blob: 953e19e101e01c73ffa0349d1181160ef19c88d6 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNARL; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. --
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
-- --
------------------------------------------------------------------------------
-- This is a NT (native) version of this package
-- This package contains all the GNULL primitives that interface directly
-- with the underlying OS.
pragma Polling (Off);
-- Turn off polling, we do not want ATC polling to take place during
-- tasking operations. It causes infinite loops and other problems.
with System.Tasking.Debug;
-- used for Known_Tasks
with System.OS_Primitives;
-- used for Delay_Modes
with Interfaces.C;
-- used for int
-- size_t
with Interfaces.C.Strings;
-- used for Null_Ptr
with System.Task_Info;
-- used for Unspecified_Task_Info
with System.Interrupt_Management;
-- used for Initialize
with System.Soft_Links;
-- used for Abort_Defer/Undefer
-- We use System.Soft_Links instead of System.Tasking.Initialization
-- because the later is a higher level package that we shouldn't depend on.
-- For example when using the restricted run time, it is replaced by
-- System.Tasking.Restricted.Stages.
with Unchecked_Deallocation;
package body System.Task_Primitives.Operations is
package SSL renames System.Soft_Links;
use System.Tasking.Debug;
use System.Tasking;
use Interfaces.C;
use Interfaces.C.Strings;
use System.OS_Interface;
use System.Parameters;
use System.OS_Primitives;
pragma Link_With ("-Xlinker --stack=0x200000,0x1000");
-- Change the default stack size (2 MB) for tasking programs on Windows.
-- This allows about 1000 tasks running at the same time. Note that
-- we set the stack size for non tasking programs on System unit.
-- Also note that under Windows XP, we use a Windows XP extension to
-- specify the stack size on a per task basis, as done under other OSes.
----------------
-- Local Data --
----------------
Environment_Task_Id : Task_Id;
-- A variable to hold Task_Id for the environment task
Single_RTS_Lock : aliased RTS_Lock;
-- This is a lock to allow only one thread of control in the RTS at
-- a time; it is used to execute in mutual exclusion from all other tasks.
-- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
Time_Slice_Val : Integer;
pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
Dispatching_Policy : Character;
pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
Foreign_Task_Elaborated : aliased Boolean := True;
-- Used to identified fake tasks (i.e., non-Ada Threads)
------------------------------------
-- The thread local storage index --
------------------------------------
TlsIndex : DWORD;
pragma Export (Ada, TlsIndex);
-- To ensure that this variable won't be local to this package, since
-- in some cases, inlining forces this variable to be global anyway.
--------------------
-- Local Packages --
--------------------
package Specific is
function Is_Valid_Task return Boolean;
pragma Inline (Is_Valid_Task);
-- Does executing thread have a TCB?
procedure Set (Self_Id : Task_Id);
pragma Inline (Set);
-- Set the self id for the current task.
end Specific;
package body Specific is
function Is_Valid_Task return Boolean is
begin
return TlsGetValue (TlsIndex) /= System.Null_Address;
end Is_Valid_Task;
procedure Set (Self_Id : Task_Id) is
Succeeded : BOOL;
begin
Succeeded := TlsSetValue (TlsIndex, To_Address (Self_Id));
pragma Assert (Succeeded = True);
end Set;
end Specific;
---------------------------------
-- Support for foreign threads --
---------------------------------
function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
-- Allocate and Initialize a new ATCB for the current Thread.
function Register_Foreign_Thread
(Thread : Thread_Id) return Task_Id is separate;
----------------------------------
-- Condition Variable Functions --
----------------------------------
procedure Initialize_Cond (Cond : access Condition_Variable);
-- Initialize given condition variable Cond
procedure Finalize_Cond (Cond : access Condition_Variable);
-- Finalize given condition variable Cond.
procedure Cond_Signal (Cond : access Condition_Variable);
-- Signal condition variable Cond
procedure Cond_Wait
(Cond : access Condition_Variable;
L : access RTS_Lock);
-- Wait on conditional variable Cond, using lock L
procedure Cond_Timed_Wait
(Cond : access Condition_Variable;
L : access RTS_Lock;
Rel_Time : Duration;
Timed_Out : out Boolean;
Status : out Integer);
-- Do timed wait on condition variable Cond using lock L. The duration
-- of the timed wait is given by Rel_Time. When the condition is
-- signalled, Timed_Out shows whether or not a time out occurred.
