blob: 62cfb4ed4d9a752912c83df5c7964427e724e1e2 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ C H 3 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Errout; use Errout;
with Exp_Aggr; use Exp_Aggr;
with Exp_Ch4; use Exp_Ch4;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch9; use Exp_Ch9;
with Exp_Ch11; use Exp_Ch11;
with Exp_Disp; use Exp_Disp;
with Exp_Dist; use Exp_Dist;
with Exp_Smem; use Exp_Smem;
with Exp_Strm; use Exp_Strm;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Hostparm; use Hostparm;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Attr; use Sem_Attr;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch8; use Sem_Ch8;
with Sem_Disp; use Sem_Disp;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Stand; use Stand;
with Snames; use Snames;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Validsw; use Validsw;
package body Exp_Ch3 is
-----------------------
-- Local Subprograms --
-----------------------
procedure Adjust_Discriminants (Rtype : Entity_Id);
-- This is used when freezing a record type. It attempts to construct
-- more restrictive subtypes for discriminants so that the max size of
-- the record can be calculated more accurately. See the body of this
-- procedure for details.
procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
-- Build initialization procedure for given array type. Nod is a node
-- used for attachment of any actions required in its construction.
-- It also supplies the source location used for the procedure.
function Build_Discriminant_Formals
(Rec_Id : Entity_Id;
Use_Dl : Boolean) return List_Id;
-- This function uses the discriminants of a type to build a list of
-- formal parameters, used in the following function. If the flag Use_Dl
-- is set, the list is built using the already defined discriminals
-- of the type. Otherwise new identifiers are created, with the source
-- names of the discriminants.
procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id);
-- If the designated type of an access type is a task type or contains
-- tasks, we make sure that a _Master variable is declared in the current
-- scope, and then declare a renaming for it:
--
-- atypeM : Master_Id renames _Master;
--
-- where atyp is the name of the access type. This declaration is
-- used when an allocator for the access type is expanded. The node N
-- is the full declaration of the designated type that contains tasks.
-- The renaming declaration is inserted before N, and after the Master
-- declaration.
procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id);
-- Build record initialization procedure. N is the type declaration
-- node, and Pe is the corresponding entity for the record type.
procedure Build_Slice_Assignment (Typ : Entity_Id);
-- Build assignment procedure for one-dimensional arrays of controlled
-- types. Other array and slice assignments are expanded in-line, but
-- the code expansion for controlled components (when control actions
-- are active) can lead to very large blocks that GCC3 handles poorly.
procedure Build_Variant_Record_Equality (Typ : Entity_Id);
-- Create An Equality function for the non-tagged variant record 'Typ'
-- and attach it to the TSS list
procedure Check_Stream_Attributes (Typ : Entity_Id);
-- Check that if a limited extension has a parent with user-defined
-- stream attributes, and does not itself have user-definer
-- stream-attributes, then any limited component of the extension also
-- has the corresponding user-defined stream attributes.
procedure Expand_Tagged_Root (T : Entity_Id);
-- Add a field _Tag at the beginning of the record. This field carries
-- the value of the access to the Dispatch table. This procedure is only
-- called on root (non CPP_Class) types, the _Tag field being inherited
-- by the descendants.
procedure Expand_Record_Controller (T : Entity_Id);
-- T must be a record type that Has_Controlled_Component. Add a field
-- _controller of type Record_Controller or Limited_Record_Controller
-- in the record T.
procedure Freeze_Array_Type (N : Node_Id);
-- Freeze an array type. Deals with building the initialization procedure,
-- creating the packed array type for a packed array and also with the
-- creation of the controlling procedures for the controlled case. The
-- argument N is the N_Freeze_Entity node for the type.
procedure Freeze_Enumeration_Type (N : Node_Id);
-- Freeze enumeration type with non-standard representation. Builds the
-- array and function needed to convert between enumeration pos and
-- enumeration representation values. N is the N_Freeze_Entity node
-- for the type.
procedure Freeze_Record_Type (N : Node_Id);
-- Freeze record type. Builds all necessary discriminant checking
-- and other ancillary functions, and builds dispatch tables where
-- needed. The argument N is the N_Freeze_Entity node. This processing
-- applies only to E_Record_Type entities, not to class wide types,
-- record subtypes, or private types.
procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
-- Treat user-defined stream operations as renaming_as_body if the
-- subprogram they rename is not frozen when the type is frozen.
function Init_Formals (Typ : Entity_Id) return List_Id;
-- This function builds the list of formals for an initialization routine.
-- The first formal is always _Init with the given type. For task value
-- record types and types containing tasks, three additional formals are
-- added:
--
-- _Master : Master_Id
-- _Chain : in out Activation_Chain
-- _Task_Name : String
--
-- The caller must append additional entries for discriminants if required.
function In_Runtime (E : Entity_Id) return Boolean;
-- Check if E is defined in the RTL (in a child of Ada or System). Used
-- to avoid to bring in the overhead of _Input, _Output for tagged types.
function Make_Eq_Case
(E : Entity_Id;
CL : Node_Id;
Discr : Entity_Id := Empty) return List_Id;
-- Building block for variant record equality. Defined to share the
-- code between the tagged and non-tagged case. Given a Component_List
-- node CL, it generates an 'if' followed by a 'case' statement that
-- compares all components of local temporaries named X and Y (that
-- are declared as formals at some upper level). E provides the Sloc to be
-- used for the generated code. Discr is used as the case statement switch
-- in the case of Unchecked_Union equality.
function Make_Eq_If
(E : Entity_Id;
L : List_Id) return Node_Id;
-- Building block for variant record equality. Defined to share the
-- code between the tagged and non-tagged case. Given the list of
-- components (or discriminants) L, it generates a return statement
-- that compares all components of local temporaries named X and Y
-- (that are declared as formals at some upper level). E provides the Sloc
-- to be used for the generated code.
procedure Make_Predefined_Primitive_Specs
(Tag_Typ : Entity_Id;
Predef_List : out List_Id;
Renamed_Eq : out Node_Id);
-- Create a list with the specs of the predefined primitive operations.
-- The following entries are present for all tagged types, and provide
-- the results of the corresponding attribute applied to the object.
-- Dispatching is required in general, since the result of the attribute
-- will vary with the actual object subtype.
--
-- _alignment provides result of 'Alignment attribute
-- _size provides result of 'Size attribute
-- typSR provides result of 'Read attribute
-- typSW provides result of 'Write attribute
-- typSI provides result of 'Input attribute
-- typSO provides result of 'Output attribute
--
-- The following entries are additionally present for non-limited
-- tagged types, and implement additional dispatching operations
-- for predefined operations:
--
-- _equality implements "=" operator
-- _assign implements assignment operation
-- typDF implements deep finalization
-- typDA implements deep adust
--
-- The latter two are empty procedures unless the type contains some
-- controlled components that require finalization actions (the deep
-- in the name refers to the fact that the action applies to components).
--
-- The list is returned in Predef_List. The Parameter Renamed_Eq
-- either returns the value Empty, or else the defining unit name
-- for the predefined equality function in the case where the type
-- has a primitive operation that is a renaming of predefined equality
-- (but only if there is also an overriding user-defined equality
-- function). The returned Renamed_Eq will be passed to the
-- corresponding parameter of Predefined_Primitive_Bodies.
function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
-- returns True if there are representation clauses for type T that
-- are not inherited. If the result is false, the init_proc and the
-- discriminant_checking functions of the parent can be reused by
-- a derived type.
procedure Make_Controlling_Function_Wrappers
(Tag_Typ : Entity_Id;
Decl_List : out List_Id;
Body_List : out List_Id);
-- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
-- associated with inherited functions with controlling results which
-- are not overridden. The body of each wrapper function consists solely
-- of a return statement whose expression is an extension aggregate
-- invoking the inherited subprogram's parent subprogram and extended
-- with a null association list.
function Predef_Spec_Or_Body
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : Name_Id;
Profile : List_Id;
Ret_Type : Entity_Id := Empty;
For_Body : Boolean := False) return Node_Id;
-- This function generates the appropriate expansion for a predefined
-- primitive operation specified by its name, parameter profile and
-- return type (Empty means this is a procedure). If For_Body is false,
-- then the returned node is a subprogram declaration. If For_Body is
-- true, then the returned node is a empty subprogram body containing
-- no declarations and no statements.
function Predef_Stream_Attr_Spec
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : TSS_Name_Type;
For_Body : Boolean := False) return Node_Id;
-- Specialized version of Predef_Spec_Or_Body that apply to read, write,
-- input and output attribute whose specs are constructed in Exp_Strm.
function Predef_Deep_Spec
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : TSS_Name_Type;
For_Body : Boolean := False) return Node_Id;
-- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
-- and _deep_finalize
function Predefined_Primitive_Bodies
(Tag_Typ : Entity_Id;
Renamed_Eq : Node_Id) return List_Id;
-- Create the bodies of the predefined primitives that are described in
-- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
-- the defining unit name of the type's predefined equality as returned
-- by Make_Predefined_Primitive_Specs.
function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
-- Freeze entities of all predefined primitive operations. This is needed
-- because the bodies of these operations do not normally do any freezeing.
function Stream_Operation_OK
(Typ : Entity_Id;
Operation : TSS_Name_Type) return Boolean;
-- Check whether the named stream operation must be emitted for a given
-- type. The rules for inheritance of stream attributes by type extensions
-- are enforced by this function. Furthermore, various restrictions prevent
-- the generation of these operations, as a useful optimization or for
-- certification purposes.
--------------------------
-- Adjust_Discriminants --
--------------------------
-- This procedure attempts to define subtypes for discriminants that
-- are more restrictive than those declared. Such a replacement is
-- possible if we can demonstrate that values outside the restricted
-- range would cause constraint errors in any case. The advantage of
-- restricting the discriminant types in this way is tha the maximum
-- size of the variant record can be calculated more conservatively.
-- An example of a situation in which we can perform this type of
-- restriction is the following:
-- subtype B is range 1 .. 10;
-- type Q is array (B range <>) of Integer;
-- type V (N : Natural) is record
-- C : Q (1 .. N);
-- end record;
-- In this situation, we can restrict the upper bound of N to 10, since
-- any larger value would cause a constraint error in any case.
