blob: 186e8c28f409734e817bf92c4709e5a45caf9787 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNARL; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. --
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
-- --
------------------------------------------------------------------------------
-- This is the VxWorks version of this package
-- This package contains all the GNULL primitives that interface directly
-- with the underlying OS.
pragma Polling (Off);
-- Turn off polling, we do not want ATC polling to take place during
-- tasking operations. It causes infinite loops and other problems.
with System.Tasking.Debug;
-- used for Known_Tasks
with System.Interrupt_Management;
-- used for Keep_Unmasked
-- Abort_Task_Signal
-- Signal_ID
-- Initialize_Interrupts
with Interfaces.C;
with System.Soft_Links;
-- used for Abort_Defer/Undefer
-- We use System.Soft_Links instead of System.Tasking.Initialization
-- because the later is a higher level package that we shouldn't depend on.
-- For example when using the restricted run time, it is replaced by
-- System.Tasking.Restricted.Stages.
with Unchecked_Conversion;
with Unchecked_Deallocation;
package body System.Task_Primitives.Operations is
package SSL renames System.Soft_Links;
use System.Tasking.Debug;
use System.Tasking;
use System.OS_Interface;
use System.Parameters;
use type Interfaces.C.int;
subtype int is System.OS_Interface.int;
Relative : constant := 0;
----------------
-- Local Data --
----------------
-- The followings are logically constants, but need to be initialized at
-- run time.
Single_RTS_Lock : aliased RTS_Lock;
-- This is a lock to allow only one thread of control in the RTS at a
-- time; it is used to execute in mutual exclusion from all other tasks.
-- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
Environment_Task_Id : Task_Id;
-- A variable to hold Task_Id for the environment task
Unblocked_Signal_Mask : aliased sigset_t;
-- The set of signals that should unblocked in all tasks
-- The followings are internal configuration constants needed
Time_Slice_Val : Integer;
pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
Locking_Policy : Character;
pragma Import (C, Locking_Policy, "__gl_locking_policy");
Dispatching_Policy : Character;
pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
Mutex_Protocol : Priority_Type;
Foreign_Task_Elaborated : aliased Boolean := True;
-- Used to identified fake tasks (i.e., non-Ada Threads)
--------------------
-- Local Packages --
--------------------
package Specific is
procedure Initialize;
pragma Inline (Initialize);
-- Initialize task specific data
function Is_Valid_Task return Boolean;
pragma Inline (Is_Valid_Task);
-- Does executing thread have a TCB?
procedure Set (Self_Id : Task_Id);
pragma Inline (Set);
-- Set the self id for the current task
procedure Delete;
pragma Inline (Delete);
-- Delete the task specific data associated with the current task
function Self return Task_Id;
pragma Inline (Self);
-- Return a pointer to the Ada Task Control Block of the calling task
end Specific;
package body Specific is separate;
-- The body of this package is target specific
---------------------------------
-- Support for foreign threads --
---------------------------------
function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
-- Allocate and Initialize a new ATCB for the current Thread
function Register_Foreign_Thread
(Thread : Thread_Id) return Task_Id is separate;
-----------------------
-- Local Subprograms --
-----------------------
procedure Abort_Handler (signo : Signal);
-- Handler for the abort (SIGABRT) signal to handle asynchronous abort
procedure Install_Signal_Handlers;
-- Install the default signal handlers for the current task
function To_Address is new Unchecked_Conversion (Task_Id, System.Address);
-------------------
-- Abort_Handler --
-------------------
procedure Abort_Handler (signo : Signal) is
pragma Unreferenced (signo);
Self_ID : constant Task_Id := Self;
Result : int;
Old_Set : aliased sigset_t;
begin
-- It is not safe to raise an exception when using ZCX and the GCC
-- exception handling mechanism.