-- Status is only valid if Timed_Out is False, in which case it
-- shows whether Cond_Timed_Wait completed successfully.
---------------------
-- Initialize_Cond --
---------------------
procedure Initialize_Cond (Cond : access Condition_Variable) is
hEvent : HANDLE;
begin
hEvent := CreateEvent (null, True, False, Null_Ptr);
pragma Assert (hEvent /= 0);
Cond.all := Condition_Variable (hEvent);
end Initialize_Cond;
-------------------
-- Finalize_Cond --
-------------------
-- No such problem here, DosCloseEventSem has been derived.
-- What does such refer to in above comment???
procedure Finalize_Cond (Cond : access Condition_Variable) is
Result : BOOL;
begin
Result := CloseHandle (HANDLE (Cond.all));
pragma Assert (Result = True);
end Finalize_Cond;
-----------------
-- Cond_Signal --
-----------------
procedure Cond_Signal (Cond : access Condition_Variable) is
Result : BOOL;
begin
Result := SetEvent (HANDLE (Cond.all));
pragma Assert (Result = True);
end Cond_Signal;
---------------
-- Cond_Wait --
---------------
-- Pre-assertion: Cond is posted
-- L is locked.
-- Post-assertion: Cond is posted
-- L is locked.
procedure Cond_Wait
(Cond : access Condition_Variable;
L : access RTS_Lock)
is
Result : DWORD;
Result_Bool : BOOL;
begin
-- Must reset Cond BEFORE L is unlocked.
Result_Bool := ResetEvent (HANDLE (Cond.all));
pragma Assert (Result_Bool = True);
Unlock (L);
-- No problem if we are interrupted here: if the condition is signaled,
-- WaitForSingleObject will simply not block
Result := WaitForSingleObject (HANDLE (Cond.all), Wait_Infinite);
pragma Assert (Result = 0);
Write_Lock (L);
end Cond_Wait;
---------------------
-- Cond_Timed_Wait --
---------------------
-- Pre-assertion: Cond is posted
-- L is locked.
-- Post-assertion: Cond is posted
-- L is locked.
procedure Cond_Timed_Wait
(Cond : access Condition_Variable;
L : access RTS_Lock;
Rel_Time : Duration;
Timed_Out : out Boolean;
Status : out Integer)
is
Time_Out_Max : constant DWORD := 16#FFFF0000#;
-- NT 4 cannot handle timeout values that are too large,
-- e.g. DWORD'Last - 1
Time_Out : DWORD;
Result : BOOL;
Wait_Result : DWORD;
begin
-- Must reset Cond BEFORE L is unlocked.
Result := ResetEvent (HANDLE (Cond.all));
pragma Assert (Result = True);
Unlock (L);
-- No problem if we are interrupted here: if the condition is signaled,
-- WaitForSingleObject will simply not block
if Rel_Time <= 0.0 then
Timed_Out := True;
Wait_Result := 0;
else
if Rel_Time >= Duration (Time_Out_Max) / 1000 then
Time_Out := Time_Out_Max;
else
Time_Out := DWORD (Rel_Time * 1000);
end if;
Wait_Result := WaitForSingleObject (HANDLE (Cond.all), Time_Out);
if Wait_Result = WAIT_TIMEOUT then
Timed_Out := True;
Wait_Result := 0;
else
Timed_Out := False;
end if;
end if;
Write_Lock (L);
-- Ensure post-condition
if Timed_Out then
Result := SetEvent (HANDLE (Cond.all));
pragma Assert (Result = True);
end if;
Status := Integer (Wait_Result);
end Cond_Timed_Wait;
------------------
-- Stack_Guard --
------------------
-- The underlying thread system sets a guard page at the
-- bottom of a thread stack, so nothing is needed.