-- There are many situations in which such restriction is possible, but
-- for now, we just look for cases like the above, where the component
-- in question is a one dimensional array whose upper bound is one of
-- the record discriminants. Also the component must not be part of
-- any variant part, since then the component does not always exist.
procedure Adjust_Discriminants (Rtype : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Rtype);
Comp : Entity_Id;
Ctyp : Entity_Id;
Ityp : Entity_Id;
Lo : Node_Id;
Hi : Node_Id;
P : Node_Id;
Loval : Uint;
Discr : Entity_Id;
Dtyp : Entity_Id;
Dhi : Node_Id;
Dhiv : Uint;
Ahi : Node_Id;
Ahiv : Uint;
Tnn : Entity_Id;
begin
Comp := First_Component (Rtype);
while Present (Comp) loop
-- If our parent is a variant, quit, we do not look at components
-- that are in variant parts, because they may not always exist.
P := Parent (Comp); -- component declaration
P := Parent (P); -- component list
exit when Nkind (Parent (P)) = N_Variant;
-- We are looking for a one dimensional array type
Ctyp := Etype (Comp);
if not Is_Array_Type (Ctyp)
or else Number_Dimensions (Ctyp) > 1
then
goto Continue;
end if;
-- The lower bound must be constant, and the upper bound is a
-- discriminant (which is a discriminant of the current record).
Ityp := Etype (First_Index (Ctyp));
Lo := Type_Low_Bound (Ityp);
Hi := Type_High_Bound (Ityp);
if not Compile_Time_Known_Value (Lo)
or else Nkind (Hi) /= N_Identifier
or else No (Entity (Hi))
or else Ekind (Entity (Hi)) /= E_Discriminant
then
goto Continue;
end if;
-- We have an array with appropriate bounds
Loval := Expr_Value (Lo);
Discr := Entity (Hi);
Dtyp := Etype (Discr);
-- See if the discriminant has a known upper bound
Dhi := Type_High_Bound (Dtyp);
if not Compile_Time_Known_Value (Dhi) then
goto Continue;
end if;
Dhiv := Expr_Value (Dhi);
-- See if base type of component array has known upper bound
Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
if not Compile_Time_Known_Value (Ahi) then
goto Continue;
end if;
Ahiv := Expr_Value (Ahi);
-- The condition for doing the restriction is that the high bound
-- of the discriminant is greater than the low bound of the array,
-- and is also greater than the high bound of the base type index.
if Dhiv > Loval and then Dhiv > Ahiv then
-- We can reset the upper bound of the discriminant type to
-- whichever is larger, the low bound of the component, or
-- the high bound of the base type array index.
-- We build a subtype that is declared as
-- subtype Tnn is discr_type range discr_type'First .. max;
-- And insert this declaration into the tree. The type of the
-- discriminant is then reset to this more restricted subtype.
Tnn := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
Insert_Action (Declaration_Node (Rtype),
Make_Subtype_Declaration (Loc,
Defining_Identifier => Tnn,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
Constraint =>
Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Occurrence_Of (Dtyp, Loc)),
High_Bound =>
Make_Integer_Literal (Loc,
Intval => UI_Max (Loval, Ahiv)))))));
Set_Etype (Discr, Tnn);
end if;
<<Continue>>
Next_Component (Comp);
end loop;
end Adjust_Discriminants;
---------------------------
-- Build_Array_Init_Proc --
---------------------------
procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
Loc : constant Source_Ptr := Sloc (Nod);
Comp_Type : constant Entity_Id := Component_Type (A_Type);
Index_List : List_Id;
Proc_Id : Entity_Id;
Body_Stmts : List_Id;
function Init_Component return List_Id;
-- Create one statement to initialize one array component, designated
-- by a full set of indices.
function Init_One_Dimension (N : Int) return List_Id;
-- Create loop to initialize one dimension of the array. The single
-- statement in the loop body initializes the inner dimensions if any,
-- or else the single component. Note that this procedure is called
-- recursively, with N being the dimension to be initialized. A call
-- with N greater than the number of dimensions simply generates the
-- component initialization, terminating the recursion.
--------------------
-- Init_Component --
--------------------
function Init_Component return List_Id is
Comp : Node_Id;
begin
Comp :=
Make_Indexed_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Expressions => Index_List);
if Needs_Simple_Initialization (Comp_Type) then
Set_Assignment_OK (Comp);
return New_List (
Make_Assignment_Statement (Loc,
Name => Comp,
Expression =>
Get_Simple_Init_Val
(Comp_Type, Loc, Component_Size (A_Type))));
else
return
Build_Initialization_Call (Loc, Comp, Comp_Type, True, A_Type);
end if;
end Init_Component;
------------------------
-- Init_One_Dimension --
------------------------
function Init_One_Dimension (N : Int) return List_Id is
Index : Entity_Id;
begin
-- If the component does not need initializing, then there is nothing
-- to do here, so we return a null body. This occurs when generating
-- the dummy Init_Proc needed for Initialize_Scalars processing.
if not Has_Non_Null_Base_Init_Proc (Comp_Type)
and then not Needs_Simple_Initialization (Comp_Type)
and then not Has_Task (Comp_Type)
then
return New_List (Make_Null_Statement (Loc));
-- If all dimensions dealt with, we simply initialize the component
elsif N > Number_Dimensions (A_Type) then
return Init_Component;
-- Here we generate the required loop
else
Index :=
Make_Defining_Identifier (Loc, New_External_Name ('J', N));
Append (New_Reference_To (Index, Loc), Index_List);
return New_List (
Make_Implicit_Loop_Statement (Nod,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => Index,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Attribute_Name => Name_Range,
Expressions => New_List (
Make_Integer_Literal (Loc, N))))),
Statements => Init_One_Dimension (N + 1)));
end if;
end Init_One_Dimension;
-- Start of processing for Build_Array_Init_Proc
begin
if Suppress_Init_Proc (A_Type) then
return;
end if;
Index_List := New_List;
-- We need an initialization procedure if any of the following is true:
-- 1. The component type has an initialization procedure
-- 2. The component type needs simple initialization
-- 3. Tasks are present
-- 4. The type is marked as a publc entity
-- The reason for the public entity test is to deal properly with the
-- Initialize_Scalars pragma. This pragma can be set in the client and
-- not in the declaring package, this means the client will make a call
-- to the initialization procedure (because one of conditions 1-3 must
-- apply in this case), and we must generate a procedure (even if it is
-- null) to satisfy the call in this case.
-- Exception: do not build an array init_proc for a type whose root
-- type is Standard.String or Standard.Wide_[Wide_]String, since there
-- is no place to put the code, and in any case we handle initialization
-- of such types (in the Initialize_Scalars case, that's the only time
-- the issue arises) in a special manner anyway which does not need an
-- init_proc.
if Has_Non_Null_Base_Init_Proc (Comp_Type)
or else Needs_Simple_Initialization (Comp_Type)
or else Has_Task (Comp_Type)
or else (not Restriction_Active (No_Initialize_Scalars)
and then Is_Public (A_Type)
and then Root_Type (A_Type) /= Standard_String
and then Root_Type (A_Type) /= Standard_Wide_String
and then Root_Type (A_Type) /= Standard_Wide_Wide_String)
then
Proc_Id :=
Make_Defining_Identifier (Loc, Make_Init_Proc_Name (A_Type));
Body_Stmts := Init_One_Dimension (1);
Discard_Node (
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => Init_Formals (A_Type)),
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Body_Stmts)));
Set_Ekind (Proc_Id, E_Procedure);
Set_Is_Public (Proc_Id, Is_Public (A_Type));
Set_Is_Internal (Proc_Id);
Set_Has_Completion (Proc_Id);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Proc_Id);
end if;
-- Set inlined unless controlled stuff or tasks around, in which
-- case we do not want to inline, because nested stuff may cause
-- difficulties in interunit inlining, and furthermore there is
-- in any case no point in inlining such complex init procs.
if not Has_Task (Proc_Id)
and then not Controlled_Type (Proc_Id)
then
Set_Is_Inlined (Proc_Id);
end if;
-- Associate Init_Proc with type, and determine if the procedure
-- is null (happens because of the Initialize_Scalars pragma case,
-- where we have to generate a null procedure in case it is called
-- by a client with Initialize_Scalars set). Such procedures have
-- to be generated, but do not have to be called, so we mark them
-- as null to suppress the call.
Set_Init_Proc (A_Type, Proc_Id);
if List_Length (Body_Stmts) = 1
and then Nkind (First (Body_Stmts)) = N_Null_Statement
then
Set_Is_Null_Init_Proc (Proc_Id);
end if;
end if;
end Build_Array_Init_Proc;
-----------------------------
-- Build_Class_Wide_Master --
-----------------------------
procedure Build_Class_Wide_Master (T : Entity_Id) is
Loc : constant Source_Ptr := Sloc (T);
M_Id : Entity_Id;
Decl : Node_Id;
P : Node_Id;
Par : Node_Id;
begin
-- Nothing to do if there is no task hierarchy
if Restriction_Active (No_Task_Hierarchy) then
return;
end if;
-- Find declaration that created the access type: either a
-- type declaration, or an object declaration with an
-- access definition, in which case the type is anonymous.
if Is_Itype (T) then
P := Associated_Node_For_Itype (T);
else
P := Parent (T);
end if;
-- Nothing to do if we already built a master entity for this scope
if not Has_Master_Entity (Scope (T)) then
-- first build the master entity
-- _Master : constant Master_Id := Current_Master.all;
-- and insert it just before the current declaration
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uMaster),
Constant_Present => True,
Object_Definition => New_Reference_To (Standard_Integer, Loc),
Expression =>
Make_Explicit_Dereference (Loc,
New_Reference_To (RTE (RE_Current_Master), Loc)));
Insert_Before (P, Decl);
Analyze (Decl);
Set_Has_Master_Entity (Scope (T));
-- Now mark the containing scope as a task master
Par := P;
while Nkind (Par) /= N_Compilation_Unit loop
Par := Parent (Par);
-- If we fall off the top, we are at the outer level, and the
-- environment task is our effective master, so nothing to mark.
if Nkind (Par) = N_Task_Body
or else Nkind (Par) = N_Block_Statement
or else Nkind (Par) = N_Subprogram_Body
then
Set_Is_Task_Master (Par, True);
exit;
end if;
end loop;
end if;
-- Now define the renaming of the master_id
M_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (T), 'M'));
Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => M_Id,
Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
Name => Make_Identifier (Loc, Name_uMaster));
Insert_Before (P, Decl);
Analyze (Decl);
Set_Master_Id (T, M_Id);
exception
when RE_Not_Available =>
return;
end Build_Class_Wide_Master;
--------------------------------
-- Build_Discr_Checking_Funcs --
--------------------------------
procedure Build_Discr_Checking_Funcs (N : Node_Id) is
Rec_Id : Entity_Id;
Loc : Source_Ptr;
Enclosing_Func_Id : Entity_Id;
Sequence : Nat := 1;
Type_Def : Node_Id;
V : Node_Id;
function Build_Case_Statement
(Case_Id : Entity_Id;
Variant : Node_Id) return Node_Id;
-- Build a case statement containing only two alternatives. The
-- first alternative corresponds exactly to the discrete choices
-- given on the variant with contains the components that we are
-- generating the checks for. If the discriminant is one of these
-- return False. The second alternative is an OTHERS choice that
-- will return True indicating the discriminant did not match.
function Build_Dcheck_Function
(Case_Id : Entity_Id;
Variant : Node_Id) return Entity_Id;
-- Build the discriminant checking function for a given variant
procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
-- Builds the discriminant checking function for each variant of the
-- given variant part of the record type.
