
It1, It2 : Interp;
procedure Check_Common_Type (T1, T2 : Entity_Id);
-- Verify the compatibility of two types, and choose the
-- non universal one if the other is universal.
procedure Check_High_Bound (T : Entity_Id);
-- Test one interpretation of the low bound against all those
-- of the high bound.
procedure Check_Universal_Expression (N : Node_Id);
-- In Ada83, reject bounds of a universal range that are not
-- literals or entity names.
-----------------------
-- Check_Common_Type --
-----------------------
procedure Check_Common_Type (T1, T2 : Entity_Id) is
begin
if Covers (T1, T2) or else Covers (T2, T1) then
if T1 = Universal_Integer
or else T1 = Universal_Real
or else T1 = Any_Character
then
Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
elsif T1 = T2 then
Add_One_Interp (N, T1, T1);
else
Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
end if;
end if;
end Check_Common_Type;
----------------------
-- Check_High_Bound --
----------------------
procedure Check_High_Bound (T : Entity_Id) is
begin
if not Is_Overloaded (H) then
Check_Common_Type (T, Etype (H));
else
Get_First_Interp (H, I2, It2);
while Present (It2.Typ) loop
Check_Common_Type (T, It2.Typ);
Get_Next_Interp (I2, It2);
end loop;
end if;
end Check_High_Bound;
-----------------------------
-- Is_Universal_Expression --
-----------------------------
procedure Check_Universal_Expression (N : Node_Id) is
begin
if Etype (N) = Universal_Integer
and then Nkind (N) /= N_Integer_Literal
and then not Is_Entity_Name (N)
and then Nkind (N) /= N_Attribute_Reference
then
Error_Msg_N ("illegal bound in discrete range", N);
end if;
end Check_Universal_Expression;
-- Start of processing for Analyze_Range
begin
Set_Etype (N, Any_Type);
Analyze_Expression (L);
Analyze_Expression (H);
if Etype (L) = Any_Type or else Etype (H) = Any_Type then
return;
else
if not Is_Overloaded (L) then
Check_High_Bound (Etype (L));
else
Get_First_Interp (L, I1, It1);
while Present (It1.Typ) loop
Check_High_Bound (It1.Typ);
Get_Next_Interp (I1, It1);
end loop;
end if;
-- If result is Any_Type, then we did not find a compatible pair
if Etype (N) = Any_Type then
Error_Msg_N ("incompatible types in range ", N);
end if;
end if;
if Ada_Version = Ada_83
and then
(Nkind (Parent (N)) = N_Loop_Parameter_Specification
or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
then
Check_Universal_Expression (L);
Check_Universal_Expression (H);
end if;
end Analyze_Range;
-----------------------
-- Analyze_Reference --
-----------------------
procedure Analyze_Reference (N : Node_Id) is
P : constant Node_Id := Prefix (N);
Acc_Type : Entity_Id;
begin
Analyze (P);
Acc_Type := Create_Itype (E_Allocator_Type, N);
Set_Etype (Acc_Type, Acc_Type);
Init_Size_Align (Acc_Type);
Set_Directly_Designated_Type (Acc_Type, Etype (P));
Set_Etype (N, Acc_Type);
end Analyze_Reference;
--------------------------------
-- Analyze_Selected_Component --
--------------------------------
-- Prefix is a record type or a task or protected type. In the
-- later case, the selector must denote a visible entry.
procedure Analyze_Selected_Component (N : Node_Id) is
Name : constant Node_Id := Prefix (N);
Sel : constant Node_Id := Selector_Name (N);
Comp : Entity_Id;
Entity_List : Entity_Id;
Prefix_Type : Entity_Id;
Pent : Entity_Id := Empty;
Act_Decl : Node_Id;
In_Scope : Boolean;
Parent_N : Node_Id;
-- Start of processing for Analyze_Selected_Component
begin
Set_Etype (N, Any_Type);
if Is_Overloaded (Name) then
Analyze_Overloaded_Selected_Component (N);
return;
elsif Etype (Name) = Any_Type then
Set_Entity (Sel, Any_Id);
Set_Etype (Sel, Any_Type);
return;
else
Prefix_Type := Etype (Name);
end if;
if Is_Access_Type (Prefix_Type) then
-- A RACW object can never be used as prefix of a selected
-- component since that means it is dereferenced without
-- being a controlling operand of a dispatching operation
-- (RM E.2.2(15)).
if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
and then Comes_From_Source (N)
then
Error_Msg_N
("invalid dereference of a remote access to class-wide value",
N);
-- Normal case of selected component applied to access type
else
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
if Is_Entity_Name (Name) then
Pent := Entity (Name);
elsif Nkind (Name) = N_Selected_Component
and then Is_Entity_Name (Selector_Name (Name))
then
Pent := Entity (Selector_Name (Name));
end if;
Process_Implicit_Dereference_Prefix (Pent, Name);
end if;
Prefix_Type := Designated_Type (Prefix_Type);
end if;
if Ekind (Prefix_Type) = E_Private_Subtype then
Prefix_Type := Base_Type (Prefix_Type);
end if;
Entity_List := Prefix_Type;
-- For class-wide types, use the entity list of the root type. This
-- indirection is specially important for private extensions because
-- only the root type get switched (not the class-wide type).
if Is_Class_Wide_Type (Prefix_Type) then
Entity_List := Root_Type (Prefix_Type);
end if;
Comp := First_Entity (Entity_List);
-- If the selector has an original discriminant, the node appears in
-- an instance. Replace the discriminant with the corresponding one
-- in the current discriminated type. For nested generics, this must
-- be done transitively, so note the new original discriminant.
if Nkind (Sel) = N_Identifier
and then Present (Original_Discriminant (Sel))
then
Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
-- Mark entity before rewriting, for completeness and because
-- subsequent semantic checks might examine the original node.
Set_Entity (Sel, Comp);
Rewrite (Selector_Name (N),
New_Occurrence_Of (Comp, Sloc (N)));
Set_Original_Discriminant (Selector_Name (N), Comp);
Set_Etype (N, Etype (Comp));
if Is_Access_Type (Etype (Name)) then
Insert_Explicit_Dereference (Name);
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
end if;
elsif Is_Record_Type (Prefix_Type) then
-- Find component with given name
while Present (Comp) loop
if Chars (Comp) = Chars (Sel)
and then Is_Visible_Component (Comp)
then
Set_Entity_With_Style_Check (Sel, Comp);
Generate_Reference (Comp, Sel);
Set_Etype (Sel, Etype (Comp));
if Ekind (Comp) = E_Discriminant then
if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
Error_Msg_N
("cannot reference discriminant of Unchecked_Union",
Sel);
end if;
if Is_Generic_Type (Prefix_Type)
or else
Is_Generic_Type (Root_Type (Prefix_Type))
then
Set_Original_Discriminant (Sel, Comp);
end if;
end if;
-- Resolve the prefix early otherwise it is not possible to
-- build the actual subtype of the component: it may need
-- to duplicate this prefix and duplication is only allowed
-- on fully resolved expressions.
Resolve (Name);
-- Ada 2005 (AI-50217): Check wrong use of incomplete type.
-- Example:
-- limited with Pkg;
-- package Pkg is
-- type Acc_Inc is access Pkg.T;
-- X : Acc_Inc;
-- N : Natural := X.all.Comp; -- ERROR
-- end Pkg;
if Nkind (Name) = N_Explicit_Dereference
and then From_With_Type (Etype (Prefix (Name)))
and then not Is_Potentially_Use_Visible (Etype (Name))
then
Error_Msg_NE
("premature usage of incomplete}", Prefix (Name),
Etype (Prefix (Name)));
end if;
-- We never need an actual subtype for the case of a selection
-- for a indexed component of a non-packed array, since in
-- this case gigi generates all the checks and can find the
-- necessary bounds information.
-- We also do not need an actual subtype for the case of
-- a first, last, length, or range attribute applied to a
-- non-packed array, since gigi can again get the bounds in
-- these cases (gigi cannot handle the packed case, since it
-- has the bounds of the packed array type, not the original
-- bounds of the type). However, if the prefix is itself a
-- selected component, as in a.b.c (i), gigi may regard a.b.c
-- as a dynamic-sized temporary, so we do generate an actual
-- subtype for this case.
Parent_N := Parent (N);
if not Is_Packed (Etype (Comp))
and then
((Nkind (Parent_N) = N_Indexed_Component
and then Nkind (Name) /= N_Selected_Component)
or else
(Nkind (Parent_N) = N_Attribute_Reference
and then (Attribute_Name (Parent_N) = Name_First
or else
Attribute_Name (Parent_N) = Name_Last
or else
Attribute_Name (Parent_N) = Name_Length
or else
Attribute_Name (Parent_N) = Name_Range)))
then
Set_Etype (N, Etype (Comp));
-- If full analysis is not enabled, we do not generate an
-- actual subtype, because in the absence of expansion
-- reference to a formal of a protected type, for example,
-- will not be properly transformed, and will lead to
-- out-of-scope references in gigi.
-- In all other cases, we currently build an actual subtype.