-- ??? Check the comment above
procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
pragma Warnings (Off, T);
pragma Warnings (Off, On);
begin
null;
end Stack_Guard;
--------------------
-- Get_Thread_Id --
--------------------
function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
begin
return T.Common.LL.Thread;
end Get_Thread_Id;
----------
-- Self --
----------
function Self return Task_Id is
Self_Id : constant Task_Id := To_Task_Id (TlsGetValue (TlsIndex));
begin
if Self_Id = null then
return Register_Foreign_Thread (GetCurrentThread);
else
return Self_Id;
end if;
end Self;
---------------------
-- Initialize_Lock --
---------------------
-- Note: mutexes and cond_variables needed per-task basis are
-- initialized in Intialize_TCB and the Storage_Error is handled.
-- Other mutexes (such as RTS_Lock, Memory_Lock...) used in
-- the RTS is initialized before any status change of RTS.
-- Therefore raising Storage_Error in the following routines
-- should be able to be handled safely.
procedure Initialize_Lock
(Prio : System.Any_Priority;
L : access Lock)
is
begin
InitializeCriticalSection (L.Mutex'Access);
L.Owner_Priority := 0;
L.Priority := Prio;
end Initialize_Lock;
procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
pragma Unreferenced (Level);
begin
InitializeCriticalSection (CRITICAL_SECTION (L.all)'Unrestricted_Access);
end Initialize_Lock;
-------------------
-- Finalize_Lock --
-------------------
procedure Finalize_Lock (L : access Lock) is
begin
DeleteCriticalSection (L.Mutex'Access);
end Finalize_Lock;
procedure Finalize_Lock (L : access RTS_Lock) is
begin
DeleteCriticalSection (CRITICAL_SECTION (L.all)'Unrestricted_Access);
end Finalize_Lock;
----------------
-- Write_Lock --
----------------
procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
begin
L.Owner_Priority := Get_Priority (Self);
if L.Priority < L.Owner_Priority then
Ceiling_Violation := True;
return;
end if;
EnterCriticalSection (L.Mutex'Access);
Ceiling_Violation := False;
end Write_Lock;
procedure Write_Lock
(L : access RTS_Lock;
Global_Lock : Boolean := False)
is
begin
if not Single_Lock or else Global_Lock then
EnterCriticalSection (CRITICAL_SECTION (L.all)'Unrestricted_Access);
end if;
end Write_Lock;
procedure Write_Lock (T : Task_Id) is
begin
if not Single_Lock then
EnterCriticalSection
(CRITICAL_SECTION (T.Common.LL.L)'Unrestricted_Access);
end if;
end Write_Lock;
---------------
-- Read_Lock --
---------------
procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
begin
Write_Lock (L, Ceiling_Violation);
end Read_Lock;
------------
-- Unlock --
------------
procedure Unlock (L : access Lock) is
begin
LeaveCriticalSection (L.Mutex'Access);
end Unlock;
procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
begin
if not Single_Lock or else Global_Lock then
LeaveCriticalSection (CRITICAL_SECTION (L.all)'Unrestricted_Access);
end if;
end Unlock;
procedure Unlock (T : Task_Id) is
begin
if not Single_Lock then
LeaveCriticalSection
(CRITICAL_SECTION (T.Common.LL.L)'Unrestricted_Access);
end if;
end Unlock;
-----------
-- Sleep --
-----------
procedure Sleep
(Self_ID : Task_Id;
Reason : System.Tasking.Task_States)
is
pragma Unreferenced (Reason);
begin
pragma Assert (Self_ID = Self);
if Single_Lock then
Cond_Wait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
else
Cond_Wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
end if;
if Self_ID.Deferral_Level = 0
and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
then
Unlock (Self_ID);
raise Standard'Abort_Signal;
end if;
end Sleep;
-----------------
-- Timed_Sleep --
-----------------
-- This is for use within the run-time system, so abort is
-- assumed to be already deferred, and the caller should be
-- holding its own ATCB lock.