--------------------------
-- Build_Case_Statement --
--------------------------
function Build_Case_Statement
(Case_Id : Entity_Id;
Variant : Node_Id) return Node_Id
is
Alt_List : constant List_Id := New_List;
Actuals_List : List_Id;
Case_Node : Node_Id;
Case_Alt_Node : Node_Id;
Choice : Node_Id;
Choice_List : List_Id;
D : Entity_Id;
Return_Node : Node_Id;
begin
Case_Node := New_Node (N_Case_Statement, Loc);
-- Replace the discriminant which controls the variant, with the
-- name of the formal of the checking function.
Set_Expression (Case_Node,
Make_Identifier (Loc, Chars (Case_Id)));
Choice := First (Discrete_Choices (Variant));
if Nkind (Choice) = N_Others_Choice then
Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
else
Choice_List := New_Copy_List (Discrete_Choices (Variant));
end if;
if not Is_Empty_List (Choice_List) then
Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
Set_Discrete_Choices (Case_Alt_Node, Choice_List);
-- In case this is a nested variant, we need to return the result
-- of the discriminant checking function for the immediately
-- enclosing variant.
if Present (Enclosing_Func_Id) then
Actuals_List := New_List;
D := First_Discriminant (Rec_Id);
while Present (D) loop
Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
Next_Discriminant (D);
end loop;
Return_Node :=
Make_Return_Statement (Loc,
Expression =>
Make_Function_Call (Loc,
Name =>
New_Reference_To (Enclosing_Func_Id, Loc),
Parameter_Associations =>
Actuals_List));
else
Return_Node :=
Make_Return_Statement (Loc,
Expression =>
New_Reference_To (Standard_False, Loc));
end if;
Set_Statements (Case_Alt_Node, New_List (Return_Node));
Append (Case_Alt_Node, Alt_List);
end if;
Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
Choice_List := New_List (New_Node (N_Others_Choice, Loc));
Set_Discrete_Choices (Case_Alt_Node, Choice_List);
Return_Node :=
Make_Return_Statement (Loc,
Expression =>
New_Reference_To (Standard_True, Loc));
Set_Statements (Case_Alt_Node, New_List (Return_Node));
Append (Case_Alt_Node, Alt_List);
Set_Alternatives (Case_Node, Alt_List);
return Case_Node;
end Build_Case_Statement;
---------------------------
-- Build_Dcheck_Function --
---------------------------
function Build_Dcheck_Function
(Case_Id : Entity_Id;
Variant : Node_Id) return Entity_Id
is
Body_Node : Node_Id;
Func_Id : Entity_Id;
Parameter_List : List_Id;
Spec_Node : Node_Id;
begin
Body_Node := New_Node (N_Subprogram_Body, Loc);
Sequence := Sequence + 1;
Func_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
Spec_Node := New_Node (N_Function_Specification, Loc);
Set_Defining_Unit_Name (Spec_Node, Func_Id);
Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
Set_Parameter_Specifications (Spec_Node, Parameter_List);
Set_Result_Definition (Spec_Node,
New_Reference_To (Standard_Boolean, Loc));
Set_Specification (Body_Node, Spec_Node);
Set_Declarations (Body_Node, New_List);
Set_Handled_Statement_Sequence (Body_Node,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Build_Case_Statement (Case_Id, Variant))));
Set_Ekind (Func_Id, E_Function);
Set_Mechanism (Func_Id, Default_Mechanism);
Set_Is_Inlined (Func_Id, True);
Set_Is_Pure (Func_Id, True);
Set_Is_Public (Func_Id, Is_Public (Rec_Id));
Set_Is_Internal (Func_Id, True);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Func_Id);
end if;
Analyze (Body_Node);
Append_Freeze_Action (Rec_Id, Body_Node);
Set_Dcheck_Function (Variant, Func_Id);
return Func_Id;
end Build_Dcheck_Function;
----------------------------
-- Build_Dcheck_Functions --
----------------------------
procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
Component_List_Node : Node_Id;
Decl : Entity_Id;
Discr_Name : Entity_Id;
Func_Id : Entity_Id;
Variant : Node_Id;
Saved_Enclosing_Func_Id : Entity_Id;
begin
-- Build the discriminant checking function for each variant, label
-- all components of that variant with the function's name.
Discr_Name := Entity (Name (Variant_Part_Node));
Variant := First_Non_Pragma (Variants (Variant_Part_Node));
while Present (Variant) loop
Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
Component_List_Node := Component_List (Variant);
if not Null_Present (Component_List_Node) then
Decl :=
First_Non_Pragma (Component_Items (Component_List_Node));
while Present (Decl) loop
Set_Discriminant_Checking_Func
(Defining_Identifier (Decl), Func_Id);
Next_Non_Pragma (Decl);
end loop;
if Present (Variant_Part (Component_List_Node)) then
Saved_Enclosing_Func_Id := Enclosing_Func_Id;
Enclosing_Func_Id := Func_Id;
Build_Dcheck_Functions (Variant_Part (Component_List_Node));
Enclosing_Func_Id := Saved_Enclosing_Func_Id;
end if;
end if;
Next_Non_Pragma (Variant);
end loop;
end Build_Dcheck_Functions;
-- Start of processing for Build_Discr_Checking_Funcs
begin
-- Only build if not done already
if not Discr_Check_Funcs_Built (N) then
Type_Def := Type_Definition (N);
if Nkind (Type_Def) = N_Record_Definition then
if No (Component_List (Type_Def)) then -- null record.
return;
else
V := Variant_Part (Component_List (Type_Def));
end if;
else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
if No (Component_List (Record_Extension_Part (Type_Def))) then
return;
else
V := Variant_Part
(Component_List (Record_Extension_Part (Type_Def)));
end if;
end if;
Rec_Id := Defining_Identifier (N);
if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
Loc := Sloc (N);
Enclosing_Func_Id := Empty;
Build_Dcheck_Functions (V);
end if;
Set_Discr_Check_Funcs_Built (N);
end if;
end Build_Discr_Checking_Funcs;
--------------------------------
-- Build_Discriminant_Formals --
--------------------------------
function Build_Discriminant_Formals
(Rec_Id : Entity_Id;
Use_Dl : Boolean) return List_Id
is
Loc : Source_Ptr := Sloc (Rec_Id);
Parameter_List : constant List_Id := New_List;
D : Entity_Id;
Formal : Entity_Id;
Param_Spec_Node : Node_Id;
begin
if Has_Discriminants (Rec_Id) then
D := First_Discriminant (Rec_Id);
while Present (D) loop
Loc := Sloc (D);
if Use_Dl then
Formal := Discriminal (D);
else
Formal := Make_Defining_Identifier (Loc, Chars (D));
end if;
Param_Spec_Node :=
Make_Parameter_Specification (Loc,
Defining_Identifier => Formal,
Parameter_Type =>
New_Reference_To (Etype (D), Loc));
Append (Param_Spec_Node, Parameter_List);
Next_Discriminant (D);
end loop;
end if;
return Parameter_List;
end Build_Discriminant_Formals;
-------------------------------
-- Build_Initialization_Call --
-------------------------------
-- References to a discriminant inside the record type declaration
-- can appear either in the subtype_indication to constrain a
-- record or an array, or as part of a larger expression given for
-- the initial value of a component. In both of these cases N appears
-- in the record initialization procedure and needs to be replaced by
-- the formal parameter of the initialization procedure which
-- corresponds to that discriminant.
-- In the example below, references to discriminants D1 and D2 in proc_1
-- are replaced by references to formals with the same name
-- (discriminals)
-- A similar replacement is done for calls to any record
-- initialization procedure for any components that are themselves
-- of a record type.
-- type R (D1, D2 : Integer) is record
-- X : Integer := F * D1;
-- Y : Integer := F * D2;
-- end record;
-- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
-- begin
-- Out_2.D1 := D1;
-- Out_2.D2 := D2;
-- Out_2.X := F * D1;
-- Out_2.Y := F * D2;
-- end;
function Build_Initialization_Call
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Typ : Entity_Id;
In_Init_Proc : Boolean := False;
Enclos_Type : Entity_Id := Empty;
Discr_Map : Elist_Id := New_Elmt_List;
With_Default_Init : Boolean := False) return List_Id
is
First_Arg : Node_Id;
Args : List_Id;
Decls : List_Id;
Decl : Node_Id;
Discr : Entity_Id;
Arg : Node_Id;
Proc : constant Entity_Id := Base_Init_Proc (Typ);
Init_Type : constant Entity_Id := Etype (First_Formal (Proc));
Full_Init_Type : constant Entity_Id := Underlying_Type (Init_Type);
Res : constant List_Id := New_List;
Full_Type : Entity_Id := Typ;
Controller_Typ : Entity_Id;
begin
-- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
-- is active (in which case we make the call anyway, since in the
-- actual compiled client it may be non null).
if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
return Empty_List;
end if;
-- Go to full view if private type. In the case of successive
-- private derivations, this can require more than one step.
while Is_Private_Type (Full_Type)
and then Present (Full_View (Full_Type))
loop
Full_Type := Full_View (Full_Type);
end loop;
-- If Typ is derived, the procedure is the initialization procedure for
-- the root type. Wrap the argument in an conversion to make it type
-- honest. Actually it isn't quite type honest, because there can be
-- conflicts of views in the private type case. That is why we set
-- Conversion_OK in the conversion node.
if (Is_Record_Type (Typ)
or else Is_Array_Type (Typ)
or else Is_Private_Type (Typ))
and then Init_Type /= Base_Type (Typ)
then
First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
Set_Etype (First_Arg, Init_Type);
else
First_Arg := Id_Ref;
end if;
Args := New_List (Convert_Concurrent (First_Arg, Typ));
-- In the tasks case, add _Master as the value of the _Master parameter
-- and _Chain as the value of the _Chain parameter. At the outer level,
-- these will be variables holding the corresponding values obtained
-- from GNARL. At inner levels, they will be the parameters passed down
-- through the outer routines.
if Has_Task (Full_Type) then
if Restriction_Active (No_Task_Hierarchy) then
-- See comments in System.Tasking.Initialization.Init_RTS
-- for the value 3 (should be rtsfindable constant ???)