-- It seems likely that many of these cases can be avoided,
-- but right now, the front end makes direct references to the
-- bounds (e.g. in generating a length check), and if we do
-- not make an actual subtype, we end up getting a direct
-- reference to a discriminant, which will not do.
elsif Full_Analysis then
Act_Decl :=
Build_Actual_Subtype_Of_Component (Etype (Comp), N);
Insert_Action (N, Act_Decl);
if No (Act_Decl) then
Set_Etype (N, Etype (Comp));
else
-- Component type depends on discriminants. Enter the
-- main attributes of the subtype.
declare
Subt : constant Entity_Id :=
Defining_Identifier (Act_Decl);
begin
Set_Etype (Subt, Base_Type (Etype (Comp)));
Set_Ekind (Subt, Ekind (Etype (Comp)));
Set_Etype (N, Subt);
end;
end if;
-- If Full_Analysis not enabled, just set the Etype
else
Set_Etype (N, Etype (Comp));
end if;
return;
end if;
Next_Entity (Comp);
end loop;
-- Ada 2005 (AI-252)
if Ada_Version >= Ada_05
and then Is_Tagged_Type (Prefix_Type)
and then Try_Object_Operation (N)
then
return;
-- If the transformation fails, it will be necessary to redo the
-- analysis with all errors enabled, to indicate candidate
-- interpretations and reasons for each failure ???
end if;
elsif Is_Private_Type (Prefix_Type) then
-- Allow access only to discriminants of the type. If the type has
-- no full view, gigi uses the parent type for the components, so we
-- do the same here.
if No (Full_View (Prefix_Type)) then
Entity_List := Root_Type (Base_Type (Prefix_Type));
Comp := First_Entity (Entity_List);
end if;
while Present (Comp) loop
if Chars (Comp) = Chars (Sel) then
if Ekind (Comp) = E_Discriminant then
Set_Entity_With_Style_Check (Sel, Comp);
Generate_Reference (Comp, Sel);
Set_Etype (Sel, Etype (Comp));
Set_Etype (N, Etype (Comp));
if Is_Generic_Type (Prefix_Type)
or else
Is_Generic_Type (Root_Type (Prefix_Type))
then
Set_Original_Discriminant (Sel, Comp);
end if;
else
Error_Msg_NE
("invisible selector for }",
N, First_Subtype (Prefix_Type));
Set_Entity (Sel, Any_Id);
Set_Etype (N, Any_Type);
end if;
return;
end if;
Next_Entity (Comp);
end loop;
elsif Is_Concurrent_Type (Prefix_Type) then
-- Prefix is concurrent type. Find visible operation with given name
-- For a task, this can only include entries or discriminants if the
-- task type is not an enclosing scope. If it is an enclosing scope
-- (e.g. in an inner task) then all entities are visible, but the
-- prefix must denote the enclosing scope, i.e. can only be a direct
-- name or an expanded name.
Set_Etype (Sel, Any_Type);
In_Scope := In_Open_Scopes (Prefix_Type);
while Present (Comp) loop
if Chars (Comp) = Chars (Sel) then
if Is_Overloadable (Comp) then
Add_One_Interp (Sel, Comp, Etype (Comp));
elsif Ekind (Comp) = E_Discriminant
or else Ekind (Comp) = E_Entry_Family
or else (In_Scope
and then Is_Entity_Name (Name))
then
Set_Entity_With_Style_Check (Sel, Comp);
Generate_Reference (Comp, Sel);
else
goto Next_Comp;
end if;
Set_Etype (Sel, Etype (Comp));
Set_Etype (N, Etype (Comp));
if Ekind (Comp) = E_Discriminant then
Set_Original_Discriminant (Sel, Comp);
end if;
-- For access type case, introduce explicit deference for more
-- uniform treatment of entry calls.
if Is_Access_Type (Etype (Name)) then
Insert_Explicit_Dereference (Name);
Error_Msg_NW
(Warn_On_Dereference, "?implicit dereference", N);
end if;
end if;
<<Next_Comp>>
Next_Entity (Comp);
exit when not In_Scope
and then
Comp = First_Private_Entity (Base_Type (Prefix_Type));
end loop;
Set_Is_Overloaded (N, Is_Overloaded (Sel));
else
-- Invalid prefix
Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
end if;
-- If N still has no type, the component is not defined in the prefix
if Etype (N) = Any_Type then
-- If the prefix is a single concurrent object, use its name in the
-- error message, rather than that of its anonymous type.
if Is_Concurrent_Type (Prefix_Type)
and then Is_Internal_Name (Chars (Prefix_Type))
and then not Is_Derived_Type (Prefix_Type)
and then Is_Entity_Name (Name)
then
Error_Msg_Node_2 := Entity (Name);
Error_Msg_NE ("no selector& for&", N, Sel);
Check_Misspelled_Selector (Entity_List, Sel);
elsif Is_Generic_Type (Prefix_Type)
and then Ekind (Prefix_Type) = E_Record_Type_With_Private
and then Prefix_Type /= Etype (Prefix_Type)
and then Is_Record_Type (Etype (Prefix_Type))
then
-- If this is a derived formal type, the parent may have
-- different visibility at this point. Try for an inherited
-- component before reporting an error.
Set_Etype (Prefix (N), Etype (Prefix_Type));
Analyze_Selected_Component (N);
return;
elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
and then Is_Generic_Actual_Type (Prefix_Type)
and then Present (Full_View (Prefix_Type))
then
-- Similarly, if this the actual for a formal derived type, the
-- component inherited from the generic parent may not be visible
-- in the actual, but the selected component is legal.
declare
Comp : Entity_Id;
begin
Comp :=
First_Component (Generic_Parent_Type (Parent (Prefix_Type)));
while Present (Comp) loop
if Chars (Comp) = Chars (Sel) then
Set_Entity_With_Style_Check (Sel, Comp);
Set_Etype (Sel, Etype (Comp));
Set_Etype (N, Etype (Comp));
return;
end if;
Next_Component (Comp);
end loop;
pragma Assert (Etype (N) /= Any_Type);
end;
else
if Ekind (Prefix_Type) = E_Record_Subtype then
-- Check whether this is a component of the base type
-- which is absent from a statically constrained subtype.
-- This will raise constraint error at run-time, but is
-- not a compile-time error. When the selector is illegal
-- for base type as well fall through and generate a
-- compilation error anyway.
Comp := First_Component (Base_Type (Prefix_Type));
while Present (Comp) loop
if Chars (Comp) = Chars (Sel)
and then Is_Visible_Component (Comp)
then
Set_Entity_With_Style_Check (Sel, Comp);
Generate_Reference (Comp, Sel);
Set_Etype (Sel, Etype (Comp));
Set_Etype (N, Etype (Comp));
-- Emit appropriate message. Gigi will replace the
-- node subsequently with the appropriate Raise.
Apply_Compile_Time_Constraint_Error
(N, "component not present in }?",
CE_Discriminant_Check_Failed,
Ent => Prefix_Type, Rep => False);
Set_Raises_Constraint_Error (N);
return;
end if;
Next_Component (Comp);
end loop;
end if;
Error_Msg_Node_2 := First_Subtype (Prefix_Type);
Error_Msg_NE ("no selector& for}", N, Sel);
Check_Misspelled_Selector (Entity_List, Sel);
end if;
Set_Entity (Sel, Any_Id);
Set_Etype (Sel, Any_Type);
end if;
end Analyze_Selected_Component;
---------------------------
-- Analyze_Short_Circuit --
---------------------------
procedure Analyze_Short_Circuit (N : Node_Id) is
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
Ind : Interp_Index;
It : Interp;
begin
Analyze_Expression (L);
Analyze_Expression (R);
Set_Etype (N, Any_Type);
if not Is_Overloaded (L) then
if Root_Type (Etype (L)) = Standard_Boolean
and then Has_Compatible_Type (R, Etype (L))
then
Add_One_Interp (N, Etype (L), Etype (L));
end if;
else
Get_First_Interp (L, Ind, It);
while Present (It.Typ) loop
if Root_Type (It.Typ) = Standard_Boolean
and then Has_Compatible_Type (R, It.Typ)
then
Add_One_Interp (N, It.Typ, It.Typ);
end if;
Get_Next_Interp (Ind, It);
end loop;
end if;
-- Here we have failed to find an interpretation. Clearly we
-- know that it is not the case that both operands can have
-- an interpretation of Boolean, but this is by far the most
-- likely intended interpretation. So we simply resolve both
-- operands as Booleans, and at least one of these resolutions
-- will generate an error message, and we do not need to give
-- a further error message on the short circuit operation itself.
if Etype (N) = Any_Type then
Resolve (L, Standard_Boolean);
Resolve (R, Standard_Boolean);
Set_Etype (N, Standard_Boolean);
end if;
end Analyze_Short_Circuit;
-------------------
-- Analyze_Slice --
-------------------
procedure Analyze_Slice (N : Node_Id) is
P : constant Node_Id := Prefix (N);
D : constant Node_Id := Discrete_Range (N);
Array_Type : Entity_Id;
procedure Analyze_Overloaded_Slice;
-- If the prefix is overloaded, select those interpretations that
-- yield a one-dimensional array type.
------------------------------
-- Analyze_Overloaded_Slice --
------------------------------
procedure Analyze_Overloaded_Slice is
I : Interp_Index;
It : Interp;
Typ : Entity_Id;
begin
Set_Etype (N, Any_Type);
Get_First_Interp (P, I, It);
while Present (It.Nam) loop
Typ := It.Typ;
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
end if;
if Is_Array_Type (Typ)
and then Number_Dimensions (Typ) = 1
and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
then
Add_One_Interp (N, Typ, Typ);
end if;
Get_Next_Interp (I, It);
end loop;
if Etype (N) = Any_Type then
Error_Msg_N ("expect array type in prefix of slice", N);
end if;
end Analyze_Overloaded_Slice;
-- Start of processing for Analyze_Slice
begin
Analyze (P);
Analyze (D);
if Is_Overloaded (P) then
Analyze_Overloaded_Slice;
else
Array_Type := Etype (P);
Set_Etype (N, Any_Type);
if Is_Access_Type (Array_Type) then
Array_Type := Designated_Type (Array_Type);
Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
end if;
if not Is_Array_Type (Array_Type) then
Wrong_Type (P, Any_Array);
elsif Number_Dimensions (Array_Type) > 1 then
Error_Msg_N
("type is not one-dimensional array in slice prefix", N);
elsif not
Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
then
Wrong_Type (D, Etype (First_Index (Array_Type)));
else
Set_Etype (N, Array_Type);
end if;
end if;
end Analyze_Slice;
-----------------------------
-- Analyze_Type_Conversion --
-----------------------------
procedure Analyze_Type_Conversion (N : Node_Id) is
Expr : constant Node_Id := Expression (N);
T : Entity_Id;
begin
-- If Conversion_OK is set, then the Etype is already set, and the
-- only processing required is to analyze the expression. This is
-- used to construct certain "illegal" conversions which are not
-- allowed by Ada semantics, but can be handled OK by Gigi, see
-- Sinfo for further details.
if Conversion_OK (N) then
Analyze (Expr);
return;
end if;
-- Otherwise full type analysis is required, as well as some semantic
-- checks to make sure the argument of the conversion is appropriate.
