blob: ca50e03e8bd31c13255f915c2db06e8367f9587a [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . S T O R A G E _ E L E M E N T S --
-- --
-- S p e c --
-- --
-- Copyright (C) 2002-2005 Free Software Foundation, Inc. --
-- --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the implementation dependent sections of this file. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- Warning: declarations in this package are ambiguous with respect to the
-- extra declarations that can be introduced into System using Extend_System.
-- It is a good idea to avoid use clauses for this package!
package System.Storage_Elements is
pragma Pure;
-- Note that we take advantage of the implementation permission to make
-- this unit Pure instead of Preelaborable; see RM 13.7.1(15). In Ada 2005,
-- this is Pure in any case (AI-362).
-- We also add the pragma Pure_Function to the operations in this package,
-- because otherwise functions with parameters derived from Address are
-- treated as non-pure by the back-end (see exp_ch6.adb). This is because
-- in many cases such a parameter is used to hide read/out access to
-- objects, and it would be unsafe to treat such functions as pure.
type Storage_Offset is range
-(2 ** (Integer'(Standard'Address_Size) - 1)) ..
+(2 ** (Integer'(Standard'Address_Size) - 1)) - Long_Long_Integer'(1);
subtype Storage_Count is Storage_Offset range 0 .. Storage_Offset'Last;
type Storage_Element is mod 2 ** Storage_Unit;
for Storage_Element'Size use Storage_Unit;
type Storage_Array is
array (Storage_Offset range <>) of aliased Storage_Element;
for Storage_Array'Component_Size use Storage_Unit;
-- Address arithmetic
function "+" (Left : Address; Right : Storage_Offset) return Address;
pragma Convention (Intrinsic, "+");
pragma Inline_Always ("+");
pragma Pure_Function ("+");
function "+" (Left : Storage_Offset; Right : Address) return Address;
pragma Convention (Intrinsic, "+");
pragma Inline_Always ("+");
pragma Pure_Function ("+");
function "-" (Left : Address; Right : Storage_Offset) return Address;
pragma Convention (Intrinsic, "-");
pragma Inline_Always ("-");
pragma Pure_Function ("-");
function "-" (Left, Right : Address) return Storage_Offset;
pragma Convention (Intrinsic, "-");
pragma Inline_Always ("-");
pragma Pure_Function ("-");
function "mod"
(Left : Address;
Right : Storage_Offset) return Storage_Offset;
pragma Convention (Intrinsic, "mod");
pragma Inline_Always ("mod");
pragma Pure_Function ("mod");
-- Conversion to/from integers
type Integer_Address is mod Memory_Size;
function To_Address (Value : Integer_Address) return Address;
pragma Convention (Intrinsic, To_Address);
pragma Inline_Always (To_Address);
pragma Pure_Function (To_Address);
function To_Integer (Value : Address) return Integer_Address;
pragma Convention (Intrinsic, To_Integer);
pragma Inline_Always (To_Integer);
pragma Pure_Function (To_Integer);
end System.Storage_Elements;