if ZCX_By_Default and then GCC_ZCX_Support then
return;
end if;
if Self_ID.Deferral_Level = 0
and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
and then not Self_ID.Aborting
then
Self_ID.Aborting := True;
-- Make sure signals used for RTS internal purpose are unmasked
Result := pthread_sigmask (SIG_UNBLOCK,
Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
pragma Assert (Result = 0);
raise Standard'Abort_Signal;
end if;
end Abort_Handler;
-----------------
-- Stack_Guard --
-----------------
procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
pragma Unreferenced (T);
pragma Unreferenced (On);
begin
-- Nothing needed (why not???)
null;
end Stack_Guard;
-------------------
-- Get_Thread_Id --
-------------------
function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
begin
return T.Common.LL.Thread;
end Get_Thread_Id;
----------
-- Self --
----------
function Self return Task_Id renames Specific.Self;
-----------------------------
-- Install_Signal_Handlers --
-----------------------------
procedure Install_Signal_Handlers is
act : aliased struct_sigaction;
old_act : aliased struct_sigaction;
Tmp_Set : aliased sigset_t;
Result : int;
begin
act.sa_flags := 0;
act.sa_handler := Abort_Handler'Address;
Result := sigemptyset (Tmp_Set'Access);
pragma Assert (Result = 0);
act.sa_mask := Tmp_Set;
Result :=
sigaction
(Signal (Interrupt_Management.Abort_Task_Signal),
act'Unchecked_Access,
old_act'Unchecked_Access);
pragma Assert (Result = 0);
Interrupt_Management.Initialize_Interrupts;
end Install_Signal_Handlers;
---------------------
-- Initialize_Lock --
---------------------
procedure Initialize_Lock (Prio : System.Any_Priority; L : access Lock) is
begin
L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
L.Prio_Ceiling := int (Prio);
L.Protocol := Mutex_Protocol;
pragma Assert (L.Mutex /= 0);
end Initialize_Lock;
procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
pragma Unreferenced (Level);
begin
L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
L.Prio_Ceiling := int (System.Any_Priority'Last);
L.Protocol := Mutex_Protocol;
pragma Assert (L.Mutex /= 0);
end Initialize_Lock;
-------------------
-- Finalize_Lock --
-------------------
procedure Finalize_Lock (L : access Lock) is
Result : int;
begin
Result := semDelete (L.Mutex);
pragma Assert (Result = 0);
end Finalize_Lock;
procedure Finalize_Lock (L : access RTS_Lock) is
Result : int;
begin
Result := semDelete (L.Mutex);
pragma Assert (Result = 0);
end Finalize_Lock;
----------------
-- Write_Lock --
----------------
procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
Result : int;
begin
if L.Protocol = Prio_Protect
and then int (Self.Common.Current_Priority) > L.Prio_Ceiling
then
Ceiling_Violation := True;
return;
else
Ceiling_Violation := False;
end if;
Result := semTake (L.Mutex, WAIT_FOREVER);
pragma Assert (Result = 0);
end Write_Lock;
procedure Write_Lock
(L : access RTS_Lock;
Global_Lock : Boolean := False)
is
Result : int;
begin
if not Single_Lock or else Global_Lock then
Result := semTake (L.Mutex, WAIT_FOREVER);
pragma Assert (Result = 0);
end if;
end Write_Lock;
procedure Write_Lock (T : Task_Id) is
Result : int;
begin
if not Single_Lock then
Result := semTake (T.Common.LL.L.Mutex, WAIT_FOREVER);
pragma Assert (Result = 0);
end if;
end Write_Lock;
---------------
-- Read_Lock --
---------------
procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
begin
Write_Lock (L, Ceiling_Violation);
end Read_Lock;
------------
-- Unlock --
------------
procedure Unlock (L : access Lock) is
Result : int;
begin
Result := semGive (L.Mutex);
pragma Assert (Result = 0);
end Unlock;
procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
Result : int;
begin
if not Single_Lock or else Global_Lock then
Result := semGive (L.Mutex);
pragma Assert (Result = 0);
end if;
end Unlock;
procedure Unlock (T : Task_Id) is
Result : int;
begin
if not Single_Lock then
Result := semGive (T.Common.LL.L.Mutex);
pragma Assert (Result = 0);
end if;
end Unlock;
-----------
-- Sleep --
-----------
procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is
pragma Unreferenced (Reason);
Result : int;
begin
pragma Assert (Self_ID = Self);
-- Release the mutex before sleeping
if Single_Lock then
Result := semGive (Single_RTS_Lock.Mutex);
else
Result := semGive (Self_ID.Common.LL.L.Mutex);
end if;
pragma Assert (Result = 0);
-- Perform a blocking operation to take the CV semaphore. Note that a
-- blocking operation in VxWorks will reenable task scheduling. When we
-- are no longer blocked and control is returned, task scheduling will
-- again be disabled.