procedure Timed_Sleep
(Self_ID : Task_Id;
Time : Duration;
Mode : ST.Delay_Modes;
Reason : System.Tasking.Task_States;
Timedout : out Boolean;
Yielded : out Boolean)
is
pragma Unreferenced (Reason);
Check_Time : Duration := Monotonic_Clock;
Rel_Time : Duration;
Abs_Time : Duration;
Result : Integer;
Local_Timedout : Boolean;
begin
Timedout := True;
Yielded := False;
if Mode = Relative then
Rel_Time := Time;
Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
else
Rel_Time := Time - Check_Time;
Abs_Time := Time;
end if;
if Rel_Time > 0.0 then
loop
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
or else Self_ID.Pending_Priority_Change;
if Single_Lock then
Cond_Timed_Wait (Self_ID.Common.LL.CV'Access,
Single_RTS_Lock'Access, Rel_Time, Local_Timedout, Result);
else
Cond_Timed_Wait (Self_ID.Common.LL.CV'Access,
Self_ID.Common.LL.L'Access, Rel_Time, Local_Timedout, Result);
end if;
Check_Time := Monotonic_Clock;
exit when Abs_Time <= Check_Time;
if not Local_Timedout then
-- Somebody may have called Wakeup for us
Timedout := False;
exit;
end if;
Rel_Time := Abs_Time - Check_Time;
end loop;
end if;
end Timed_Sleep;
-----------------
-- Timed_Delay --
-----------------
procedure Timed_Delay
(Self_ID : Task_Id;
Time : Duration;
Mode : ST.Delay_Modes)
is
Check_Time : Duration := Monotonic_Clock;
Rel_Time : Duration;
Abs_Time : Duration;
Result : Integer;
Timedout : Boolean;
begin
if Single_Lock then
Lock_RTS;
end if;
Write_Lock (Self_ID);
if Mode = Relative then
Rel_Time := Time;
Abs_Time := Time + Check_Time;
else
Rel_Time := Time - Check_Time;
Abs_Time := Time;
end if;
if Rel_Time > 0.0 then
Self_ID.Common.State := Delay_Sleep;
loop
if Self_ID.Pending_Priority_Change then
Self_ID.Pending_Priority_Change := False;
Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
end if;
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
if Single_Lock then
Cond_Timed_Wait (Self_ID.Common.LL.CV'Access,
Single_RTS_Lock'Access, Rel_Time, Timedout, Result);
else
Cond_Timed_Wait (Self_ID.Common.LL.CV'Access,
Self_ID.Common.LL.L'Access, Rel_Time, Timedout, Result);
end if;
Check_Time := Monotonic_Clock;
exit when Abs_Time <= Check_Time;
Rel_Time := Abs_Time - Check_Time;
end loop;
Self_ID.Common.State := Runnable;
end if;
Unlock (Self_ID);
if Single_Lock then
Unlock_RTS;
end if;
Yield;
end Timed_Delay;
------------
-- Wakeup --
------------
procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
pragma Unreferenced (Reason);
begin
Cond_Signal (T.Common.LL.CV'Access);
end Wakeup;
-----------
-- Yield --
-----------
procedure Yield (Do_Yield : Boolean := True) is
begin
if Do_Yield then
Sleep (0);
end if;
end Yield;
------------------
-- Set_Priority --
------------------
type Prio_Array_Type is array (System.Any_Priority) of Integer;
pragma Atomic_Components (Prio_Array_Type);
Prio_Array : Prio_Array_Type;
-- Global array containing the id of the currently running task for
-- each priority.
--
-- Note: we assume that we are on a single processor with run-til-blocked
-- scheduling.
procedure Set_Priority
(T : Task_Id;
Prio : System.Any_Priority;
Loss_Of_Inheritance : Boolean := False)
is
Res : BOOL;
Array_Item : Integer;
begin
Res := SetThreadPriority
(T.Common.LL.Thread, Interfaces.C.int (Underlying_Priorities (Prio)));
pragma Assert (Res = True);
if Dispatching_Policy = 'F' then
-- Annex D requirement [RM D.2.2 par. 9]:
-- If the task drops its priority due to the loss of inherited
-- priority, it is added at the head of the ready queue for its
-- new active priority.