Append_To (Args, Make_Integer_Literal (Loc, 3));
else
Append_To (Args, Make_Identifier (Loc, Name_uMaster));
end if;
Append_To (Args, Make_Identifier (Loc, Name_uChain));
-- Ada 2005 (AI-287): In case of default initialized components
-- with tasks, we generate a null string actual parameter.
-- This is just a workaround that must be improved later???
if With_Default_Init then
Append_To (Args,
Make_String_Literal (Loc,
Strval => ""));
else
Decls := Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type);
Decl := Last (Decls);
Append_To (Args,
New_Occurrence_Of (Defining_Identifier (Decl), Loc));
Append_List (Decls, Res);
end if;
else
Decls := No_List;
Decl := Empty;
end if;
-- Add discriminant values if discriminants are present
if Has_Discriminants (Full_Init_Type) then
Discr := First_Discriminant (Full_Init_Type);
while Present (Discr) loop
-- If this is a discriminated concurrent type, the init_proc
-- for the corresponding record is being called. Use that
-- type directly to find the discriminant value, to handle
-- properly intervening renamed discriminants.
declare
T : Entity_Id := Full_Type;
begin
if Is_Protected_Type (T) then
T := Corresponding_Record_Type (T);
elsif Is_Private_Type (T)
and then Present (Underlying_Full_View (T))
and then Is_Protected_Type (Underlying_Full_View (T))
then
T := Corresponding_Record_Type (Underlying_Full_View (T));
end if;
Arg :=
Get_Discriminant_Value (
Discr,
T,
Discriminant_Constraint (Full_Type));
end;
if In_Init_Proc then
-- Replace any possible references to the discriminant in the
-- call to the record initialization procedure with references
-- to the appropriate formal parameter.
if Nkind (Arg) = N_Identifier
and then Ekind (Entity (Arg)) = E_Discriminant
then
Arg := New_Reference_To (Discriminal (Entity (Arg)), Loc);
-- Case of access discriminants. We replace the reference
-- to the type by a reference to the actual object
elsif Nkind (Arg) = N_Attribute_Reference
and then Is_Access_Type (Etype (Arg))
and then Is_Entity_Name (Prefix (Arg))
and then Is_Type (Entity (Prefix (Arg)))
then
Arg :=
Make_Attribute_Reference (Loc,
Prefix => New_Copy (Prefix (Id_Ref)),
Attribute_Name => Name_Unrestricted_Access);
-- Otherwise make a copy of the default expression. Note
-- that we use the current Sloc for this, because we do not
-- want the call to appear to be at the declaration point.
-- Within the expression, replace discriminants with their
-- discriminals.
else
Arg :=
New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
end if;
else
if Is_Constrained (Full_Type) then
Arg := Duplicate_Subexpr_No_Checks (Arg);
else
-- The constraints come from the discriminant default
-- exps, they must be reevaluated, so we use New_Copy_Tree
-- but we ensure the proper Sloc (for any embedded calls).
Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
end if;
end if;
-- Ada 2005 (AI-287) In case of default initialized components,
-- we need to generate the corresponding selected component node
-- to access the discriminant value. In other cases this is not
-- required because we are inside the init proc and we use the
-- corresponding formal.
if With_Default_Init
and then Nkind (Id_Ref) = N_Selected_Component
and then Nkind (Arg) = N_Identifier
then
Append_To (Args,
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Prefix (Id_Ref)),
Selector_Name => Arg));
else
Append_To (Args, Arg);
end if;
Next_Discriminant (Discr);
end loop;
end if;
-- If this is a call to initialize the parent component of a derived
-- tagged type, indicate that the tag should not be set in the parent.
if Is_Tagged_Type (Full_Init_Type)
and then not Is_CPP_Class (Full_Init_Type)
and then Nkind (Id_Ref) = N_Selected_Component
and then Chars (Selector_Name (Id_Ref)) = Name_uParent
then
Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
end if;
Append_To (Res,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc, Loc),
Parameter_Associations => Args));
if Controlled_Type (Typ)
and then Nkind (Id_Ref) = N_Selected_Component
then
if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
Append_List_To (Res,
Make_Init_Call (
Ref => New_Copy_Tree (First_Arg),
Typ => Typ,
Flist_Ref =>
Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
With_Attach => Make_Integer_Literal (Loc, 1)));
-- If the enclosing type is an extension with new controlled
-- components, it has his own record controller. If the parent
-- also had a record controller, attach it to the new one.
-- Build_Init_Statements relies on the fact that in this specific
-- case the last statement of the result is the attach call to
-- the controller. If this is changed, it must be synchronized.
elsif Present (Enclos_Type)
and then Has_New_Controlled_Component (Enclos_Type)
and then Has_Controlled_Component (Typ)
then
if Is_Return_By_Reference_Type (Typ) then
Controller_Typ := RTE (RE_Limited_Record_Controller);
else
Controller_Typ := RTE (RE_Record_Controller);
end if;
Append_List_To (Res,
Make_Init_Call (
Ref =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (First_Arg),
Selector_Name => Make_Identifier (Loc, Name_uController)),
Typ => Controller_Typ,
Flist_Ref => Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
With_Attach => Make_Integer_Literal (Loc, 1)));
end if;
end if;
return Res;
exception
when RE_Not_Available =>
return Empty_List;
end Build_Initialization_Call;
---------------------------
-- Build_Master_Renaming --
---------------------------
procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
M_Id : Entity_Id;
Decl : Node_Id;
begin
-- Nothing to do if there is no task hierarchy
if Restriction_Active (No_Task_Hierarchy) then
return;
end if;
M_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (T), 'M'));
Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => M_Id,
Subtype_Mark => New_Reference_To (RTE (RE_Master_Id), Loc),
Name => Make_Identifier (Loc, Name_uMaster));
Insert_Before (N, Decl);
Analyze (Decl);
Set_Master_Id (T, M_Id);
exception
when RE_Not_Available =>
return;
end Build_Master_Renaming;
----------------------------
-- Build_Record_Init_Proc --
----------------------------
procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id) is
Loc : Source_Ptr := Sloc (N);
Discr_Map : constant Elist_Id := New_Elmt_List;
Proc_Id : Entity_Id;
Rec_Type : Entity_Id;
Set_Tag : Entity_Id := Empty;
function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
-- Build a assignment statement node which assigns to record
-- component its default expression if defined. The left hand side
-- of the assignment is marked Assignment_OK so that initialization
-- of limited private records works correctly, Return also the
-- adjustment call for controlled objects
procedure Build_Discriminant_Assignments (Statement_List : List_Id);
-- If the record has discriminants, adds assignment statements to
-- statement list to initialize the discriminant values from the
-- arguments of the initialization procedure.
function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
-- Build a list representing a sequence of statements which initialize
-- components of the given component list. This may involve building
-- case statements for the variant parts.
function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
-- Given a non-tagged type-derivation that declares discriminants,
-- such as
--
-- type R (R1, R2 : Integer) is record ... end record;
--
-- type D (D1 : Integer) is new R (1, D1);
--
-- we make the _init_proc of D be
--
-- procedure _init_proc(X : D; D1 : Integer) is
-- begin
-- _init_proc( R(X), 1, D1);
-- end _init_proc;
--
-- This function builds the call statement in this _init_proc.
procedure Build_Init_Procedure;
-- Build the tree corresponding to the procedure specification and body
-- of the initialization procedure (by calling all the preceding
-- auxiliary routines), and install it as the _init TSS.
procedure Build_Offset_To_Top_Functions;
-- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
-- and body of the Offset_To_Top function that is generated when the
-- parent of a type with discriminants has secondary dispatch tables.
procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
-- Add range checks to components of disciminated records. S is a
-- subtype indication of a record component. Check_List is a list
-- to which the check actions are appended.
function Component_Needs_Simple_Initialization
(T : Entity_Id) return Boolean;
-- Determines if a component needs simple initialization, given its type
-- T. This is the same as Needs_Simple_Initialization except for the
-- following difference: the types Tag, Interface_Tag, and Vtable_Ptr
-- which are access types which would normally require simple
-- initialization to null, do not require initialization as components,
-- since they are explicitly initialized by other means.
procedure Constrain_Array
(SI : Node_Id;
Check_List : List_Id);
-- Called from Build_Record_Checks.
-- Apply a list of index constraints to an unconstrained array type.
-- The first parameter is the entity for the resulting subtype.
-- Check_List is a list to which the check actions are appended.
procedure Constrain_Index
(Index : Node_Id;
S : Node_Id;
Check_List : List_Id);
-- Called from Build_Record_Checks.
-- Process an index constraint in a constrained array declaration.
-- The constraint can be a subtype name, or a range with or without
-- an explicit subtype mark. The index is the corresponding index of the
-- unconstrained array. S is the range expression. Check_List is a list
-- to which the check actions are appended.
function Parent_Subtype_Renaming_Discrims return Boolean;
-- Returns True for base types N that rename discriminants, else False
function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
-- Determines whether a record initialization procedure needs to be
-- generated for the given record type.
----------------------
-- Build_Assignment --
----------------------
function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
Exp : Node_Id := N;
Lhs : Node_Id;
Typ : constant Entity_Id := Underlying_Type (Etype (Id));
Kind : Node_Kind := Nkind (N);
Res : List_Id;
begin
Loc := Sloc (N);
Lhs :=
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name => New_Occurrence_Of (Id, Loc));
Set_Assignment_OK (Lhs);
-- Case of an access attribute applied to the current instance.