Result := semTake (Self_ID.Common.LL.CV, WAIT_FOREVER);
pragma Assert (Result = 0);
-- Take the mutex back
if Single_Lock then
Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
else
Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
end if;
pragma Assert (Result = 0);
end Sleep;
-----------------
-- Timed_Sleep --
-----------------
-- This is for use within the run-time system, so abort is assumed to be
-- already deferred, and the caller should be holding its own ATCB lock.
procedure Timed_Sleep
(Self_ID : Task_Id;
Time : Duration;
Mode : ST.Delay_Modes;
Reason : System.Tasking.Task_States;
Timedout : out Boolean;
Yielded : out Boolean)
is
pragma Unreferenced (Reason);
Orig : constant Duration := Monotonic_Clock;
Absolute : Duration;
Ticks : int;
Result : int;
Wakeup : Boolean := False;
begin
Timedout := False;
Yielded := True;
if Mode = Relative then
Absolute := Orig + Time;
-- Systematically add one since the first tick will delay *at most*
-- 1 / Rate_Duration seconds, so we need to add one to be on the
-- safe side.
Ticks := To_Clock_Ticks (Time);
if Ticks > 0 and then Ticks < int'Last then
Ticks := Ticks + 1;
end if;
else
Absolute := Time;
Ticks := To_Clock_Ticks (Time - Monotonic_Clock);
end if;
if Ticks > 0 then
loop
-- Release the mutex before sleeping
if Single_Lock then
Result := semGive (Single_RTS_Lock.Mutex);
else
Result := semGive (Self_ID.Common.LL.L.Mutex);
end if;
pragma Assert (Result = 0);
-- Perform a blocking operation to take the CV semaphore. Note
-- that a blocking operation in VxWorks will reenable task
-- scheduling. When we are no longer blocked and control is
-- returned, task scheduling will again be disabled.
Result := semTake (Self_ID.Common.LL.CV, Ticks);
if Result = 0 then
-- Somebody may have called Wakeup for us
Wakeup := True;
else
if errno /= S_objLib_OBJ_TIMEOUT then
Wakeup := True;
else
-- If Ticks = int'last, it was most probably truncated so
-- let's make another round after recomputing Ticks from
-- the the absolute time.
if Ticks /= int'Last then
Timedout := True;
else
Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
if Ticks < 0 then
Timedout := True;
end if;
end if;
end if;
end if;
-- Take the mutex back
if Single_Lock then
Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
else
Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
end if;
pragma Assert (Result = 0);
exit when Timedout or Wakeup;
end loop;
else
Timedout := True;
-- Should never hold a lock while yielding
if Single_Lock then
Result := semGive (Single_RTS_Lock.Mutex);
taskDelay (0);
Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
else
Result := semGive (Self_ID.Common.LL.L.Mutex);
taskDelay (0);
Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
end if;
end if;
end Timed_Sleep;
-----------------
-- Timed_Delay --
-----------------
-- This is for use in implementing delay statements, so we assume the
-- caller is holding no locks.
procedure Timed_Delay
(Self_ID : Task_Id;
Time : Duration;
Mode : ST.Delay_Modes)
is
Orig : constant Duration := Monotonic_Clock;
Absolute : Duration;
Ticks : int;
Timedout : Boolean;
Result : int;
Aborted : Boolean := False;
begin
if Mode = Relative then
Absolute := Orig + Time;
Ticks := To_Clock_Ticks (Time);
if Ticks > 0 and then Ticks < int'Last then
-- First tick will delay anytime between 0 and 1 / sysClkRateGet
-- seconds, so we need to add one to be on the safe side.