Find_Type (Subtype_Mark (N));
T := Entity (Subtype_Mark (N));
Set_Etype (N, T);
Check_Fully_Declared (T, N);
Analyze_Expression (Expr);
Validate_Remote_Type_Type_Conversion (N);
-- Only remaining step is validity checks on the argument. These
-- are skipped if the conversion does not come from the source.
if not Comes_From_Source (N) then
return;
elsif Nkind (Expr) = N_Null then
Error_Msg_N ("argument of conversion cannot be null", N);
Error_Msg_N ("\use qualified expression instead", N);
Set_Etype (N, Any_Type);
elsif Nkind (Expr) = N_Aggregate then
Error_Msg_N ("argument of conversion cannot be aggregate", N);
Error_Msg_N ("\use qualified expression instead", N);
elsif Nkind (Expr) = N_Allocator then
Error_Msg_N ("argument of conversion cannot be an allocator", N);
Error_Msg_N ("\use qualified expression instead", N);
elsif Nkind (Expr) = N_String_Literal then
Error_Msg_N ("argument of conversion cannot be string literal", N);
Error_Msg_N ("\use qualified expression instead", N);
elsif Nkind (Expr) = N_Character_Literal then
if Ada_Version = Ada_83 then
Resolve (Expr, T);
else
Error_Msg_N ("argument of conversion cannot be character literal",
N);
Error_Msg_N ("\use qualified expression instead", N);
end if;
elsif Nkind (Expr) = N_Attribute_Reference
and then
(Attribute_Name (Expr) = Name_Access or else
Attribute_Name (Expr) = Name_Unchecked_Access or else
Attribute_Name (Expr) = Name_Unrestricted_Access)
then
Error_Msg_N ("argument of conversion cannot be access", N);
Error_Msg_N ("\use qualified expression instead", N);
end if;
end Analyze_Type_Conversion;
----------------------
-- Analyze_Unary_Op --
----------------------
procedure Analyze_Unary_Op (N : Node_Id) is
R : constant Node_Id := Right_Opnd (N);
Op_Id : Entity_Id := Entity (N);
begin
Set_Etype (N, Any_Type);
Candidate_Type := Empty;
Analyze_Expression (R);
if Present (Op_Id) then
if Ekind (Op_Id) = E_Operator then
Find_Unary_Types (R, Op_Id, N);
else
Add_One_Interp (N, Op_Id, Etype (Op_Id));
end if;
else
Op_Id := Get_Name_Entity_Id (Chars (N));
while Present (Op_Id) loop
if Ekind (Op_Id) = E_Operator then
if No (Next_Entity (First_Entity (Op_Id))) then
Find_Unary_Types (R, Op_Id, N);
end if;
elsif Is_Overloadable (Op_Id) then
Analyze_User_Defined_Unary_Op (N, Op_Id);
end if;
Op_Id := Homonym (Op_Id);
end loop;
end if;
Operator_Check (N);
end Analyze_Unary_Op;
----------------------------------
-- Analyze_Unchecked_Expression --
----------------------------------
procedure Analyze_Unchecked_Expression (N : Node_Id) is
begin
Analyze (Expression (N), Suppress => All_Checks);
Set_Etype (N, Etype (Expression (N)));
Save_Interps (Expression (N), N);
end Analyze_Unchecked_Expression;
---------------------------------------
-- Analyze_Unchecked_Type_Conversion --
---------------------------------------
procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
begin
Find_Type (Subtype_Mark (N));
Analyze_Expression (Expression (N));
Set_Etype (N, Entity (Subtype_Mark (N)));
end Analyze_Unchecked_Type_Conversion;
------------------------------------
-- Analyze_User_Defined_Binary_Op --
------------------------------------
procedure Analyze_User_Defined_Binary_Op
(N : Node_Id;
Op_Id : Entity_Id)
is
begin
-- Only do analysis if the operator Comes_From_Source, since otherwise
-- the operator was generated by the expander, and all such operators
-- always refer to the operators in package Standard.
if Comes_From_Source (N) then
declare
F1 : constant Entity_Id := First_Formal (Op_Id);
F2 : constant Entity_Id := Next_Formal (F1);
begin
-- Verify that Op_Id is a visible binary function. Note that since
-- we know Op_Id is overloaded, potentially use visible means use
-- visible for sure (RM 9.4(11)).
if Ekind (Op_Id) = E_Function
and then Present (F2)
and then (Is_Immediately_Visible (Op_Id)
or else Is_Potentially_Use_Visible (Op_Id))
and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
then
Add_One_Interp (N, Op_Id, Etype (Op_Id));
if Debug_Flag_E then
Write_Str ("user defined operator ");
Write_Name (Chars (Op_Id));
Write_Str (" on node ");
Write_Int (Int (N));
Write_Eol;
end if;
end if;
end;
end if;
end Analyze_User_Defined_Binary_Op;
-----------------------------------
-- Analyze_User_Defined_Unary_Op --
-----------------------------------
procedure Analyze_User_Defined_Unary_Op
(N : Node_Id;
Op_Id : Entity_Id)
is
begin
-- Only do analysis if the operator Comes_From_Source, since otherwise
-- the operator was generated by the expander, and all such operators
-- always refer to the operators in package Standard.
if Comes_From_Source (N) then
declare
F : constant Entity_Id := First_Formal (Op_Id);
begin
-- Verify that Op_Id is a visible unary function. Note that since
-- we know Op_Id is overloaded, potentially use visible means use
-- visible for sure (RM 9.4(11)).
if Ekind (Op_Id) = E_Function
and then No (Next_Formal (F))
and then (Is_Immediately_Visible (Op_Id)
or else Is_Potentially_Use_Visible (Op_Id))
and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
then
Add_One_Interp (N, Op_Id, Etype (Op_Id));
end if;
end;
end if;
end Analyze_User_Defined_Unary_Op;
---------------------------
-- Check_Arithmetic_Pair --
---------------------------
procedure Check_Arithmetic_Pair
(T1, T2 : Entity_Id;
Op_Id : Entity_Id;
N : Node_Id)
is
Op_Name : constant Name_Id := Chars (Op_Id);
function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
-- Check whether the fixed-point type Typ has a user-defined operator
-- (multiplication or division) that should hide the corresponding
-- predefined operator. Used to implement Ada 2005 AI-264, to make
-- such operators more visible and therefore useful.
function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
-- Get specific type (i.e. non-universal type if there is one)
------------------
-- Has_Fixed_Op --
------------------
function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
Ent : Entity_Id;
F1 : Entity_Id;
F2 : Entity_Id;
begin
-- The operation is treated as primitive if it is declared in the
-- same scope as the type, and therefore on the same entity chain.
Ent := Next_Entity (Typ);
while Present (Ent) loop
if Chars (Ent) = Chars (Op) then
F1 := First_Formal (Ent);
F2 := Next_Formal (F1);
-- The operation counts as primitive if either operand or
-- result are of the given type, and both operands are fixed
-- point types.
if (Etype (F1) = Typ
and then Is_Fixed_Point_Type (Etype (F2)))
or else
(Etype (F2) = Typ
and then Is_Fixed_Point_Type (Etype (F1)))
or else
(Etype (Ent) = Typ
and then Is_Fixed_Point_Type (Etype (F1))
and then Is_Fixed_Point_Type (Etype (F2)))
then
return True;
end if;
end if;
Next_Entity (Ent);
end loop;
return False;
end Has_Fixed_Op;
-------------------
-- Specific_Type --
-------------------
function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
begin
if T1 = Universal_Integer or else T1 = Universal_Real then
return Base_Type (T2);
else
return Base_Type (T1);
end if;
end Specific_Type;
-- Start of processing for Check_Arithmetic_Pair
begin
if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
if Is_Numeric_Type (T1)
and then Is_Numeric_Type (T2)
and then (Covers (T1, T2) or else Covers (T2, T1))
then
Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
end if;
elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
if Is_Fixed_Point_Type (T1)
and then (Is_Fixed_Point_Type (T2)
or else T2 = Universal_Real)
then
-- If Treat_Fixed_As_Integer is set then the Etype is already set
-- and no further processing is required (this is the case of an
-- operator constructed by Exp_Fixd for a fixed point operation)
-- Otherwise add one interpretation with universal fixed result
-- If the operator is given in functional notation, it comes
-- from source and Fixed_As_Integer cannot apply.