-- Replace the reference to the type by a reference to the actual
-- object. (Note that this handles the case of the top level of
-- the expression being given by such an attribute, but does not
-- cover uses nested within an initial value expression. Nested
-- uses are unlikely to occur in practice, but are theoretically
-- possible. It is not clear how to handle them without fully
-- traversing the expression. ???
if Kind = N_Attribute_Reference
and then (Attribute_Name (N) = Name_Unchecked_Access
or else
Attribute_Name (N) = Name_Unrestricted_Access)
and then Is_Entity_Name (Prefix (N))
and then Is_Type (Entity (Prefix (N)))
and then Entity (Prefix (N)) = Rec_Type
then
Exp :=
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Attribute_Name => Name_Unrestricted_Access);
end if;
-- Ada 2005 (AI-231): Add the run-time check if required
if Ada_Version >= Ada_05
and then Can_Never_Be_Null (Etype (Id)) -- Lhs
then
if Nkind (Exp) = N_Null then
return New_List (
Make_Raise_Constraint_Error (Sloc (Exp),
Reason => CE_Null_Not_Allowed));
elsif Present (Etype (Exp))
and then not Can_Never_Be_Null (Etype (Exp))
then
Install_Null_Excluding_Check (Exp);
end if;
end if;
-- Take a copy of Exp to ensure that later copies of this
-- component_declaration in derived types see the original tree,
-- not a node rewritten during expansion of the init_proc.
Exp := New_Copy_Tree (Exp);
Res := New_List (
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Exp));
Set_No_Ctrl_Actions (First (Res));
-- Adjust the tag if tagged (because of possible view conversions).
-- Suppress the tag adjustment when Java_VM because JVM tags are
-- represented implicitly in objects.
if Is_Tagged_Type (Typ) and then not Java_VM then
Append_To (Res,
Make_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Lhs),
Selector_Name =>
New_Reference_To (First_Tag_Component (Typ), Loc)),
Expression =>
Unchecked_Convert_To (RTE (RE_Tag),
New_Reference_To
(Node (First_Elmt (Access_Disp_Table (Typ))), Loc))));
end if;
-- Adjust the component if controlled except if it is an
-- aggregate that will be expanded inline
if Kind = N_Qualified_Expression then
Kind := Nkind (Expression (N));
end if;
if Controlled_Type (Typ)
and then not (Kind = N_Aggregate or else Kind = N_Extension_Aggregate)
then
Append_List_To (Res,
Make_Adjust_Call (
Ref => New_Copy_Tree (Lhs),
Typ => Etype (Id),
Flist_Ref =>
Find_Final_List (Etype (Id), New_Copy_Tree (Lhs)),
With_Attach => Make_Integer_Literal (Loc, 1)));
end if;
return Res;
exception
when RE_Not_Available =>
return Empty_List;
end Build_Assignment;
------------------------------------
-- Build_Discriminant_Assignments --
------------------------------------
procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
D : Entity_Id;
Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
begin
if Has_Discriminants (Rec_Type)
and then not Is_Unchecked_Union (Rec_Type)
then
D := First_Discriminant (Rec_Type);
while Present (D) loop
-- Don't generate the assignment for discriminants in derived
-- tagged types if the discriminant is a renaming of some
-- ancestor discriminant. This initialization will be done
-- when initializing the _parent field of the derived record.
if Is_Tagged and then
Present (Corresponding_Discriminant (D))
then
null;
else
Loc := Sloc (D);
Append_List_To (Statement_List,
Build_Assignment (D,
New_Reference_To (Discriminal (D), Loc)));
end if;
Next_Discriminant (D);
end loop;
end if;
end Build_Discriminant_Assignments;
--------------------------
-- Build_Init_Call_Thru --
--------------------------
function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
Parent_Proc : constant Entity_Id :=
Base_Init_Proc (Etype (Rec_Type));
Parent_Type : constant Entity_Id :=
Etype (First_Formal (Parent_Proc));
Uparent_Type : constant Entity_Id :=
Underlying_Type (Parent_Type);
First_Discr_Param : Node_Id;
Parent_Discr : Entity_Id;
First_Arg : Node_Id;
Args : List_Id;
Arg : Node_Id;
Res : List_Id;
begin
-- First argument (_Init) is the object to be initialized.
-- ??? not sure where to get a reasonable Loc for First_Arg
First_Arg :=
OK_Convert_To (Parent_Type,
New_Reference_To (Defining_Identifier (First (Parameters)), Loc));
Set_Etype (First_Arg, Parent_Type);
Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
-- In the tasks case,
-- add _Master as the value of the _Master parameter
-- add _Chain as the value of the _Chain parameter.
-- add _Task_Name as the value of the _Task_Name parameter.
-- At the outer level, these will be variables holding the
-- corresponding values obtained from GNARL or the expander.
--
-- At inner levels, they will be the parameters passed down through
-- the outer routines.
First_Discr_Param := Next (First (Parameters));
if Has_Task (Rec_Type) then
if Restriction_Active (No_Task_Hierarchy) then
-- See comments in System.Tasking.Initialization.Init_RTS
-- for the value 3.
Append_To (Args, Make_Integer_Literal (Loc, 3));
else
Append_To (Args, Make_Identifier (Loc, Name_uMaster));
end if;
Append_To (Args, Make_Identifier (Loc, Name_uChain));
Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
First_Discr_Param := Next (Next (Next (First_Discr_Param)));
end if;
-- Append discriminant values
if Has_Discriminants (Uparent_Type) then
pragma Assert (not Is_Tagged_Type (Uparent_Type));
Parent_Discr := First_Discriminant (Uparent_Type);
while Present (Parent_Discr) loop
-- Get the initial value for this discriminant
-- ??? needs to be cleaned up to use parent_Discr_Constr
-- directly.
declare
Discr_Value : Elmt_Id :=
First_Elmt
(Stored_Constraint (Rec_Type));
Discr : Entity_Id :=
First_Stored_Discriminant (Uparent_Type);
begin
while Original_Record_Component (Parent_Discr) /= Discr loop
Next_Stored_Discriminant (Discr);
Next_Elmt (Discr_Value);
end loop;
Arg := Node (Discr_Value);
end;
-- Append it to the list
if Nkind (Arg) = N_Identifier
and then Ekind (Entity (Arg)) = E_Discriminant
then
Append_To (Args,
New_Reference_To (Discriminal (Entity (Arg)), Loc));
-- Case of access discriminants. We replace the reference
-- to the type by a reference to the actual object
-- ??? why is this code deleted without comment
-- elsif Nkind (Arg) = N_Attribute_Reference
-- and then Is_Entity_Name (Prefix (Arg))
-- and then Is_Type (Entity (Prefix (Arg)))
-- then
-- Append_To (Args,
-- Make_Attribute_Reference (Loc,
-- Prefix => New_Copy (Prefix (Id_Ref)),
-- Attribute_Name => Name_Unrestricted_Access));
else
Append_To (Args, New_Copy (Arg));
end if;
Next_Discriminant (Parent_Discr);
end loop;
end if;
Res :=
New_List (
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Parent_Proc, Loc),
Parameter_Associations => Args));
return Res;
end Build_Init_Call_Thru;
-----------------------------------
-- Build_Offset_To_Top_Functions --
-----------------------------------
procedure Build_Offset_To_Top_Functions is
ADT : Elmt_Id;
Body_Node : Node_Id;
Func_Id : Entity_Id;
Spec_Node : Node_Id;
E : Entity_Id;
procedure Build_Offset_To_Top_Internal (Typ : Entity_Id);
-- Internal subprogram used to recursively traverse all the ancestors
----------------------------------
-- Build_Offset_To_Top_Internal --
----------------------------------
procedure Build_Offset_To_Top_Internal (Typ : Entity_Id) is
begin
-- Climb to the ancestor (if any) handling private types
if Present (Full_View (Etype (Typ))) then
if Full_View (Etype (Typ)) /= Typ then
Build_Offset_To_Top_Internal (Full_View (Etype (Typ)));
end if;
elsif Etype (Typ) /= Typ then
Build_Offset_To_Top_Internal (Etype (Typ));
end if;
if Present (Abstract_Interfaces (Typ))
and then not Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
then
E := First_Entity (Typ);
while Present (E) loop
if Is_Tag (E)
and then Chars (E) /= Name_uTag
then
if Typ = Rec_Type then
Body_Node := New_Node (N_Subprogram_Body, Loc);
Func_Id := Make_Defining_Identifier (Loc,
New_Internal_Name ('F'));
Set_DT_Offset_To_Top_Func (E, Func_Id);
Spec_Node := New_Node (N_Function_Specification, Loc);
Set_Defining_Unit_Name (Spec_Node, Func_Id);
Set_Parameter_Specifications (Spec_Node, New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uO),
In_Present => True,
Parameter_Type => New_Reference_To (Typ, Loc))));
Set_Result_Definition (Spec_Node,
New_Reference_To (RTE (RE_Storage_Offset), Loc));
Set_Specification (Body_Node, Spec_Node);
Set_Declarations (Body_Node, New_List);
Set_Handled_Statement_Sequence (Body_Node,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Return_Statement (Loc,
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc,
Name_uO),
Selector_Name => New_Reference_To
(E, Loc)),
Attribute_Name => Name_Position)))));
Set_Ekind (Func_Id, E_Function);
Set_Mechanism (Func_Id, Default_Mechanism);
Set_Is_Internal (Func_Id, True);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Func_Id);
end if;
Analyze (Body_Node);
Append_Freeze_Action (Rec_Type, Body_Node);
end if;
Next_Elmt (ADT);
end if;
Next_Entity (E);
end loop;
end if;
end Build_Offset_To_Top_Internal;
-- Start of processing for Build_Offset_To_Top_Functions
begin
if Etype (Rec_Type) = Rec_Type
or else not Has_Discriminants (Etype (Rec_Type))
or else No (Abstract_Interfaces (Rec_Type))
or else Is_Empty_Elmt_List (Abstract_Interfaces (Rec_Type))
then
return;
end if;
-- Skip the first _Tag, which is the main tag of the
-- tagged type. Following tags correspond with abstract
-- interfaces.