Ticks := Ticks + 1;
end if;
else
Absolute := Time;
Ticks := To_Clock_Ticks (Time - Orig);
end if;
if Ticks > 0 then
-- Modifying State and Pending_Priority_Change, locking the TCB
if Single_Lock then
Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
else
Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
end if;
pragma Assert (Result = 0);
Self_ID.Common.State := Delay_Sleep;
Timedout := False;
loop
if Self_ID.Pending_Priority_Change then
Self_ID.Pending_Priority_Change := False;
Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
end if;
Aborted := Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
-- Release the TCB before sleeping
if Single_Lock then
Result := semGive (Single_RTS_Lock.Mutex);
else
Result := semGive (Self_ID.Common.LL.L.Mutex);
end if;
pragma Assert (Result = 0);
exit when Aborted;
Result := semTake (Self_ID.Common.LL.CV, Ticks);
if Result /= 0 then
-- If Ticks = int'last, it was most probably truncated
-- so let's make another round after recomputing Ticks
-- from the the absolute time.
if errno = S_objLib_OBJ_TIMEOUT and then Ticks /= int'Last then
Timedout := True;
else
Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
if Ticks < 0 then
Timedout := True;
end if;
end if;
end if;
-- Take back the lock after having slept, to protect further
-- access to Self_ID.
if Single_Lock then
Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
else
Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
end if;
pragma Assert (Result = 0);
exit when Timedout;
end loop;
Self_ID.Common.State := Runnable;
if Single_Lock then
Result := semGive (Single_RTS_Lock.Mutex);
else
Result := semGive (Self_ID.Common.LL.L.Mutex);
end if;
else
taskDelay (0);
end if;
end Timed_Delay;
---------------------
-- Monotonic_Clock --
---------------------
function Monotonic_Clock return Duration is
TS : aliased timespec;
Result : int;
begin
Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
pragma Assert (Result = 0);
return To_Duration (TS);
end Monotonic_Clock;
-------------------
-- RT_Resolution --
-------------------
function RT_Resolution return Duration is
begin
return 1.0 / Duration (sysClkRateGet);
end RT_Resolution;
------------
-- Wakeup --
------------
procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
pragma Unreferenced (Reason);
Result : int;
begin
Result := semGive (T.Common.LL.CV);
pragma Assert (Result = 0);
end Wakeup;
-----------
-- Yield --
-----------
procedure Yield (Do_Yield : Boolean := True) is
pragma Unreferenced (Do_Yield);
Result : int;
pragma Unreferenced (Result);
begin
Result := taskDelay (0);
end Yield;
------------------
-- Set_Priority --
------------------
type Prio_Array_Type is array (System.Any_Priority) of Integer;
pragma Atomic_Components (Prio_Array_Type);
Prio_Array : Prio_Array_Type;
-- Global array containing the id of the currently running task for
-- each priority. Note that we assume that we are on a single processor
-- with run-till-blocked scheduling.
procedure Set_Priority
(T : Task_Id;
Prio : System.Any_Priority;
Loss_Of_Inheritance : Boolean := False)
is
Array_Item : Integer;
Result : int;
begin
Result :=
taskPrioritySet
(T.Common.LL.Thread, To_VxWorks_Priority (int (Prio)));
pragma Assert (Result = 0);
if Dispatching_Policy = 'F' then
-- Annex D requirement [RM D.2.2 par. 9]:
-- If the task drops its priority due to the loss of inherited
-- priority, it is added at the head of the ready queue for its
-- new active priority.