if Loss_Of_Inheritance
and then Prio < T.Common.Current_Priority
then
Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
Prio_Array (T.Common.Base_Priority) := Array_Item;
loop
-- Let some processes a chance to arrive
Yield;
-- Then wait for our turn to proceed
exit when Array_Item = Prio_Array (T.Common.Base_Priority)
or else Prio_Array (T.Common.Base_Priority) = 1;
end loop;
Prio_Array (T.Common.Base_Priority) :=
Prio_Array (T.Common.Base_Priority) - 1;
end if;
end if;
T.Common.Current_Priority := Prio;
end Set_Priority;
------------------
-- Get_Priority --
------------------
function Get_Priority (T : Task_Id) return System.Any_Priority is
begin
return T.Common.Current_Priority;
end Get_Priority;
----------------
-- Enter_Task --
----------------
-- There were two paths were we needed to call Enter_Task :
-- 1) from System.Task_Primitives.Operations.Initialize
-- 2) from System.Tasking.Stages.Task_Wrapper
--
-- The thread initialisation has to be done only for the first case.
--
-- This is because the GetCurrentThread NT call does not return the
-- real thread handler but only a "pseudo" one. It is not possible to
-- release the thread handle and free the system ressources from this
-- "pseudo" handle. So we really want to keep the real thread handle
-- set in System.Task_Primitives.Operations.Create_Task during the
-- thread creation.
procedure Enter_Task (Self_ID : Task_Id) is
procedure Init_Float;
pragma Import (C, Init_Float, "__gnat_init_float");
-- Properly initializes the FPU for x86 systems.
begin
Specific.Set (Self_ID);
Init_Float;
Self_ID.Common.LL.Thread_Id := GetCurrentThreadId;
Lock_RTS;
for J in Known_Tasks'Range loop
if Known_Tasks (J) = null then
Known_Tasks (J) := Self_ID;
Self_ID.Known_Tasks_Index := J;
exit;
end if;
end loop;
Unlock_RTS;
end Enter_Task;
--------------
-- New_ATCB --
--------------
function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
begin
return new Ada_Task_Control_Block (Entry_Num);
end New_ATCB;
-------------------
-- Is_Valid_Task --
-------------------
function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
-----------------------------
-- Register_Foreign_Thread --
-----------------------------
function Register_Foreign_Thread return Task_Id is
begin
if Is_Valid_Task then
return Self;
else
return Register_Foreign_Thread (GetCurrentThread);
end if;
end Register_Foreign_Thread;
--------------------
-- Initialize_TCB --
--------------------
procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
begin
-- Initialize thread ID to 0, this is needed to detect threads that
-- are not yet activated.
Self_ID.Common.LL.Thread := 0;
Initialize_Cond (Self_ID.Common.LL.CV'Access);
if not Single_Lock then
Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
end if;
Succeeded := True;
end Initialize_TCB;
-----------------
-- Create_Task --
-----------------
procedure Create_Task
(T : Task_Id;
Wrapper : System.Address;
Stack_Size : System.Parameters.Size_Type;
Priority : System.Any_Priority;
Succeeded : out Boolean)
is
Initial_Stack_Size : constant := 1024;
-- We set the initial stack size to 1024. On Windows version prior to XP
-- there is no way to fix a task stack size. Only the initial stack size
-- can be set, the operating system will raise the task stack size if
-- needed.
function Is_Windows_XP return Integer;
pragma Import (C, Is_Windows_XP, "__gnat_is_windows_xp");
-- Returns 1 if running on Windows XP
hTask : HANDLE;
TaskId : aliased DWORD;
pTaskParameter : System.OS_Interface.PVOID;
Result : DWORD;
Entry_Point : PTHREAD_START_ROUTINE;
begin
pTaskParameter := To_Address (T);
Entry_Point := To_PTHREAD_START_ROUTINE (Wrapper);
if Is_Windows_XP = 1 then
hTask := CreateThread
(null,
DWORD (Stack_Size),
Entry_Point,
pTaskParameter,
DWORD (Create_Suspended) or
DWORD (Stack_Size_Param_Is_A_Reservation),
TaskId'Unchecked_Access);
else
hTask := CreateThread
(null,
Initial_Stack_Size,
Entry_Point,
pTaskParameter,
DWORD (Create_Suspended),
TaskId'Unchecked_Access);
end if;
-- Step 1: Create the thread in blocked mode
if hTask = 0 then
raise Storage_Error;
end if;
-- Step 2: set its TCB
T.Common.LL.Thread := hTask;
-- Step 3: set its priority (child has inherited priority from parent)
Set_Priority (T, Priority);
if Time_Slice_Val = 0 or else Dispatching_Policy = 'F' then
-- Here we need Annex E semantics so we disable the NT priority
-- boost. A priority boost is temporarily given by the system to a
-- thread when it is taken out of a wait state.