if (Nkind (N) not in N_Op
or else not Treat_Fixed_As_Integer (N))
and then
(not (Ada_Version >= Ada_05 and then Has_Fixed_Op (T1, Op_Id))
or else Nkind (Parent (N)) = N_Type_Conversion)
then
Add_One_Interp (N, Op_Id, Universal_Fixed);
end if;
elsif Is_Fixed_Point_Type (T2)
and then (Nkind (N) not in N_Op
or else not Treat_Fixed_As_Integer (N))
and then T1 = Universal_Real
and then
(not (Ada_Version >= Ada_05 and then Has_Fixed_Op (T1, Op_Id))
or else Nkind (Parent (N)) = N_Type_Conversion)
then
Add_One_Interp (N, Op_Id, Universal_Fixed);
elsif Is_Numeric_Type (T1)
and then Is_Numeric_Type (T2)
and then (Covers (T1, T2) or else Covers (T2, T1))
then
Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
elsif Is_Fixed_Point_Type (T1)
and then (Base_Type (T2) = Base_Type (Standard_Integer)
or else T2 = Universal_Integer)
then
Add_One_Interp (N, Op_Id, T1);
elsif T2 = Universal_Real
and then Base_Type (T1) = Base_Type (Standard_Integer)
and then Op_Name = Name_Op_Multiply
then
Add_One_Interp (N, Op_Id, Any_Fixed);
elsif T1 = Universal_Real
and then Base_Type (T2) = Base_Type (Standard_Integer)
then
Add_One_Interp (N, Op_Id, Any_Fixed);
elsif Is_Fixed_Point_Type (T2)
and then (Base_Type (T1) = Base_Type (Standard_Integer)
or else T1 = Universal_Integer)
and then Op_Name = Name_Op_Multiply
then
Add_One_Interp (N, Op_Id, T2);
elsif T1 = Universal_Real and then T2 = Universal_Integer then
Add_One_Interp (N, Op_Id, T1);
elsif T2 = Universal_Real
and then T1 = Universal_Integer
and then Op_Name = Name_Op_Multiply
then
Add_One_Interp (N, Op_Id, T2);
end if;
elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
-- Note: The fixed-point operands case with Treat_Fixed_As_Integer
-- set does not require any special processing, since the Etype is
-- already set (case of operation constructed by Exp_Fixed).
if Is_Integer_Type (T1)
and then (Covers (T1, T2) or else Covers (T2, T1))
then
Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
end if;
elsif Op_Name = Name_Op_Expon then
if Is_Numeric_Type (T1)
and then not Is_Fixed_Point_Type (T1)
and then (Base_Type (T2) = Base_Type (Standard_Integer)
or else T2 = Universal_Integer)
then
Add_One_Interp (N, Op_Id, Base_Type (T1));
end if;
else pragma Assert (Nkind (N) in N_Op_Shift);
-- If not one of the predefined operators, the node may be one
-- of the intrinsic functions. Its kind is always specific, and
-- we can use it directly, rather than the name of the operation.
if Is_Integer_Type (T1)
and then (Base_Type (T2) = Base_Type (Standard_Integer)
or else T2 = Universal_Integer)
then
Add_One_Interp (N, Op_Id, Base_Type (T1));
end if;
end if;
end Check_Arithmetic_Pair;
-------------------------------
-- Check_Misspelled_Selector --
-------------------------------
procedure Check_Misspelled_Selector
(Prefix : Entity_Id;
Sel : Node_Id)
is
Max_Suggestions : constant := 2;
Nr_Of_Suggestions : Natural := 0;
Suggestion_1 : Entity_Id := Empty;
Suggestion_2 : Entity_Id := Empty;
Comp : Entity_Id;
begin
-- All the components of the prefix of selector Sel are matched
-- against Sel and a count is maintained of possible misspellings.
-- When at the end of the analysis there are one or two (not more!)
-- possible misspellings, these misspellings will be suggested as
-- possible correction.
if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
-- Concurrent types should be handled as well ???
return;
end if;
Get_Name_String (Chars (Sel));
declare
S : constant String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
begin
Comp := First_Entity (Prefix);
while Nr_Of_Suggestions <= Max_Suggestions
and then Present (Comp)
loop
if Is_Visible_Component (Comp) then
Get_Name_String (Chars (Comp));
if Is_Bad_Spelling_Of (Name_Buffer (1 .. Name_Len), S) then
Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
case Nr_Of_Suggestions is
when 1 => Suggestion_1 := Comp;
when 2 => Suggestion_2 := Comp;
when others => exit;
end case;
end if;
end if;
Comp := Next_Entity (Comp);
end loop;
-- Report at most two suggestions
if Nr_Of_Suggestions = 1 then
Error_Msg_NE ("\possible misspelling of&", Sel, Suggestion_1);
elsif Nr_Of_Suggestions = 2 then
Error_Msg_Node_2 := Suggestion_2;
Error_Msg_NE ("\possible misspelling of& or&",
Sel, Suggestion_1);
end if;
end;
end Check_Misspelled_Selector;
----------------------
-- Defined_In_Scope --
----------------------
function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
is
S1 : constant Entity_Id := Scope (Base_Type (T));
begin
return S1 = S
or else (S1 = System_Aux_Id and then S = Scope (S1));
end Defined_In_Scope;
-------------------
-- Diagnose_Call --
-------------------
procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
Actual : Node_Id;
X : Interp_Index;
It : Interp;
Success : Boolean;
Err_Mode : Boolean;
New_Nam : Node_Id;
Void_Interp_Seen : Boolean := False;
begin
if Ada_Version >= Ada_05 then
Actual := First_Actual (N);
while Present (Actual) loop
-- Ada 2005 (AI-50217): Post an error in case of premature
-- usage of an entity from the limited view.
if not Analyzed (Etype (Actual))
and then From_With_Type (Etype (Actual))
then
Error_Msg_Qual_Level := 1;
Error_Msg_NE
("missing with_clause for scope of imported type&",
Actual, Etype (Actual));
Error_Msg_Qual_Level := 0;
end if;
Next_Actual (Actual);
end loop;
end if;
-- Analyze each candidate call again, with full error reporting
-- for each.
Error_Msg_N
("no candidate interpretations match the actuals:!", Nam);
Err_Mode := All_Errors_Mode;
All_Errors_Mode := True;
-- If this is a call to an operation of a concurrent type,
-- the failed interpretations have been removed from the
-- name. Recover them to provide full diagnostics.
if Nkind (Parent (Nam)) = N_Selected_Component then
Set_Entity (Nam, Empty);
New_Nam := New_Copy_Tree (Parent (Nam));
Set_Is_Overloaded (New_Nam, False);
Set_Is_Overloaded (Selector_Name (New_Nam), False);
Set_Parent (New_Nam, Parent (Parent (Nam)));
Analyze_Selected_Component (New_Nam);
Get_First_Interp (Selector_Name (New_Nam), X, It);
else
Get_First_Interp (Nam, X, It);
end if;
while Present (It.Nam) loop
if Etype (It.Nam) = Standard_Void_Type then
Void_Interp_Seen := True;
end if;
Analyze_One_Call (N, It.Nam, True, Success);
Get_Next_Interp (X, It);
end loop;
if Nkind (N) = N_Function_Call then
Get_First_Interp (Nam, X, It);
while Present (It.Nam) loop
if Ekind (It.Nam) = E_Function
or else Ekind (It.Nam) = E_Operator
then
return;
else
Get_Next_Interp (X, It);
end if;
end loop;
-- If all interpretations are procedures, this deserves a
-- more precise message. Ditto if this appears as the prefix
-- of a selected component, which may be a lexical error.
Error_Msg_N
("\context requires function call, found procedure name", Nam);
if Nkind (Parent (N)) = N_Selected_Component
and then N = Prefix (Parent (N))
then
Error_Msg_N (
"\period should probably be semicolon", Parent (N));
end if;
elsif Nkind (N) = N_Procedure_Call_Statement
and then not Void_Interp_Seen
then
Error_Msg_N (
"\function name found in procedure call", Nam);
end if;
All_Errors_Mode := Err_Mode;
end Diagnose_Call;
---------------------------
-- Find_Arithmetic_Types --
---------------------------
procedure Find_Arithmetic_Types
(L, R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id)
is
Index1 : Interp_Index;
Index2 : Interp_Index;
It1 : Interp;
It2 : Interp;
procedure Check_Right_Argument (T : Entity_Id);
-- Check right operand of operator
--------------------------
-- Check_Right_Argument --
--------------------------
procedure Check_Right_Argument (T : Entity_Id) is
begin
if not Is_Overloaded (R) then
Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
else
Get_First_Interp (R, Index2, It2);
while Present (It2.Typ) loop
Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
Get_Next_Interp (Index2, It2);
end loop;
end if;
end Check_Right_Argument;
-- Start processing for Find_Arithmetic_Types
begin
if not Is_Overloaded (L) then
Check_Right_Argument (Etype (L));
else
Get_First_Interp (L, Index1, It1);
while Present (It1.Typ) loop
Check_Right_Argument (It1.Typ);
Get_Next_Interp (Index1, It1);
end loop;
end if;
end Find_Arithmetic_Types;
------------------------
-- Find_Boolean_Types --
------------------------
procedure Find_Boolean_Types
(L, R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id)
is
Index : Interp_Index;
It : Interp;
procedure Check_Numeric_Argument (T : Entity_Id);
-- Special case for logical operations one of whose operands is an
-- integer literal. If both are literal the result is any modular type.
----------------------------
-- Check_Numeric_Argument --
----------------------------
procedure Check_Numeric_Argument (T : Entity_Id) is
begin
if T = Universal_Integer then
Add_One_Interp (N, Op_Id, Any_Modular);
elsif Is_Modular_Integer_Type (T) then
Add_One_Interp (N, Op_Id, T);
end if;
end Check_Numeric_Argument;
-- Start of processing for Find_Boolean_Types
begin
if not Is_Overloaded (L) then
if Etype (L) = Universal_Integer
or else Etype (L) = Any_Modular
then
if not Is_Overloaded (R) then
Check_Numeric_Argument (Etype (R));
else
Get_First_Interp (R, Index, It);
while Present (It.Typ) loop
Check_Numeric_Argument (It.Typ);
Get_Next_Interp (Index, It);
end loop;
end if;
-- If operands are aggregates, we must assume that they may be
-- boolean arrays, and leave disambiguation for the second pass.