if Loss_Of_Inheritance
and then Prio < T.Common.Current_Priority
then
Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
Prio_Array (T.Common.Base_Priority) := Array_Item;
loop
-- Give some processes a chance to arrive
taskDelay (0);
-- Then wait for our turn to proceed
exit when Array_Item = Prio_Array (T.Common.Base_Priority)
or else Prio_Array (T.Common.Base_Priority) = 1;
end loop;
Prio_Array (T.Common.Base_Priority) :=
Prio_Array (T.Common.Base_Priority) - 1;
end if;
end if;
T.Common.Current_Priority := Prio;
end Set_Priority;
------------------
-- Get_Priority --
------------------
function Get_Priority (T : Task_Id) return System.Any_Priority is
begin
return T.Common.Current_Priority;
end Get_Priority;
----------------
-- Enter_Task --
----------------
procedure Enter_Task (Self_ID : Task_Id) is
procedure Init_Float;
pragma Import (C, Init_Float, "__gnat_init_float");
-- Properly initializes the FPU for PPC/MIPS systems
begin
Self_ID.Common.LL.Thread := taskIdSelf;
Specific.Set (Self_ID);
Init_Float;
-- Install the signal handlers
-- This is called for each task since there is no signal inheritance
-- between VxWorks tasks.
Install_Signal_Handlers;
Lock_RTS;
for J in Known_Tasks'Range loop
if Known_Tasks (J) = null then
Known_Tasks (J) := Self_ID;
Self_ID.Known_Tasks_Index := J;
exit;
end if;
end loop;
Unlock_RTS;
end Enter_Task;
--------------
-- New_ATCB --
--------------
function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
begin
return new Ada_Task_Control_Block (Entry_Num);
end New_ATCB;
-------------------
-- Is_Valid_Task --
-------------------
function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
-----------------------------
-- Register_Foreign_Thread --
-----------------------------
function Register_Foreign_Thread return Task_Id is
begin
if Is_Valid_Task then
return Self;
else
return Register_Foreign_Thread (taskIdSelf);
end if;
end Register_Foreign_Thread;
--------------------
-- Initialize_TCB --
--------------------
procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
begin
Self_ID.Common.LL.CV := semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);
Self_ID.Common.LL.Thread := 0;
if Self_ID.Common.LL.CV = 0 then
Succeeded := False;
else
Succeeded := True;
if not Single_Lock then
Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
end if;
end if;
end Initialize_TCB;
-----------------
-- Create_Task --
-----------------
procedure Create_Task
(T : Task_Id;
Wrapper : System.Address;
Stack_Size : System.Parameters.Size_Type;
Priority : System.Any_Priority;
Succeeded : out Boolean)
is
Adjusted_Stack_Size : size_t;
begin
-- Ask for four extra bytes of stack space so that the ATCB pointer can
-- be stored below the stack limit, plus extra space for the frame of
-- Task_Wrapper. This is so the user gets the amount of stack requested
-- exclusive of the needs.
-- We also have to allocate n more bytes for the task name storage and
-- enough space for the Wind Task Control Block which is around 0x778
-- bytes. VxWorks also seems to carve out additional space, so use 2048
-- as a nice round number. We might want to increment to the nearest
-- page size in case we ever support VxVMI.
-- ??? - we should come back and visit this so we can set the task name
-- to something appropriate.
Adjusted_Stack_Size := size_t (Stack_Size) + 2048;
-- Since the initial signal mask of a thread is inherited from the
-- creator, and the Environment task has all its signals masked, we do
-- not need to manipulate caller's signal mask at this point. All tasks
-- in RTS will have All_Tasks_Mask initially.