SetThreadPriorityBoost (hTask, DisablePriorityBoost => True);
end if;
-- Step 4: Now, start it for good:
Result := ResumeThread (hTask);
pragma Assert (Result = 1);
Succeeded := Result = 1;
end Create_Task;
------------------
-- Finalize_TCB --
------------------
procedure Finalize_TCB (T : Task_Id) is
Self_ID : Task_Id := T;
Result : DWORD;
Succeeded : BOOL;
Is_Self : constant Boolean := T = Self;
procedure Free is new
Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
begin
if not Single_Lock then
Finalize_Lock (T.Common.LL.L'Access);
end if;
Finalize_Cond (T.Common.LL.CV'Access);
if T.Known_Tasks_Index /= -1 then
Known_Tasks (T.Known_Tasks_Index) := null;
end if;
if Self_ID.Common.LL.Thread /= 0 then
-- This task has been activated. Wait for the thread to terminate
-- then close it. this is needed to release system ressources.
Result := WaitForSingleObject (T.Common.LL.Thread, Wait_Infinite);
pragma Assert (Result /= WAIT_FAILED);
Succeeded := CloseHandle (T.Common.LL.Thread);
pragma Assert (Succeeded = True);
end if;
Free (Self_ID);
if Is_Self then
Specific.Set (null);
end if;
end Finalize_TCB;
---------------
-- Exit_Task --
---------------
procedure Exit_Task is
begin
Specific.Set (null);
end Exit_Task;
----------------
-- Abort_Task --
----------------
procedure Abort_Task (T : Task_Id) is
pragma Unreferenced (T);
begin
null;
end Abort_Task;
----------------------
-- Environment_Task --
----------------------
function Environment_Task return Task_Id is
begin
return Environment_Task_Id;
end Environment_Task;
--------------
-- Lock_RTS --
--------------
procedure Lock_RTS is
begin
Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
end Lock_RTS;
----------------
-- Unlock_RTS --
----------------
procedure Unlock_RTS is
begin
Unlock (Single_RTS_Lock'Access, Global_Lock => True);
end Unlock_RTS;
----------------
-- Initialize --
----------------
procedure Initialize (Environment_Task : Task_Id) is
Discard : BOOL;
pragma Unreferenced (Discard);
begin
Environment_Task_Id := Environment_Task;
OS_Primitives.Initialize;
Interrupt_Management.Initialize;
if Time_Slice_Val = 0 or else Dispatching_Policy = 'F' then
-- Here we need Annex D semantics, switch the current process to the
-- High_Priority_Class.
Discard :=
OS_Interface.SetPriorityClass
(GetCurrentProcess, High_Priority_Class);
-- ??? In theory it should be possible to use the priority class
-- Realtime_Prioriry_Class but we suspect a bug in the NT scheduler
-- which prevents (in some obscure cases) a thread to get on top of
-- the running queue by another thread of lower priority. For
-- example cxd8002 ACATS test freeze.
end if;
TlsIndex := TlsAlloc;
-- Initialize the lock used to synchronize chain of all ATCBs.
Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
Environment_Task.Common.LL.Thread := GetCurrentThread;
Enter_Task (Environment_Task);
end Initialize;
---------------------
-- Monotonic_Clock --
---------------------
function Monotonic_Clock return Duration
renames System.OS_Primitives.Monotonic_Clock;
-------------------
-- RT_Resolution --
-------------------
function RT_Resolution return Duration is
begin
return 0.000_001; -- 1 micro-second
end RT_Resolution;
----------------
-- Initialize --
----------------
procedure Initialize (S : in out Suspension_Object) is
begin
-- Initialize internal state. It is always initialized to False (ARM
-- D.10 par. 6).