-- If only one is an aggregate, verify that the other one has an
-- interpretation as a boolean array
elsif Nkind (L) = N_Aggregate then
if Nkind (R) = N_Aggregate then
Add_One_Interp (N, Op_Id, Etype (L));
elsif not Is_Overloaded (R) then
if Valid_Boolean_Arg (Etype (R)) then
Add_One_Interp (N, Op_Id, Etype (R));
end if;
else
Get_First_Interp (R, Index, It);
while Present (It.Typ) loop
if Valid_Boolean_Arg (It.Typ) then
Add_One_Interp (N, Op_Id, It.Typ);
end if;
Get_Next_Interp (Index, It);
end loop;
end if;
elsif Valid_Boolean_Arg (Etype (L))
and then Has_Compatible_Type (R, Etype (L))
then
Add_One_Interp (N, Op_Id, Etype (L));
end if;
else
Get_First_Interp (L, Index, It);
while Present (It.Typ) loop
if Valid_Boolean_Arg (It.Typ)
and then Has_Compatible_Type (R, It.Typ)
then
Add_One_Interp (N, Op_Id, It.Typ);
end if;
Get_Next_Interp (Index, It);
end loop;
end if;
end Find_Boolean_Types;
---------------------------
-- Find_Comparison_Types --
---------------------------
procedure Find_Comparison_Types
(L, R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id)
is
Index : Interp_Index;
It : Interp;
Found : Boolean := False;
I_F : Interp_Index;
T_F : Entity_Id;
Scop : Entity_Id := Empty;
procedure Try_One_Interp (T1 : Entity_Id);
-- Routine to try one proposed interpretation. Note that the context
-- of the operator plays no role in resolving the arguments, so that
-- if there is more than one interpretation of the operands that is
-- compatible with comparison, the operation is ambiguous.
--------------------
-- Try_One_Interp --
--------------------
procedure Try_One_Interp (T1 : Entity_Id) is
begin
-- If the operator is an expanded name, then the type of the operand
-- must be defined in the corresponding scope. If the type is
-- universal, the context will impose the correct type.
if Present (Scop)
and then not Defined_In_Scope (T1, Scop)
and then T1 /= Universal_Integer
and then T1 /= Universal_Real
and then T1 /= Any_String
and then T1 /= Any_Composite
then
return;
end if;
if Valid_Comparison_Arg (T1)
and then Has_Compatible_Type (R, T1)
then
if Found
and then Base_Type (T1) /= Base_Type (T_F)
then
It := Disambiguate (L, I_F, Index, Any_Type);
if It = No_Interp then
Ambiguous_Operands (N);
Set_Etype (L, Any_Type);
return;
else
T_F := It.Typ;
end if;
else
Found := True;
T_F := T1;
I_F := Index;
end if;
Set_Etype (L, T_F);
Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
end if;
end Try_One_Interp;
-- Start processing for Find_Comparison_Types
begin
-- If left operand is aggregate, the right operand has to
-- provide a usable type for it.
if Nkind (L) = N_Aggregate
and then Nkind (R) /= N_Aggregate
then
Find_Comparison_Types (R, L, Op_Id, N);
return;
end if;
if Nkind (N) = N_Function_Call
and then Nkind (Name (N)) = N_Expanded_Name
then
Scop := Entity (Prefix (Name (N)));
-- The prefix may be a package renaming, and the subsequent test
-- requires the original package.
if Ekind (Scop) = E_Package
and then Present (Renamed_Entity (Scop))
then
Scop := Renamed_Entity (Scop);
Set_Entity (Prefix (Name (N)), Scop);
end if;
end if;
if not Is_Overloaded (L) then
Try_One_Interp (Etype (L));
else
Get_First_Interp (L, Index, It);
while Present (It.Typ) loop
Try_One_Interp (It.Typ);
Get_Next_Interp (Index, It);
end loop;
end if;
end Find_Comparison_Types;
----------------------------------------
-- Find_Non_Universal_Interpretations --
----------------------------------------
procedure Find_Non_Universal_Interpretations
(N : Node_Id;
R : Node_Id;
Op_Id : Entity_Id;
T1 : Entity_Id)
is
Index : Interp_Index;
It : Interp;
begin
if T1 = Universal_Integer
or else T1 = Universal_Real
then
if not Is_Overloaded (R) then
Add_One_Interp
(N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
else
Get_First_Interp (R, Index, It);
while Present (It.Typ) loop
if Covers (It.Typ, T1) then
Add_One_Interp
(N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
end if;
Get_Next_Interp (Index, It);
end loop;
end if;
else
Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
end if;
end Find_Non_Universal_Interpretations;
------------------------------
-- Find_Concatenation_Types --
------------------------------
procedure Find_Concatenation_Types
(L, R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id)
is
Op_Type : constant Entity_Id := Etype (Op_Id);
begin
if Is_Array_Type (Op_Type)
and then not Is_Limited_Type (Op_Type)
and then (Has_Compatible_Type (L, Op_Type)
or else
Has_Compatible_Type (L, Component_Type (Op_Type)))
and then (Has_Compatible_Type (R, Op_Type)
or else
Has_Compatible_Type (R, Component_Type (Op_Type)))
then
Add_One_Interp (N, Op_Id, Op_Type);
end if;
end Find_Concatenation_Types;
-------------------------
-- Find_Equality_Types --
-------------------------
procedure Find_Equality_Types
(L, R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id)
is
Index : Interp_Index;
It : Interp;
Found : Boolean := False;
I_F : Interp_Index;
T_F : Entity_Id;
Scop : Entity_Id := Empty;
procedure Try_One_Interp (T1 : Entity_Id);
-- The context of the operator plays no role in resolving the
-- arguments, so that if there is more than one interpretation
-- of the operands that is compatible with equality, the construct
-- is ambiguous and an error can be emitted now, after trying to
-- disambiguate, i.e. applying preference rules.
--------------------
-- Try_One_Interp --
--------------------
procedure Try_One_Interp (T1 : Entity_Id) is
begin
-- If the operator is an expanded name, then the type of the operand
-- must be defined in the corresponding scope. If the type is
-- universal, the context will impose the correct type. An anonymous
-- type for a 'Access reference is also universal in this sense, as
-- the actual type is obtained from context.
-- In Ada 2005, the equality operator for anonymous access types
-- is declared in Standard, and preference rules apply to it.
if Present (Scop) then
if Defined_In_Scope (T1, Scop)
or else T1 = Universal_Integer
or else T1 = Universal_Real
or else T1 = Any_Access
or else T1 = Any_String
or else T1 = Any_Composite
or else (Ekind (T1) = E_Access_Subprogram_Type
and then not Comes_From_Source (T1))
then
null;
elsif Ekind (T1) = E_Anonymous_Access_Type
and then Scop = Standard_Standard
then
null;
else
-- The scope does not contain an operator for the type
return;
end if;
end if;
-- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
-- Do not allow anonymous access types in equality operators.
if Ada_Version < Ada_05
and then Ekind (T1) = E_Anonymous_Access_Type
then
return;
end if;
if T1 /= Standard_Void_Type
and then not Is_Limited_Type (T1)
and then not Is_Limited_Composite (T1)
and then Has_Compatible_Type (R, T1)
then
if Found
and then Base_Type (T1) /= Base_Type (T_F)
then
It := Disambiguate (L, I_F, Index, Any_Type);
if It = No_Interp then
Ambiguous_Operands (N);
Set_Etype (L, Any_Type);
return;
else
T_F := It.Typ;
end if;
else
Found := True;
T_F := T1;
I_F := Index;
end if;
if not Analyzed (L) then
Set_Etype (L, T_F);
end if;
Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
-- Case of operator was not visible, Etype still set to Any_Type
if Etype (N) = Any_Type then
Found := False;
end if;
elsif Scop = Standard_Standard
and then Ekind (T1) = E_Anonymous_Access_Type
then
Found := True;
end if;
end Try_One_Interp;
-- Start of processing for Find_Equality_Types
begin
-- If left operand is aggregate, the right operand has to
-- provide a usable type for it.
if Nkind (L) = N_Aggregate
and then Nkind (R) /= N_Aggregate
then
Find_Equality_Types (R, L, Op_Id, N);
return;
end if;
if Nkind (N) = N_Function_Call
and then Nkind (Name (N)) = N_Expanded_Name
then
Scop := Entity (Prefix (Name (N)));
-- The prefix may be a package renaming, and the subsequent test
-- requires the original package.
if Ekind (Scop) = E_Package
and then Present (Renamed_Entity (Scop))
then
Scop := Renamed_Entity (Scop);
Set_Entity (Prefix (Name (N)), Scop);
end if;
end if;
if not Is_Overloaded (L) then
Try_One_Interp (Etype (L));
else
Get_First_Interp (L, Index, It);
while Present (It.Typ) loop
Try_One_Interp (It.Typ);
Get_Next_Interp (Index, It);
end loop;
end if;
end Find_Equality_Types;
-------------------------
-- Find_Negation_Types --
-------------------------
procedure Find_Negation_Types
(R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id)
is
Index : Interp_Index;
It : Interp;
begin
if not Is_Overloaded (R) then
if Etype (R) = Universal_Integer then
Add_One_Interp (N, Op_Id, Any_Modular);
elsif Valid_Boolean_Arg (Etype (R)) then
Add_One_Interp (N, Op_Id, Etype (R));
end if;
else
Get_First_Interp (R, Index, It);
while Present (It.Typ) loop
if Valid_Boolean_Arg (It.Typ) then
Add_One_Interp (N, Op_Id, It.Typ);
end if;
Get_Next_Interp (Index, It);
end loop;
end if;
end Find_Negation_Types;
----------------------
-- Find_Unary_Types --
----------------------
procedure Find_Unary_Types
(R : Node_Id;
Op_Id : Entity_Id;
N : Node_Id)
is
Index : Interp_Index;
It : Interp;
begin
if not Is_Overloaded (R) then
if Is_Numeric_Type (Etype (R)) then
Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
end if;
else
Get_First_Interp (R, Index, It);
while Present (It.Typ) loop
if Is_Numeric_Type (It.Typ) then
Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
end if;
Get_Next_Interp (Index, It);
end loop;
end if;
end Find_Unary_Types;
------------------
-- Junk_Operand --
------------------
function Junk_Operand (N : Node_Id) return Boolean is
Enode : Node_Id;
begin
if Error_Posted (N) then
return False;
end if;
-- Get entity to be tested
if Is_Entity_Name (N)
and then Present (Entity (N))
then
Enode := N;
-- An odd case, a procedure name gets converted to a very peculiar
-- function call, and here is where we detect this happening.