if T.Common.Task_Image_Len = 0 then
T.Common.LL.Thread := taskSpawn
(System.Null_Address,
To_VxWorks_Priority (int (Priority)),
VX_FP_TASK,
Adjusted_Stack_Size,
Wrapper,
To_Address (T));
else
declare
Name : aliased String (1 .. T.Common.Task_Image_Len + 1);
begin
Name (1 .. Name'Last - 1) :=
T.Common.Task_Image (1 .. T.Common.Task_Image_Len);
Name (Name'Last) := ASCII.NUL;
T.Common.LL.Thread := taskSpawn
(Name'Address,
To_VxWorks_Priority (int (Priority)),
VX_FP_TASK,
Adjusted_Stack_Size,
Wrapper,
To_Address (T));
end;
end if;
if T.Common.LL.Thread = -1 then
Succeeded := False;
else
Succeeded := True;
end if;
Task_Creation_Hook (T.Common.LL.Thread);
Set_Priority (T, Priority);
end Create_Task;
------------------
-- Finalize_TCB --
------------------
procedure Finalize_TCB (T : Task_Id) is
Result : int;
Tmp : Task_Id := T;
Is_Self : constant Boolean := (T = Self);
procedure Free is new
Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
begin
if not Single_Lock then
Result := semDelete (T.Common.LL.L.Mutex);
pragma Assert (Result = 0);
end if;
T.Common.LL.Thread := 0;
Result := semDelete (T.Common.LL.CV);
pragma Assert (Result = 0);
if T.Known_Tasks_Index /= -1 then
Known_Tasks (T.Known_Tasks_Index) := null;
end if;
Free (Tmp);
if Is_Self then
Specific.Delete;
end if;
end Finalize_TCB;
---------------
-- Exit_Task --
---------------
procedure Exit_Task is
begin
Specific.Set (null);
end Exit_Task;
----------------
-- Abort_Task --
----------------
procedure Abort_Task (T : Task_Id) is
Result : int;
begin
Result := kill (T.Common.LL.Thread,
Signal (Interrupt_Management.Abort_Task_Signal));
pragma Assert (Result = 0);
end Abort_Task;
----------------
-- Initialize --
----------------
procedure Initialize (S : in out Suspension_Object) is
begin
-- Initialize internal state. It is always initialized to False (ARM
-- D.10 par. 6).
S.State := False;
S.Waiting := False;
-- Initialize internal mutex
-- Use simpler binary semaphore instead of VxWorks
-- mutual exclusion semaphore, because we don't need
-- the fancier semantics and their overhead.
S.L := semBCreate (SEM_Q_FIFO, SEM_FULL);
-- Initialize internal condition variable
S.CV := semBCreate (SEM_Q_FIFO, SEM_EMPTY);
end Initialize;
--------------
-- Finalize --
--------------
procedure Finalize (S : in out Suspension_Object) is
Result : STATUS;
begin
-- Destroy internal mutex
Result := semDelete (S.L);
pragma Assert (Result = OK);
-- Destroy internal condition variable
Result := semDelete (S.CV);
pragma Assert (Result = OK);
end Finalize;
-------------------
-- Current_State --
-------------------
function Current_State (S : Suspension_Object) return Boolean is
begin
-- We do not want to use lock on this read operation. State is marked
-- as Atomic so that we ensure that the value retrieved is correct.
return S.State;
end Current_State;
---------------
-- Set_False --
---------------
procedure Set_False (S : in out Suspension_Object) is
Result : STATUS;
begin
SSL.Abort_Defer.all;
Result := semTake (S.L, WAIT_FOREVER);
pragma Assert (Result = OK);
S.State := False;
Result := semGive (S.L);
pragma Assert (Result = OK);
SSL.Abort_Undefer.all;
end Set_False;
--------------
-- Set_True --
--------------
procedure Set_True (S : in out Suspension_Object) is
Result : STATUS;
begin
SSL.Abort_Defer.all;
Result := semTake (S.L, WAIT_FOREVER);
pragma Assert (Result = OK);
-- If there is already a task waiting on this suspension object then
-- we resume it, leaving the state of the suspension object to False,
-- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
-- the state to True.
if S.Waiting then
S.Waiting := False;
S.State := False;
Result := semGive (S.CV);
pragma Assert (Result = OK);
else
S.State := True;
end if;
Result := semGive (S.L);
pragma Assert (Result = OK);
SSL.Abort_Undefer.all;
end Set_True;
------------------------
-- Suspend_Until_True --
------------------------
procedure Suspend_Until_True (S : in out Suspension_Object) is
Result : STATUS;
begin
SSL.Abort_Defer.all;
Result := semTake (S.L, WAIT_FOREVER);
if S.Waiting then
-- Program_Error must be raised upon calling Suspend_Until_True
-- if another task is already waiting on that suspension object
-- (ARM D.10 par. 10).