ADT := Next_Elmt (First_Elmt (Access_Disp_Table (Rec_Type)));
-- Handle private types
if Present (Full_View (Rec_Type)) then
Build_Offset_To_Top_Internal (Full_View (Rec_Type));
else
Build_Offset_To_Top_Internal (Rec_Type);
end if;
end Build_Offset_To_Top_Functions;
--------------------------
-- Build_Init_Procedure --
--------------------------
procedure Build_Init_Procedure is
Body_Node : Node_Id;
Handled_Stmt_Node : Node_Id;
Parameters : List_Id;
Proc_Spec_Node : Node_Id;
Body_Stmts : List_Id;
Record_Extension_Node : Node_Id;
Init_Tag : Node_Id;
procedure Init_Secondary_Tags (Typ : Entity_Id);
-- Ada 2005 (AI-251): Initialize the tags of all the secondary
-- tables associated with abstract interface types
-------------------------
-- Init_Secondary_Tags --
-------------------------
procedure Init_Secondary_Tags (Typ : Entity_Id) is
ADT : Elmt_Id;
procedure Init_Secondary_Tags_Internal (Typ : Entity_Id);
-- Internal subprogram used to recursively climb to the root type
----------------------------------
-- Init_Secondary_Tags_Internal --
----------------------------------
procedure Init_Secondary_Tags_Internal (Typ : Entity_Id) is
Aux_N : Node_Id;
E : Entity_Id;
Iface : Entity_Id;
Prev_E : Entity_Id;
begin
-- Climb to the ancestor (if any) handling private types
if Present (Full_View (Etype (Typ))) then
if Full_View (Etype (Typ)) /= Typ then
Init_Secondary_Tags_Internal (Full_View (Etype (Typ)));
end if;
elsif Etype (Typ) /= Typ then
Init_Secondary_Tags_Internal (Etype (Typ));
end if;
if Present (Abstract_Interfaces (Typ))
and then not Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
then
E := First_Entity (Typ);
while Present (E) loop
if Is_Tag (E)
and then Chars (E) /= Name_uTag
then
Aux_N := Node (ADT);
pragma Assert (Present (Aux_N));
Iface := Find_Interface (Typ, E);
-- Initialize the pointer to the secondary DT
-- associated with the interface
Append_To (Body_Stmts,
Make_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name =>
New_Reference_To (E, Loc)),
Expression =>
New_Reference_To (Aux_N, Loc)));
-- Issue error if Set_Offset_To_Top is not available
-- in a configurable run-time environment.
if not RTE_Available (RE_Set_Offset_To_Top) then
Error_Msg_CRT ("abstract interface types", Typ);
return;
end if;
-- We generate a different call to Set_Offset_To_Top
-- when the parent of the type has discriminants
if Typ /= Etype (Typ)
and then Has_Discriminants (Etype (Typ))
then
pragma Assert (Present (DT_Offset_To_Top_Func (E)));
-- Generate:
-- Set_Offset_To_Top
-- (This => Init,
-- Interface_T => Iface'Tag,
-- Is_Constant => False,
-- Offset_Value => n,
-- Offset_Func => Fn'Address)
Append_To (Body_Stmts,
Make_Procedure_Call_Statement (Loc,
Name => New_Reference_To
(RTE (RE_Set_Offset_To_Top), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc,
Name_uInit),
Attribute_Name => Name_Address),
Unchecked_Convert_To (RTE (RE_Tag),
New_Reference_To
(Node (First_Elmt
(Access_Disp_Table (Iface))),
Loc)),
New_Occurrence_Of (Standard_False, Loc),
Unchecked_Convert_To (RTE (RE_Storage_Offset),
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc,
Name_uInit),
Selector_Name => New_Reference_To
(E, Loc)),
Attribute_Name => Name_Position)),
Unchecked_Convert_To (RTE (RE_Address),
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To
(DT_Offset_To_Top_Func (E),
Loc),
Attribute_Name =>
Name_Address)))));
-- In this case the next component stores the value
-- of the offset to the top
Prev_E := E;
Next_Entity (E);
pragma Assert (Present (E));
Append_To (Body_Stmts,
Make_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc,
Name_uInit),
Selector_Name =>
New_Reference_To (E, Loc)),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc,
Name_uInit),
Selector_Name => New_Reference_To
(Prev_E, Loc)),
Attribute_Name => Name_Position)));
-- Normal case: No discriminants in the parent type
else
-- Generate:
-- Set_Offset_To_Top
-- (This => Init,
-- Interface_T => Iface'Tag,
-- Is_Constant => True,
-- Offset_Value => n,
-- Offset_Func => null);
Append_To (Body_Stmts,
Make_Procedure_Call_Statement (Loc,
Name => New_Reference_To
(RTE (RE_Set_Offset_To_Top), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Attribute_Name => Name_Address),
Unchecked_Convert_To (RTE (RE_Tag),
New_Reference_To
(Node (First_Elmt
(Access_Disp_Table (Iface))),
Loc)),
New_Occurrence_Of (Standard_True, Loc),
Unchecked_Convert_To (RTE (RE_Storage_Offset),
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc,
Name_uInit),
Selector_Name => New_Reference_To
(E, Loc)),
Attribute_Name => Name_Position)),
New_Reference_To
(RTE (RE_Null_Address), Loc))));
end if;
Next_Elmt (ADT);
end if;
Next_Entity (E);
end loop;
end if;
end Init_Secondary_Tags_Internal;
-- Start of processing for Init_Secondary_Tags
begin
-- Skip the first _Tag, which is the main tag of the
-- tagged type. Following tags correspond with abstract
-- interfaces.
ADT := Next_Elmt (First_Elmt (Access_Disp_Table (Typ)));
-- Handle private types
if Present (Full_View (Typ)) then
Init_Secondary_Tags_Internal (Full_View (Typ));
else
Init_Secondary_Tags_Internal (Typ);
end if;
end Init_Secondary_Tags;
-- Start of processing for Build_Init_Procedure
begin
Body_Stmts := New_List;
Body_Node := New_Node (N_Subprogram_Body, Loc);
Proc_Id :=
Make_Defining_Identifier (Loc,
Chars => Make_Init_Proc_Name (Rec_Type));
Set_Ekind (Proc_Id, E_Procedure);
Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
Parameters := Init_Formals (Rec_Type);
Append_List_To (Parameters,
Build_Discriminant_Formals (Rec_Type, True));
-- For tagged types, we add a flag to indicate whether the routine
-- is called to initialize a parent component in the init_proc of
-- a type extension. If the flag is false, we do not set the tag
-- because it has been set already in the extension.
if Is_Tagged_Type (Rec_Type)
and then not Is_CPP_Class (Rec_Type)
then
Set_Tag :=
Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
Append_To (Parameters,
Make_Parameter_Specification (Loc,
Defining_Identifier => Set_Tag,
Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
Expression => New_Occurrence_Of (Standard_True, Loc)));
end if;
Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
Set_Specification (Body_Node, Proc_Spec_Node);
Set_Declarations (Body_Node, New_List);
if Parent_Subtype_Renaming_Discrims then
-- N is a Derived_Type_Definition that renames the parameters
-- of the ancestor type. We initialize it by expanding our
-- discriminants and call the ancestor _init_proc with a
-- type-converted object
Append_List_To (Body_Stmts,
Build_Init_Call_Thru (Parameters));
elsif Nkind (Type_Definition (N)) = N_Record_Definition then
Build_Discriminant_Assignments (Body_Stmts);
if not Null_Present (Type_Definition (N)) then
Append_List_To (Body_Stmts,
Build_Init_Statements (
Component_List (Type_Definition (N))));
end if;
else
-- N is a Derived_Type_Definition with a possible non-empty
-- extension. The initialization of a type extension consists
-- in the initialization of the components in the extension.
Build_Discriminant_Assignments (Body_Stmts);
Record_Extension_Node :=
Record_Extension_Part (Type_Definition (N));
if not Null_Present (Record_Extension_Node) then
declare
Stmts : constant List_Id :=
Build_Init_Statements (
Component_List (Record_Extension_Node));
begin
-- The parent field must be initialized first because
-- the offset of the new discriminants may depend on it
Prepend_To (Body_Stmts, Remove_Head (Stmts));
Append_List_To (Body_Stmts, Stmts);
end;
end if;
end if;
-- Add here the assignment to instantiate the Tag
-- The assignement corresponds to the code:
-- _Init._Tag := Typ'Tag;
-- Suppress the tag assignment when Java_VM because JVM tags are
-- represented implicitly in objects. It is also suppressed in
-- case of CPP_Class types because in this case the tag is
-- initialized in the C++ side.
if Is_Tagged_Type (Rec_Type)
and then not Is_CPP_Class (Rec_Type)
and then not Java_VM
then
Init_Tag :=
Make_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name =>
New_Reference_To (First_Tag_Component (Rec_Type), Loc)),
Expression =>
New_Reference_To
(Node (First_Elmt (Access_Disp_Table (Rec_Type))), Loc));
-- The tag must be inserted before the assignments to other
-- components, because the initial value of the component may
-- depend ot the tag (eg. through a dispatching operation on
-- an access to the current type). The tag assignment is not done
-- when initializing the parent component of a type extension,
-- because in that case the tag is set in the extension.
-- Extensions of imported C++ classes add a final complication,
-- because we cannot inhibit tag setting in the constructor for
-- the parent. In that case we insert the tag initialization
-- after the calls to initialize the parent.
Init_Tag :=
Make_If_Statement (Loc,
Condition => New_Occurrence_Of (Set_Tag, Loc),
Then_Statements => New_List (Init_Tag));
if not Is_CPP_Class (Etype (Rec_Type)) then
Prepend_To (Body_Stmts, Init_Tag);
-- Ada 2005 (AI-251): Initialization of all the tags
-- corresponding with abstract interfaces
if Ada_Version >= Ada_05
and then not Is_Interface (Rec_Type)
then
Init_Secondary_Tags (Rec_Type);
end if;
else
declare
Nod : Node_Id := First (Body_Stmts);
begin
-- We assume the first init_proc call is for the parent
while Present (Next (Nod))
and then (Nkind (Nod) /= N_Procedure_Call_Statement
or else not Is_Init_Proc (Name (Nod)))
loop
Nod := Next (Nod);
end loop;
Insert_After (Nod, Init_Tag);
end;
end if;
end if;
Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
Set_Statements (Handled_Stmt_Node, Body_Stmts);
Set_Exception_Handlers (Handled_Stmt_Node, No_List);
Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Proc_Id);
end if;
-- Associate Init_Proc with type, and determine if the procedure
-- is null (happens because of the Initialize_Scalars pragma case,
-- where we have to generate a null procedure in case it is called
-- by a client with Initialize_Scalars set). Such procedures have
-- to be generated, but do not have to be called, so we mark them
-- as null to suppress the call.