elsif Nkind (N) = N_Function_Call
and then Is_Entity_Name (Name (N))
and then Present (Entity (Name (N)))
then
Enode := Name (N);
-- Another odd case, there are at least some cases of selected
-- components where the selected component is not marked as having
-- an entity, even though the selector does have an entity
elsif Nkind (N) = N_Selected_Component
and then Present (Entity (Selector_Name (N)))
then
Enode := Selector_Name (N);
else
return False;
end if;
-- Now test the entity we got to see if it is a bad case
case Ekind (Entity (Enode)) is
when E_Package =>
Error_Msg_N
("package name cannot be used as operand", Enode);
when Generic_Unit_Kind =>
Error_Msg_N
("generic unit name cannot be used as operand", Enode);
when Type_Kind =>
Error_Msg_N
("subtype name cannot be used as operand", Enode);
when Entry_Kind =>
Error_Msg_N
("entry name cannot be used as operand", Enode);
when E_Procedure =>
Error_Msg_N
("procedure name cannot be used as operand", Enode);
when E_Exception =>
Error_Msg_N
("exception name cannot be used as operand", Enode);
when E_Block | E_Label | E_Loop =>
Error_Msg_N
("label name cannot be used as operand", Enode);
when others =>
return False;
end case;
return True;
end Junk_Operand;
--------------------
-- Operator_Check --
--------------------
procedure Operator_Check (N : Node_Id) is
begin
Remove_Abstract_Operations (N);
-- Test for case of no interpretation found for operator
if Etype (N) = Any_Type then
declare
L : Node_Id;
R : Node_Id;
begin
R := Right_Opnd (N);
if Nkind (N) in N_Binary_Op then
L := Left_Opnd (N);
else
L := Empty;
end if;
-- If either operand has no type, then don't complain further,
-- since this simply means that we have a propagated error.
if R = Error
or else Etype (R) = Any_Type
or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
then
return;
-- We explicitly check for the case of concatenation of component
-- with component to avoid reporting spurious matching array types
-- that might happen to be lurking in distant packages (such as
-- run-time packages). This also prevents inconsistencies in the
-- messages for certain ACVC B tests, which can vary depending on
-- types declared in run-time interfaces. Another improvement when
-- aggregates are present is to look for a well-typed operand.
elsif Present (Candidate_Type)
and then (Nkind (N) /= N_Op_Concat
or else Is_Array_Type (Etype (L))
or else Is_Array_Type (Etype (R)))
then
if Nkind (N) = N_Op_Concat then
if Etype (L) /= Any_Composite
and then Is_Array_Type (Etype (L))
then
Candidate_Type := Etype (L);
elsif Etype (R) /= Any_Composite
and then Is_Array_Type (Etype (R))
then
Candidate_Type := Etype (R);
end if;
end if;
Error_Msg_NE
("operator for} is not directly visible!",
N, First_Subtype (Candidate_Type));
Error_Msg_N ("use clause would make operation legal!", N);
return;
-- If either operand is a junk operand (e.g. package name), then
-- post appropriate error messages, but do not complain further.
-- Note that the use of OR in this test instead of OR ELSE is
-- quite deliberate, we may as well check both operands in the
-- binary operator case.
elsif Junk_Operand (R)
or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
then
return;
-- If we have a logical operator, one of whose operands is
-- Boolean, then we know that the other operand cannot resolve to
-- Boolean (since we got no interpretations), but in that case we
-- pretty much know that the other operand should be Boolean, so
-- resolve it that way (generating an error)
elsif Nkind (N) = N_Op_And
or else
Nkind (N) = N_Op_Or
or else
Nkind (N) = N_Op_Xor
then
if Etype (L) = Standard_Boolean then
Resolve (R, Standard_Boolean);
return;
elsif Etype (R) = Standard_Boolean then
Resolve (L, Standard_Boolean);
return;
end if;
-- For an arithmetic operator or comparison operator, if one
-- of the operands is numeric, then we know the other operand
-- is not the same numeric type. If it is a non-numeric type,
-- then probably it is intended to match the other operand.
elsif Nkind (N) = N_Op_Add or else
Nkind (N) = N_Op_Divide or else
Nkind (N) = N_Op_Ge or else
Nkind (N) = N_Op_Gt or else
Nkind (N) = N_Op_Le or else
Nkind (N) = N_Op_Lt or else
Nkind (N) = N_Op_Mod or else
Nkind (N) = N_Op_Multiply or else
Nkind (N) = N_Op_Rem or else
Nkind (N) = N_Op_Subtract
then
if Is_Numeric_Type (Etype (L))
and then not Is_Numeric_Type (Etype (R))
then
Resolve (R, Etype (L));
return;
elsif Is_Numeric_Type (Etype (R))
and then not Is_Numeric_Type (Etype (L))
then
Resolve (L, Etype (R));
return;
end if;
-- Comparisons on A'Access are common enough to deserve a
-- special message.
elsif (Nkind (N) = N_Op_Eq or else
Nkind (N) = N_Op_Ne)
and then Ekind (Etype (L)) = E_Access_Attribute_Type
and then Ekind (Etype (R)) = E_Access_Attribute_Type
then
Error_Msg_N
("two access attributes cannot be compared directly", N);
Error_Msg_N
("\they must be converted to an explicit type for comparison",
N);
return;
-- Another one for C programmers
elsif Nkind (N) = N_Op_Concat
and then Valid_Boolean_Arg (Etype (L))
and then Valid_Boolean_Arg (Etype (R))
then
Error_Msg_N ("invalid operands for concatenation", N);
Error_Msg_N ("\maybe AND was meant", N);
return;
-- A special case for comparison of access parameter with null
elsif Nkind (N) = N_Op_Eq
and then Is_Entity_Name (L)
and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
and then Nkind (Parameter_Type (Parent (Entity (L)))) =
N_Access_Definition
and then Nkind (R) = N_Null
then
Error_Msg_N ("access parameter is not allowed to be null", L);
Error_Msg_N ("\(call would raise Constraint_Error)", L);
return;
end if;
-- If we fall through then just give general message. Note that in
-- the following messages, if the operand is overloaded we choose
-- an arbitrary type to complain about, but that is probably more
-- useful than not giving a type at all.
if Nkind (N) in N_Unary_Op then
Error_Msg_Node_2 := Etype (R);
Error_Msg_N ("operator& not defined for}", N);
return;
else
if Nkind (N) in N_Binary_Op then
if not Is_Overloaded (L)
and then not Is_Overloaded (R)
and then Base_Type (Etype (L)) = Base_Type (Etype (R))
then
Error_Msg_Node_2 := First_Subtype (Etype (R));
Error_Msg_N ("there is no applicable operator& for}", N);
else
Error_Msg_N ("invalid operand types for operator&", N);
if Nkind (N) /= N_Op_Concat then
Error_Msg_NE ("\left operand has}!", N, Etype (L));
Error_Msg_NE ("\right operand has}!", N, Etype (R));
end if;
end if;
end if;
end if;
end;
end if;
end Operator_Check;
-----------------------------------------
-- Process_Implicit_Dereference_Prefix --
-----------------------------------------
procedure Process_Implicit_Dereference_Prefix
(E : Entity_Id;
P : Entity_Id)
is
Ref : Node_Id;
begin
if Present (E)
and then (Operating_Mode = Check_Semantics or else not Expander_Active)
then
-- We create a dummy reference to E to ensure that the reference
-- is not considered as part of an assignment (an implicit
-- dereference can never assign to its prefix). The Comes_From_Source
-- attribute needs to be propagated for accurate warnings.
Ref := New_Reference_To (E, Sloc (P));
Set_Comes_From_Source (Ref, Comes_From_Source (P));
Generate_Reference (E, Ref);
end if;
end Process_Implicit_Dereference_Prefix;
--------------------------------
-- Remove_Abstract_Operations --
--------------------------------
procedure Remove_Abstract_Operations (N : Node_Id) is
I : Interp_Index;
It : Interp;
Abstract_Op : Entity_Id := Empty;
-- AI-310: If overloaded, remove abstract non-dispatching operations. We
-- activate this if either extensions are enabled, or if the abstract
-- operation in question comes from a predefined file. This latter test
-- allows us to use abstract to make operations invisible to users. In
-- particular, if type Address is non-private and abstract subprograms
-- are used to hide its operators, they will be truly hidden.
type Operand_Position is (First_Op, Second_Op);
Univ_Type : constant Entity_Id := Universal_Interpretation (N);
procedure Remove_Address_Interpretations (Op : Operand_Position);
-- Ambiguities may arise when the operands are literal and the address
-- operations in s-auxdec are visible. In that case, remove the
-- interpretation of a literal as Address, to retain the semantics of
-- Address as a private type.