Result := semGive (S.L);
pragma Assert (Result = OK);
SSL.Abort_Undefer.all;
raise Program_Error;
else
-- Suspend the task if the state is False. Otherwise, the task
-- continues its execution, and the state of the suspension object
-- is set to False (ARM D.10 par. 9).
if S.State then
S.State := False;
Result := semGive (S.L);
pragma Assert (Result = 0);
SSL.Abort_Undefer.all;
else
S.Waiting := True;
-- Release the mutex before sleeping
Result := semGive (S.L);
pragma Assert (Result = OK);
SSL.Abort_Undefer.all;
Result := semTake (S.CV, WAIT_FOREVER);
pragma Assert (Result = 0);
end if;
end if;
end Suspend_Until_True;
----------------
-- Check_Exit --
----------------
-- Dummy version
function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
pragma Unreferenced (Self_ID);
begin
return True;
end Check_Exit;
--------------------
-- Check_No_Locks --
--------------------
function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
pragma Unreferenced (Self_ID);
begin
return True;
end Check_No_Locks;
----------------------
-- Environment_Task --
----------------------
function Environment_Task return Task_Id is
begin
return Environment_Task_Id;
end Environment_Task;
--------------
-- Lock_RTS --
--------------
procedure Lock_RTS is
begin
Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
end Lock_RTS;
----------------
-- Unlock_RTS --
----------------
procedure Unlock_RTS is
begin
Unlock (Single_RTS_Lock'Access, Global_Lock => True);
end Unlock_RTS;
------------------
-- Suspend_Task --
------------------
function Suspend_Task
(T : ST.Task_Id;
Thread_Self : Thread_Id) return Boolean
is
begin
if T.Common.LL.Thread /= 0
and then T.Common.LL.Thread /= Thread_Self
then
return taskSuspend (T.Common.LL.Thread) = 0;
else
return True;
end if;
end Suspend_Task;
-----------------
-- Resume_Task --
-----------------
function Resume_Task
(T : ST.Task_Id;
Thread_Self : Thread_Id) return Boolean
is
begin
if T.Common.LL.Thread /= 0
and then T.Common.LL.Thread /= Thread_Self
then
return taskResume (T.Common.LL.Thread) = 0;
else
return True;
end if;
end Resume_Task;
----------------
-- Initialize --
----------------
procedure Initialize (Environment_Task : Task_Id) is
Result : int;
begin
Environment_Task_Id := Environment_Task;
Interrupt_Management.Initialize;
Specific.Initialize;
if Locking_Policy = 'C' then
Mutex_Protocol := Prio_Protect;
elsif Locking_Policy = 'I' then
Mutex_Protocol := Prio_Inherit;
else
Mutex_Protocol := Prio_None;
end if;
if Time_Slice_Val > 0 then
Result := Set_Time_Slice
(To_Clock_Ticks
(Duration (Time_Slice_Val) / Duration (1_000_000.0)));
end if;
Result := sigemptyset (Unblocked_Signal_Mask'Access);
pragma Assert (Result = 0);
for J in Interrupt_Management.Signal_ID loop
if System.Interrupt_Management.Keep_Unmasked (J) then
Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
pragma Assert (Result = 0);
end if;
end loop;
-- Initialize the lock used to synchronize chain of all ATCBs
Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
Enter_Task (Environment_Task);
end Initialize;
end System.Task_Primitives.Operations;