S.State := False;
S.Waiting := False;
-- Initialize internal mutex
InitializeCriticalSection (S.L'Access);
-- Initialize internal condition variable
S.CV := CreateEvent (null, True, False, Null_Ptr);
pragma Assert (S.CV /= 0);
end Initialize;
--------------
-- Finalize --
--------------
procedure Finalize (S : in out Suspension_Object) is
Result : BOOL;
begin
-- Destroy internal mutex
DeleteCriticalSection (S.L'Access);
-- Destroy internal condition variable
Result := CloseHandle (S.CV);
pragma Assert (Result = True);
end Finalize;
-------------------
-- Current_State --
-------------------
function Current_State (S : Suspension_Object) return Boolean is
begin
-- We do not want to use lock on this read operation. State is marked
-- as Atomic so that we ensure that the value retrieved is correct.
return S.State;
end Current_State;
---------------
-- Set_False --
---------------
procedure Set_False (S : in out Suspension_Object) is
begin
SSL.Abort_Defer.all;
EnterCriticalSection (S.L'Access);
S.State := False;
LeaveCriticalSection (S.L'Access);
SSL.Abort_Undefer.all;
end Set_False;
--------------
-- Set_True --
--------------
procedure Set_True (S : in out Suspension_Object) is
Result : BOOL;
begin
SSL.Abort_Defer.all;
EnterCriticalSection (S.L'Access);
-- If there is already a task waiting on this suspension object then
-- we resume it, leaving the state of the suspension object to False,
-- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
-- the state to True.
if S.Waiting then
S.Waiting := False;
S.State := False;
Result := SetEvent (S.CV);
pragma Assert (Result = True);
else
S.State := True;
end if;
LeaveCriticalSection (S.L'Access);
SSL.Abort_Undefer.all;
end Set_True;
------------------------
-- Suspend_Until_True --
------------------------
procedure Suspend_Until_True (S : in out Suspension_Object) is
Result : DWORD;
Result_Bool : BOOL;
begin
SSL.Abort_Defer.all;
EnterCriticalSection (S.L'Access);
if S.Waiting then
-- Program_Error must be raised upon calling Suspend_Until_True
-- if another task is already waiting on that suspension object
-- (ARM D.10 par. 10).
LeaveCriticalSection (S.L'Access);
SSL.Abort_Undefer.all;
raise Program_Error;
else
-- Suspend the task if the state is False. Otherwise, the task
-- continues its execution, and the state of the suspension object
-- is set to False (ARM D.10 par. 9).
if S.State then
S.State := False;
LeaveCriticalSection (S.L'Access);
SSL.Abort_Undefer.all;
else
S.Waiting := True;
-- Must reset CV BEFORE L is unlocked.
Result_Bool := ResetEvent (S.CV);
pragma Assert (Result_Bool = True);
LeaveCriticalSection (S.L'Access);
SSL.Abort_Undefer.all;
Result := WaitForSingleObject (S.CV, Wait_Infinite);
pragma Assert (Result = 0);
end if;
end if;
end Suspend_Until_True;
----------------
-- Check_Exit --
----------------
-- Dummy versions. The only currently working versions is for solaris
-- (native).
function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
pragma Unreferenced (Self_ID);
begin
return True;
end Check_Exit;
--------------------
-- Check_No_Locks --
--------------------
function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
pragma Unreferenced (Self_ID);
begin
return True;
end Check_No_Locks;
------------------
-- Suspend_Task --
------------------
function Suspend_Task
(T : ST.Task_Id;
Thread_Self : Thread_Id) return Boolean
is
begin
if T.Common.LL.Thread /= Thread_Self then
return SuspendThread (T.Common.LL.Thread) = NO_ERROR;
else
return True;
end if;
end Suspend_Task;
-----------------
-- Resume_Task --
-----------------
function Resume_Task
(T : ST.Task_Id;
Thread_Self : Thread_Id) return Boolean
is
begin
if T.Common.LL.Thread /= Thread_Self then
return ResumeThread (T.Common.LL.Thread) = NO_ERROR;
else
return True;
end if;
end Resume_Task;
end System.Task_Primitives.Operations;