------------------------------------
-- Remove_Address_Interpretations --
------------------------------------
procedure Remove_Address_Interpretations (Op : Operand_Position) is
Formal : Entity_Id;
begin
if Is_Overloaded (N) then
Get_First_Interp (N, I, It);
while Present (It.Nam) loop
Formal := First_Entity (It.Nam);
if Op = Second_Op then
Formal := Next_Entity (Formal);
end if;
if Is_Descendent_Of_Address (Etype (Formal)) then
Remove_Interp (I);
end if;
Get_Next_Interp (I, It);
end loop;
end if;
end Remove_Address_Interpretations;
-- Start of processing for Remove_Abstract_Operations
begin
if Is_Overloaded (N) then
Get_First_Interp (N, I, It);
while Present (It.Nam) loop
if not Is_Type (It.Nam)
and then Is_Abstract (It.Nam)
and then not Is_Dispatching_Operation (It.Nam)
then
Abstract_Op := It.Nam;
-- In Ada 2005, this operation does not participate in Overload
-- resolution. If the operation is defined in in a predefined
-- unit, it is one of the operations declared abstract in some
-- variants of System, and it must be removed as well.
if Ada_Version >= Ada_05
or else Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (It.Nam)))
or else Is_Descendent_Of_Address (It.Typ)
then
Remove_Interp (I);
exit;
end if;
end if;
Get_Next_Interp (I, It);
end loop;
if No (Abstract_Op) then
-- If some interpretation yields an integer type, it is still
-- possible that there are address interpretations. Remove them
-- if one operand is a literal, to avoid spurious ambiguities
-- on systems where Address is a visible integer type.
if Is_Overloaded (N)
and then Nkind (N) in N_Op
and then Is_Integer_Type (Etype (N))
then
if Nkind (N) in N_Binary_Op then
if Nkind (Right_Opnd (N)) = N_Integer_Literal then
Remove_Address_Interpretations (Second_Op);
elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
Remove_Address_Interpretations (First_Op);
end if;
end if;
end if;
elsif Nkind (N) in N_Op then
-- Remove interpretations that treat literals as addresses. This
-- is never appropriate, even when Address is defined as a visible
-- Integer type. The reason is that we would really prefer Address
-- to behave as a private type, even in this case, which is there
-- only to accomodate oddities of VMS address sizes. If Address is
-- a visible integer type, we get lots of overload ambiguities.
if Nkind (N) in N_Binary_Op then
declare
U1 : constant Boolean :=
Present (Universal_Interpretation (Right_Opnd (N)));
U2 : constant Boolean :=
Present (Universal_Interpretation (Left_Opnd (N)));
begin
if U1 then
Remove_Address_Interpretations (Second_Op);
end if;
if U2 then
Remove_Address_Interpretations (First_Op);
end if;
if not (U1 and U2) then
-- Remove corresponding predefined operator, which is
-- always added to the overload set.
Get_First_Interp (N, I, It);
while Present (It.Nam) loop
if Scope (It.Nam) = Standard_Standard
and then Base_Type (It.Typ) =
Base_Type (Etype (Abstract_Op))
then
Remove_Interp (I);
end if;
Get_Next_Interp (I, It);
end loop;
elsif Is_Overloaded (N)
and then Present (Univ_Type)
then
-- If both operands have a universal interpretation,
-- it is still necessary to remove interpretations that
-- yield Address. Any remaining ambiguities will be
-- removed in Disambiguate.
Get_First_Interp (N, I, It);
while Present (It.Nam) loop
if Is_Descendent_Of_Address (It.Typ) then
Remove_Interp (I);
elsif not Is_Type (It.Nam) then
Set_Entity (N, It.Nam);
end if;
Get_Next_Interp (I, It);
end loop;
end if;
end;
end if;
elsif Nkind (N) = N_Function_Call
and then
(Nkind (Name (N)) = N_Operator_Symbol
or else
(Nkind (Name (N)) = N_Expanded_Name
and then
Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
then
declare
Arg1 : constant Node_Id := First (Parameter_Associations (N));
U1 : constant Boolean :=
Present (Universal_Interpretation (Arg1));
U2 : constant Boolean :=
Present (Next (Arg1)) and then
Present (Universal_Interpretation (Next (Arg1)));
begin
if U1 then
Remove_Address_Interpretations (First_Op);
end if;
if U2 then
Remove_Address_Interpretations (Second_Op);
end if;
if not (U1 and U2) then
Get_First_Interp (N, I, It);
while Present (It.Nam) loop
if Scope (It.Nam) = Standard_Standard
and then It.Typ = Base_Type (Etype (Abstract_Op))
then
Remove_Interp (I);
end if;
Get_Next_Interp (I, It);
end loop;
end if;
end;
end if;
-- If the removal has left no valid interpretations, emit
-- error message now and label node as illegal.
if Present (Abstract_Op) then
Get_First_Interp (N, I, It);
if No (It.Nam) then
-- Removal of abstract operation left no viable candidate
Set_Etype (N, Any_Type);
Error_Msg_Sloc := Sloc (Abstract_Op);
Error_Msg_NE
("cannot call abstract operation& declared#", N, Abstract_Op);
end if;
end if;
end if;
end Remove_Abstract_Operations;
-----------------------
-- Try_Indirect_Call --
-----------------------
function Try_Indirect_Call
(N : Node_Id;
Nam : Entity_Id;
Typ : Entity_Id) return Boolean
is
Actual : Node_Id;
Formal : Entity_Id;
Call_OK : Boolean;
begin
Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
Actual := First_Actual (N);
Formal := First_Formal (Designated_Type (Typ));
while Present (Actual) and then Present (Formal) loop
if not Has_Compatible_Type (Actual, Etype (Formal)) then
return False;
end if;
Next (Actual);
Next_Formal (Formal);
end loop;
if No (Actual) and then No (Formal) then
Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
-- Nam is a candidate interpretation for the name in the call,
-- if it is not an indirect call.
if not Is_Type (Nam)
and then Is_Entity_Name (Name (N))
then
Set_Entity (Name (N), Nam);
end if;
return True;
else
return False;
end if;
end Try_Indirect_Call;
----------------------
-- Try_Indexed_Call --
----------------------
function Try_Indexed_Call
(N : Node_Id;
Nam : Entity_Id;
Typ : Entity_Id) return Boolean
is
Actuals : constant List_Id := Parameter_Associations (N);
Actual : Node_Id;
Index : Entity_Id;
begin
Actual := First (Actuals);
Index := First_Index (Typ);
while Present (Actual) and then Present (Index) loop
-- If the parameter list has a named association, the expression
-- is definitely a call and not an indexed component.
if Nkind (Actual) = N_Parameter_Association then
return False;
end if;
if not Has_Compatible_Type (Actual, Etype (Index)) then
return False;
end if;
Next (Actual);
Next_Index (Index);
end loop;
if No (Actual) and then No (Index) then
Add_One_Interp (N, Nam, Component_Type (Typ));
-- Nam is a candidate interpretation for the name in the call,
-- if it is not an indirect call.
if not Is_Type (Nam)
and then Is_Entity_Name (Name (N))
then
Set_Entity (Name (N), Nam);
end if;
return True;
else
return False;
end if;
end Try_Indexed_Call;
--------------------------
-- Try_Object_Operation --
--------------------------
function Try_Object_Operation (N : Node_Id) return Boolean is
K : constant Node_Kind := Nkind (Parent (N));
Loc : constant Source_Ptr := Sloc (N);
Is_Subprg_Call : constant Boolean := K = N_Procedure_Call_Statement
or else K = N_Function_Call;
Obj : constant Node_Id := Prefix (N);
Subprog : constant Node_Id := Selector_Name (N);
Actual : Node_Id;
New_Call_Node : Node_Id := Empty;
Node_To_Replace : Node_Id;
Obj_Type : Entity_Id := Etype (Obj);
procedure Complete_Object_Operation
(Call_Node : Node_Id;
Node_To_Replace : Node_Id;
Subprog : Node_Id);
-- Make Subprog the name of Call_Node, replace Node_To_Replace with
-- Call_Node, insert the object (or its dereference) as the first actual
-- in the call, and complete the analysis of the call.
procedure Transform_Object_Operation
(Call_Node : out Node_Id;
Node_To_Replace : out Node_Id;
Subprog : Node_Id);
-- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
-- Call_Node is the resulting subprogram call,
-- Node_To_Replace is either N or the parent of N, and Subprog
-- is a reference to the subprogram we are trying to match.
function Try_Class_Wide_Operation
(Call_Node : Node_Id;
Node_To_Replace : Node_Id) return Boolean;
-- Traverse all ancestor types looking for a class-wide subprogram
-- for which the current operation is a valid non-dispatching call.
function Try_Primitive_Operation
(Call_Node : Node_Id;
Node_To_Replace : Node_Id) return Boolean;
-- Traverse the list of primitive subprograms looking for a dispatching
-- operation for which the current node is a valid call .
-------------------------------
-- Complete_Object_Operation --
-------------------------------
procedure Complete_Object_Operation
(Call_Node : Node_Id;
Node_To_Replace : Node_Id;
Subprog : Node_Id)
is
Formal_Type : constant Entity_Id :=
Etype (First_Formal (Entity (Subprog)));
First_Actual : Node_Id;
begin
First_Actual := First (Parameter_Associations (Call_Node));
Set_Name (Call_Node, Subprog);
if Nkind (N) = N_Selected_Component
and then not Inside_A_Generic
then
Set_Entity (Selector_Name (N), Entity (Subprog));
end if;
-- If need be, rewrite first actual as an explicit dereference
if not Is_Access_Type (Formal_Type)
and then Is_Access_Type (Etype (Obj))
then
Rewrite (First_Actual,
Make_Explicit_Dereference (Sloc (Obj), Obj));
Analyze (First_Actual);
-- Conversely, if the formal is an access parameter and the
-- object is not, replace the actual with a 'Access reference.