Set_Init_Proc (Rec_Type, Proc_Id);
if List_Length (Body_Stmts) = 1
and then Nkind (First (Body_Stmts)) = N_Null_Statement
then
Set_Is_Null_Init_Proc (Proc_Id);
end if;
end Build_Init_Procedure;
---------------------------
-- Build_Init_Statements --
---------------------------
function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
Check_List : constant List_Id := New_List;
Alt_List : List_Id;
Statement_List : List_Id;
Stmts : List_Id;
Per_Object_Constraint_Components : Boolean;
Decl : Node_Id;
Variant : Node_Id;
Id : Entity_Id;
Typ : Entity_Id;
function Has_Access_Constraint (E : Entity_Id) return Boolean;
-- Components with access discriminants that depend on the current
-- instance must be initialized after all other components.
---------------------------
-- Has_Access_Constraint --
---------------------------
function Has_Access_Constraint (E : Entity_Id) return Boolean is
Disc : Entity_Id;
T : constant Entity_Id := Etype (E);
begin
if Has_Per_Object_Constraint (E)
and then Has_Discriminants (T)
then
Disc := First_Discriminant (T);
while Present (Disc) loop
if Is_Access_Type (Etype (Disc)) then
return True;
end if;
Next_Discriminant (Disc);
end loop;
return False;
else
return False;
end if;
end Has_Access_Constraint;
-- Start of processing for Build_Init_Statements
begin
if Null_Present (Comp_List) then
return New_List (Make_Null_Statement (Loc));
end if;
Statement_List := New_List;
-- Loop through components, skipping pragmas, in 2 steps. The first
-- step deals with regular components. The second step deals with
-- components have per object constraints, and no explicit initia-
-- lization.
Per_Object_Constraint_Components := False;
-- First step : regular components
Decl := First_Non_Pragma (Component_Items (Comp_List));
while Present (Decl) loop
Loc := Sloc (Decl);
Build_Record_Checks
(Subtype_Indication (Component_Definition (Decl)), Check_List);
Id := Defining_Identifier (Decl);
Typ := Etype (Id);
if Has_Access_Constraint (Id)
and then No (Expression (Decl))
then
-- Skip processing for now and ask for a second pass
Per_Object_Constraint_Components := True;
else
-- Case of explicit initialization
if Present (Expression (Decl)) then
Stmts := Build_Assignment (Id, Expression (Decl));
-- Case of composite component with its own Init_Proc
elsif not Is_Interface (Typ)
and then Has_Non_Null_Base_Init_Proc (Typ)
then
Stmts :=
Build_Initialization_Call
(Loc,
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name => New_Occurrence_Of (Id, Loc)),
Typ,
True,
Rec_Type,
Discr_Map => Discr_Map);
-- Case of component needing simple initialization
elsif Component_Needs_Simple_Initialization (Typ) then
Stmts :=
Build_Assignment
(Id, Get_Simple_Init_Val (Typ, Loc, Esize (Id)));
-- Nothing needed for this case
else
Stmts := No_List;
end if;
if Present (Check_List) then
Append_List_To (Statement_List, Check_List);
end if;
if Present (Stmts) then
-- Add the initialization of the record controller before
-- the _Parent field is attached to it when the attachment
-- can occur. It does not work to simply initialize the
-- controller first: it must be initialized after the parent
-- if the parent holds discriminants that can be used
-- to compute the offset of the controller. We assume here
-- that the last statement of the initialization call is the
-- attachement of the parent (see Build_Initialization_Call)
if Chars (Id) = Name_uController
and then Rec_Type /= Etype (Rec_Type)
and then Has_Controlled_Component (Etype (Rec_Type))
and then Has_New_Controlled_Component (Rec_Type)
then
Insert_List_Before (Last (Statement_List), Stmts);
else
Append_List_To (Statement_List, Stmts);
end if;
end if;
end if;
Next_Non_Pragma (Decl);
end loop;
if Per_Object_Constraint_Components then
-- Second pass: components with per-object constraints
Decl := First_Non_Pragma (Component_Items (Comp_List));
while Present (Decl) loop
Loc := Sloc (Decl);
Id := Defining_Identifier (Decl);
Typ := Etype (Id);
if Has_Access_Constraint (Id)
and then No (Expression (Decl))
then
if Has_Non_Null_Base_Init_Proc (Typ) then
Append_List_To (Statement_List,
Build_Initialization_Call (Loc,
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name => New_Occurrence_Of (Id, Loc)),
Typ, True, Rec_Type, Discr_Map => Discr_Map));
elsif Component_Needs_Simple_Initialization (Typ) then
Append_List_To (Statement_List,
Build_Assignment
(Id, Get_Simple_Init_Val (Typ, Loc, Esize (Id))));
end if;
end if;
Next_Non_Pragma (Decl);
end loop;
end if;
-- Process the variant part
if Present (Variant_Part (Comp_List)) then
Alt_List := New_List;
Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
while Present (Variant) loop
Loc := Sloc (Variant);
Append_To (Alt_List,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices =>
New_Copy_List (Discrete_Choices (Variant)),
Statements =>
Build_Init_Statements (Component_List (Variant))));
Next_Non_Pragma (Variant);
end loop;
-- The expression of the case statement which is a reference
-- to one of the discriminants is replaced by the appropriate
-- formal parameter of the initialization procedure.
Append_To (Statement_List,
Make_Case_Statement (Loc,
Expression =>
New_Reference_To (Discriminal (
Entity (Name (Variant_Part (Comp_List)))), Loc),
Alternatives => Alt_List));
end if;
-- For a task record type, add the task create call and calls
-- to bind any interrupt (signal) entries.
if Is_Task_Record_Type (Rec_Type) then
-- In the case of the restricted run time the ATCB has already
-- been preallocated.
if Restricted_Profile then
Append_To (Statement_List,
Make_Assignment_Statement (Loc,
Name => Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
Expression => Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name =>
Make_Identifier (Loc, Name_uATCB)),
Attribute_Name => Name_Unchecked_Access)));
end if;
Append_To (Statement_List, Make_Task_Create_Call (Rec_Type));
declare
Task_Type : constant Entity_Id :=
Corresponding_Concurrent_Type (Rec_Type);
Task_Decl : constant Node_Id := Parent (Task_Type);
Task_Def : constant Node_Id := Task_Definition (Task_Decl);
Vis_Decl : Node_Id;
Ent : Entity_Id;
begin
if Present (Task_Def) then
Vis_Decl := First (Visible_Declarations (Task_Def));
while Present (Vis_Decl) loop
Loc := Sloc (Vis_Decl);
if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
if Get_Attribute_Id (Chars (Vis_Decl)) =
Attribute_Address
then
Ent := Entity (Name (Vis_Decl));
if Ekind (Ent) = E_Entry then
Append_To (Statement_List,
Make_Procedure_Call_Statement (Loc,
Name => New_Reference_To (
RTE (RE_Bind_Interrupt_To_Entry), Loc),
Parameter_Associations => New_List (
Make_Selected_Component (Loc,
Prefix =>
Make_Identifier (Loc, Name_uInit),
Selector_Name =>
Make_Identifier (Loc, Name_uTask_Id)),
Entry_Index_Expression (
Loc, Ent, Empty, Task_Type),
Expression (Vis_Decl))));
end if;
end if;
end if;
Next (Vis_Decl);
end loop;
end if;
end;
end if;
-- For a protected type, add statements generated by
-- Make_Initialize_Protection.
if Is_Protected_Record_Type (Rec_Type) then
Append_List_To (Statement_List,
Make_Initialize_Protection (Rec_Type));
end if;
-- If no initializations when generated for component declarations
-- corresponding to this Statement_List, append a null statement
-- to the Statement_List to make it a valid Ada tree.
if Is_Empty_List (Statement_List) then
Append (New_Node (N_Null_Statement, Loc), Statement_List);
end if;
return Statement_List;
exception
when RE_Not_Available =>
return Empty_List;
end Build_Init_Statements;
-------------------------
-- Build_Record_Checks --
-------------------------
procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
Subtype_Mark_Id : Entity_Id;
begin
if Nkind (S) = N_Subtype_Indication then
Find_Type (Subtype_Mark (S));
Subtype_Mark_Id := Entity (Subtype_Mark (S));
-- Remaining processing depends on type
case Ekind (Subtype_Mark_Id) is
when Array_Kind =>
Constrain_Array (S, Check_List);
when others =>
null;
end case;
end if;
end Build_Record_Checks;
-------------------------------------------
-- Component_Needs_Simple_Initialization --
-------------------------------------------
function Component_Needs_Simple_Initialization
(T : Entity_Id) return Boolean
is
begin
return
Needs_Simple_Initialization (T)
and then not Is_RTE (T, RE_Tag)
and then not Is_RTE (T, RE_Vtable_Ptr)
-- Ada 2005 (AI-251): Check also the tag of abstract interfaces
and then not Is_RTE (T, RE_Interface_Tag);
end Component_Needs_Simple_Initialization;
---------------------
-- Constrain_Array --
---------------------
procedure Constrain_Array
(SI : Node_Id;
Check_List : List_Id)
is
C : constant Node_Id := Constraint (SI);
Number_Of_Constraints : Nat := 0;
Index : Node_Id;
S, T : Entity_Id;
begin
T := Entity (Subtype_Mark (SI));
if Ekind (T) in Access_Kind then
T := Designated_Type (T);
end if;
S := First (Constraints (C));
while Present (S) loop
Number_Of_Constraints := Number_Of_Constraints + 1;
Next (S);
end loop;
-- In either case, the index constraint must provide a discrete
-- range for each index of the array type and the type of each
-- discrete range must be the same as that of the corresponding
-- index. (RM 3.6.1)
S := First (Constraints (C));
Index := First_Index (T);
Analyze (Index);
-- Apply constraints to each index type
for J in 1 .. Number_Of_Constraints loop
Constrain_Index (Index, S, Check_List);
Next (Index);
Next (S);
end loop;
end Constrain_Array;
---------------------
-- Constrain_Index --
---------------------
procedure Constrain_Index
(Index : Node_Id;
S : Node_Id;
Check_List : List_Id)
is
T : constant Entity_Id := Etype (Index);
begin
if Nkind (S) = N_Range then
Process_Range_Expr_In_Decl (S, T, Check_List);
end if;
end Constrain_Index;
--------------------------------------
-- Parent_Subtype_Renaming_Discrims --
--------------------------------------
function Parent_Subtype_Renaming_Discrims return Boolean is
De : Entity_Id;
Dp : Entity_Id;
begin
if Base_Type (Pe) /= Pe then
return False;
end if;
if Etype (Pe) = Pe
or else not Has_Discriminants (Pe)
or else Is_Constrained (Pe)
or else Is_Tagged_Type (Pe)
then
return False;
end if;
-- If there are no explicit stored discriminants we have inherited
-- the root type discriminants so far, so no renamings occurred.