-- Its analysis will check that the object is aliased.
elsif Is_Access_Type (Formal_Type)
and then not Is_Access_Type (Etype (Obj))
then
Rewrite (First_Actual,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Access,
Prefix => Relocate_Node (Obj)));
Analyze (First_Actual);
else
Rewrite (First_Actual, Obj);
end if;
Rewrite (Node_To_Replace, Call_Node);
Analyze (Node_To_Replace);
end Complete_Object_Operation;
--------------------------------
-- Transform_Object_Operation --
--------------------------------
procedure Transform_Object_Operation
(Call_Node : out Node_Id;
Node_To_Replace : out Node_Id;
Subprog : Node_Id)
is
Parent_Node : constant Node_Id := Parent (N);
Dummy : constant Node_Id := New_Copy (Obj);
-- Placeholder used as a first parameter in the call, replaced
-- eventually by the proper object.
Actuals : List_Id;
Actual : Node_Id;
begin
-- Common case covering 1) Call to a procedure and 2) Call to a
-- function that has some additional actuals.
if (Nkind (Parent_Node) = N_Function_Call
or else
Nkind (Parent_Node) = N_Procedure_Call_Statement)
-- N is a selected component node containing the name of the
-- subprogram. If N is not the name of the parent node we must
-- not replace the parent node by the new construct. This case
-- occurs when N is a parameterless call to a subprogram that
-- is an actual parameter of a call to another subprogram. For
-- example:
-- Some_Subprogram (..., Obj.Operation, ...)
and then Name (Parent_Node) = N
then
Node_To_Replace := Parent_Node;
Actuals := Parameter_Associations (Parent_Node);
if Present (Actuals) then
Prepend (Dummy, Actuals);
else
Actuals := New_List (Dummy);
end if;
if Nkind (Parent_Node) = N_Procedure_Call_Statement then
Call_Node :=
Make_Procedure_Call_Statement (Loc,
Name => New_Copy_Tree (Subprog),
Parameter_Associations => Actuals);
else
Call_Node :=
Make_Function_Call (Loc,
Name => New_Copy_Tree (Subprog),
Parameter_Associations => Actuals);
end if;
-- Before analysis, the function call appears as an indexed component
-- if there are no named associations.
elsif Nkind (Parent_Node) = N_Indexed_Component
and then N = Prefix (Parent_Node)
then
Node_To_Replace := Parent_Node;
Actuals := Expressions (Parent_Node);
Actual := First (Actuals);
while Present (Actual) loop
Analyze (Actual);
Next (Actual);
end loop;
Prepend (Dummy, Actuals);
Call_Node :=
Make_Function_Call (Loc,
Name => New_Copy_Tree (Subprog),
Parameter_Associations => Actuals);
-- Parameterless call: Obj.F is rewritten as F (Obj)
else
Node_To_Replace := N;
Call_Node :=
Make_Function_Call (Loc,
Name => New_Copy_Tree (Subprog),
Parameter_Associations => New_List (Dummy));
end if;
end Transform_Object_Operation;
------------------------------
-- Try_Class_Wide_Operation --
------------------------------
function Try_Class_Wide_Operation
(Call_Node : Node_Id;
Node_To_Replace : Node_Id) return Boolean
is
Anc_Type : Entity_Id;
Hom : Entity_Id;
Hom_Ref : Node_Id;
Success : Boolean;
begin
-- Loop through ancestor types, traverse the homonym chain of the
-- subprogram, and try out those homonyms whose first formal has the
-- class-wide type of the ancestor.
-- Should we verify that it is declared in the same package as the
-- ancestor type ???
Anc_Type := Obj_Type;
loop
Hom := Current_Entity (Subprog);
while Present (Hom) loop
if (Ekind (Hom) = E_Procedure
or else
Ekind (Hom) = E_Function)
and then Present (First_Formal (Hom))
and then Etype (First_Formal (Hom)) =
Class_Wide_Type (Anc_Type)
then
Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
Set_Etype (Call_Node, Any_Type);
Set_Parent (Call_Node, Parent (Node_To_Replace));
Set_Name (Call_Node, Hom_Ref);
Analyze_One_Call
(N => Call_Node,
Nam => Hom,
Report => False,
Success => Success,
Skip_First => True);
if Success then
-- Reformat into the proper call
Complete_Object_Operation
(Call_Node => Call_Node,
Node_To_Replace => Node_To_Replace,
Subprog => Hom_Ref);
return True;
end if;
end if;
Hom := Homonym (Hom);
end loop;
-- Examine other ancestor types
exit when Etype (Anc_Type) = Anc_Type;
Anc_Type := Etype (Anc_Type);
end loop;
-- Nothing matched
return False;
end Try_Class_Wide_Operation;
-----------------------------
-- Try_Primitive_Operation --
-----------------------------
function Try_Primitive_Operation
(Call_Node : Node_Id;
Node_To_Replace : Node_Id) return Boolean
is
Elmt : Elmt_Id;
Prim_Op : Entity_Id;
Prim_Op_Ref : Node_Id := Empty;
Success : Boolean := False;
Op_Exists : Boolean := False;
function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
-- Verify that the prefix, dereferenced if need be, is a valid
-- controlling argument in a call to Op. The remaining actuals
-- are checked in the subsequent call to Analyze_One_Call.
-----------------------------
-- Valid_First_Argument_Of --
-----------------------------
function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
Typ : constant Entity_Id := Etype (First_Formal (Op));
begin
-- Simple case
return Base_Type (Obj_Type) = Typ
-- Prefix can be dereferenced
or else
(Is_Access_Type (Obj_Type)
and then Designated_Type (Obj_Type) = Typ)
-- Formal is an access parameter, for which the object
-- can provide an access.
or else
(Ekind (Typ) = E_Anonymous_Access_Type
and then Designated_Type (Typ) = Obj_Type);
end Valid_First_Argument_Of;
-- Start of processing for Try_Primitive_Operation
begin
-- Look for subprograms in the list of primitive operations
-- The name must be identical, and the kind of call indicates
-- the expected kind of operation (function or procedure).
Elmt := First_Elmt (Primitive_Operations (Obj_Type));
while Present (Elmt) loop
Prim_Op := Node (Elmt);
if Chars (Prim_Op) = Chars (Subprog)
and then Present (First_Formal (Prim_Op))
and then Valid_First_Argument_Of (Prim_Op)
and then
(Nkind (Call_Node) = N_Function_Call)
= (Ekind (Prim_Op) = E_Function)
then
-- If this primitive operation corresponds with an immediate
-- ancestor interface there is no need to add it to the list
-- of interpretations; the corresponding aliased primitive is
-- also in this list of primitive operations and will be
-- used instead.
if Present (Abstract_Interface_Alias (Prim_Op))
and then Present (DTC_Entity (Alias (Prim_Op)))
and then Etype (DTC_Entity (Alias (Prim_Op))) = RTE (RE_Tag)
then
goto Continue;
end if;
if not Success then
Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
Set_Etype (Call_Node, Any_Type);
Set_Parent (Call_Node, Parent (Node_To_Replace));
Set_Name (Call_Node, Prim_Op_Ref);
Analyze_One_Call
(N => Call_Node,
Nam => Prim_Op,
Report => False,
Success => Success,
Skip_First => True);
if Success then
Op_Exists := True;
-- If the operation is a procedure call, there can only
-- be one candidate and we found it. If it is a function
-- we must collect all interpretations, because there
-- may be several primitive operations that differ only
-- in the return type.
if Nkind (Call_Node) = N_Procedure_Call_Statement then
exit;
end if;
end if;
elsif Ekind (Prim_Op) = E_Function then
-- Collect remaining function interpretations, to be
-- resolved from context.
Add_One_Interp (Prim_Op_Ref, Prim_Op, Etype (Prim_Op));
end if;
end if;
<<Continue>>
Next_Elmt (Elmt);
end loop;
if Op_Exists then
Complete_Object_Operation
(Call_Node => Call_Node,
Node_To_Replace => Node_To_Replace,
Subprog => Prim_Op_Ref);
end if;
return Op_Exists;
end Try_Primitive_Operation;
-- Start of processing for Try_Object_Operation
begin
if Is_Access_Type (Obj_Type) then
Obj_Type := Designated_Type (Obj_Type);
end if;
if Ekind (Obj_Type) = E_Private_Subtype then
Obj_Type := Base_Type (Obj_Type);
end if;
if Is_Class_Wide_Type (Obj_Type) then
Obj_Type := Etype (Class_Wide_Type (Obj_Type));
end if;
-- The type may have be obtained through a limited_with clause,
-- in which case the primitive operations are available on its
-- non-limited view.
if Ekind (Obj_Type) = E_Incomplete_Type
and then From_With_Type (Obj_Type)
then
Obj_Type := Non_Limited_View (Obj_Type);
end if;
if not Is_Tagged_Type (Obj_Type) then
return False;
end if;
-- Analyze the actuals if node is know to be a subprogram call
if Is_Subprg_Call and then N = Name (Parent (N)) then
Actual := First (Parameter_Associations (Parent (N)));
while Present (Actual) loop
Analyze_Expression (Actual);
Next (Actual);
end loop;
end if;
Analyze_Expression (Obj);
-- Build a subprogram call node, using a copy of Obj as its first
-- actual. This is a placeholder, to be replaced by an explicit
-- dereference when needed.
Transform_Object_Operation
(Call_Node => New_Call_Node,
Node_To_Replace => Node_To_Replace,
Subprog => Subprog);
Set_Etype (New_Call_Node, Any_Type);
Set_Parent (New_Call_Node, Parent (Node_To_Replace));
return
Try_Primitive_Operation
(Call_Node => New_Call_Node,
Node_To_Replace => Node_To_Replace)
or else
Try_Class_Wide_Operation
(Call_Node => New_Call_Node,
Node_To_Replace => Node_To_Replace);
end Try_Object_Operation;
end Sem_Ch4;