if First_Discriminant (Pe) = First_Stored_Discriminant (Pe) then
return False;
end if;
-- Check if we have done some trivial renaming of the parent
-- discriminants, i.e. someting like
--
-- type DT (X1,X2: int) is new PT (X1,X2);
De := First_Discriminant (Pe);
Dp := First_Discriminant (Etype (Pe));
while Present (De) loop
pragma Assert (Present (Dp));
if Corresponding_Discriminant (De) /= Dp then
return True;
end if;
Next_Discriminant (De);
Next_Discriminant (Dp);
end loop;
return Present (Dp);
end Parent_Subtype_Renaming_Discrims;
------------------------
-- Requires_Init_Proc --
------------------------
function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
Comp_Decl : Node_Id;
Id : Entity_Id;
Typ : Entity_Id;
begin
-- Definitely do not need one if specifically suppressed
if Suppress_Init_Proc (Rec_Id) then
return False;
end if;
-- If it is a type derived from a type with unknown discriminants,
-- we cannot build an initialization procedure for it.
if Has_Unknown_Discriminants (Rec_Id) then
return False;
end if;
-- Otherwise we need to generate an initialization procedure if
-- Is_CPP_Class is False and at least one of the following applies:
-- 1. Discriminants are present, since they need to be initialized
-- with the appropriate discriminant constraint expressions.
-- However, the discriminant of an unchecked union does not
-- count, since the discriminant is not present.
-- 2. The type is a tagged type, since the implicit Tag component
-- needs to be initialized with a pointer to the dispatch table.
-- 3. The type contains tasks
-- 4. One or more components has an initial value
-- 5. One or more components is for a type which itself requires
-- an initialization procedure.
-- 6. One or more components is a type that requires simple
-- initialization (see Needs_Simple_Initialization), except
-- that types Tag and Interface_Tag are excluded, since fields
-- of these types are initialized by other means.
-- 7. The type is the record type built for a task type (since at
-- the very least, Create_Task must be called)
-- 8. The type is the record type built for a protected type (since
-- at least Initialize_Protection must be called)
-- 9. The type is marked as a public entity. The reason we add this
-- case (even if none of the above apply) is to properly handle
-- Initialize_Scalars. If a package is compiled without an IS
-- pragma, and the client is compiled with an IS pragma, then
-- the client will think an initialization procedure is present
-- and call it, when in fact no such procedure is required, but
-- since the call is generated, there had better be a routine
-- at the other end of the call, even if it does nothing!)
-- Note: the reason we exclude the CPP_Class case is because in this
-- case the initialization is performed in the C++ side.
if Is_CPP_Class (Rec_Id) then
return False;
elsif not Restriction_Active (No_Initialize_Scalars)
and then Is_Public (Rec_Id)
then
return True;
elsif (Has_Discriminants (Rec_Id)
and then not Is_Unchecked_Union (Rec_Id))
or else Is_Tagged_Type (Rec_Id)
or else Is_Concurrent_Record_Type (Rec_Id)
or else Has_Task (Rec_Id)
then
return True;
end if;
Id := First_Component (Rec_Id);
while Present (Id) loop
Comp_Decl := Parent (Id);
Typ := Etype (Id);
if Present (Expression (Comp_Decl))
or else Has_Non_Null_Base_Init_Proc (Typ)
or else Component_Needs_Simple_Initialization (Typ)
then
return True;
end if;
Next_Component (Id);
end loop;
return False;
end Requires_Init_Proc;
-- Start of processing for Build_Record_Init_Proc
begin
Rec_Type := Defining_Identifier (N);
-- This may be full declaration of a private type, in which case
-- the visible entity is a record, and the private entity has been
-- exchanged with it in the private part of the current package.
-- The initialization procedure is built for the record type, which
-- is retrievable from the private entity.
if Is_Incomplete_Or_Private_Type (Rec_Type) then
Rec_Type := Underlying_Type (Rec_Type);
end if;
-- If there are discriminants, build the discriminant map to replace
-- discriminants by their discriminals in complex bound expressions.
-- These only arise for the corresponding records of protected types.
if Is_Concurrent_Record_Type (Rec_Type)
and then Has_Discriminants (Rec_Type)
then
declare
Disc : Entity_Id;
begin
Disc := First_Discriminant (Rec_Type);
while Present (Disc) loop
Append_Elmt (Disc, Discr_Map);
Append_Elmt (Discriminal (Disc), Discr_Map);
Next_Discriminant (Disc);
end loop;
end;
end if;
-- Derived types that have no type extension can use the initialization
-- procedure of their parent and do not need a procedure of their own.
-- This is only correct if there are no representation clauses for the
-- type or its parent, and if the parent has in fact been frozen so
-- that its initialization procedure exists.
if Is_Derived_Type (Rec_Type)
and then not Is_Tagged_Type (Rec_Type)
and then not Is_Unchecked_Union (Rec_Type)
and then not Has_New_Non_Standard_Rep (Rec_Type)
and then not Parent_Subtype_Renaming_Discrims
and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
then
Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
-- Otherwise if we need an initialization procedure, then build one,
-- mark it as public and inlinable and as having a completion.
elsif Requires_Init_Proc (Rec_Type)
or else Is_Unchecked_Union (Rec_Type)
then
Build_Offset_To_Top_Functions;
Build_Init_Procedure;
Set_Is_Public (Proc_Id, Is_Public (Pe));
-- The initialization of protected records is not worth inlining.
-- In addition, when compiled for another unit for inlining purposes,
-- it may make reference to entities that have not been elaborated
-- yet. The initialization of controlled records contains a nested
-- clean-up procedure that makes it impractical to inline as well,
-- and leads to undefined symbols if inlined in a different unit.
-- Similar considerations apply to task types.
if not Is_Concurrent_Type (Rec_Type)
and then not Has_Task (Rec_Type)
and then not Controlled_Type (Rec_Type)
then
Set_Is_Inlined (Proc_Id);
end if;
Set_Is_Internal (Proc_Id);
Set_Has_Completion (Proc_Id);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Proc_Id);
end if;
end if;
end Build_Record_Init_Proc;
----------------------------
-- Build_Slice_Assignment --
----------------------------
-- Generates the following subprogram:
-- procedure Assign
-- (Source, Target : Array_Type,
-- Left_Lo, Left_Hi, Right_Lo, Right_Hi : Index;
-- Rev : Boolean)
-- is
-- Li1 : Index;
-- Ri1 : Index;
-- begin
-- if Rev then
-- Li1 := Left_Hi;
-- Ri1 := Right_Hi;
-- else
-- Li1 := Left_Lo;
-- Ri1 := Right_Lo;
-- end if;
-- loop
-- if Rev then
-- exit when Li1 < Left_Lo;
-- else
-- exit when Li1 > Left_Hi;
-- end if;
-- Target (Li1) := Source (Ri1);
-- if Rev then
-- Li1 := Index'pred (Li1);
-- Ri1 := Index'pred (Ri1);
-- else
-- Li1 := Index'succ (Li1);
-- Ri1 := Index'succ (Ri1);
-- end if;
-- end loop;
-- end Assign;
procedure Build_Slice_Assignment (Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
-- Build formal parameters of procedure
Larray : constant Entity_Id :=
Make_Defining_Identifier
(Loc, Chars => New_Internal_Name ('A'));
Rarray : constant Entity_Id :=
Make_Defining_Identifier
(Loc, Chars => New_Internal_Name ('R'));
Left_Lo : constant Entity_Id :=
Make_Defining_Identifier
(Loc, Chars => New_Internal_Name ('L'));
Left_Hi : constant Entity_Id :=
Make_Defining_Identifier
(Loc, Chars => New_Internal_Name ('L'));
Right_Lo : constant Entity_Id :=
Make_Defining_Identifier
(Loc, Chars => New_Internal_Name ('R'));
Right_Hi : constant Entity_Id :=
Make_Defining_Identifier
(Loc, Chars => New_Internal_Name ('R'));
Rev : constant Entity_Id :=
Make_Defining_Identifier
(Loc, Chars => New_Internal_Name ('D'));
Proc_Name : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));
Lnn : constant Entity_Id :=
Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
Rnn : constant Entity_Id :=
Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
-- Subscripts for left and right sides
Decls : List_Id;
Loops : Node_Id;
Stats : List_Id;
begin
-- Build declarations for indices
Decls := New_List;
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Lnn,
Object_Definition =>
New_Occurrence_Of (Index, Loc)));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition =>
New_Occurrence_Of (Index, Loc)));
Stats := New_List;
-- Build initializations for indices
declare
F_Init : constant List_Id := New_List;
B_Init : constant List_Id := New_List;
begin
Append_To (F_Init,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Lnn, Loc),
Expression => New_Occurrence_Of (Left_Lo, Loc)));
Append_To (F_Init,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Rnn, Loc),
Expression => New_Occurrence_Of (Right_Lo, Loc)));
Append_To (B_Init,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Lnn, Loc),
Expression => New_Occurrence_Of (Left_Hi, Loc)));
Append_To (B_Init,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Rnn, Loc),
Expression => New_Occurrence_Of (Right_Hi, Loc)));
Append_To (Stats,
Make_If_Statement (Loc,
Condition => New_Occurrence_Of (Rev, Loc),
Then_Statements => B_Init,
Else_Statements => F_Init));
end;
-- Now construct the assignment statement
Loops :=
Make_Loop_Statement (Loc,
Statements => New_List (
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Larray, Loc),
Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
Expression =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Rarray, Loc),
Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
End_Label => Empty);
-- Build exit condition
declare
F_Ass : constant List_Id := New_List;
B_Ass : constant List_Id := New_List;
begin
Append_To (F_Ass,
Make_Exit_Statement (Loc,
Condition =>
Make_Op_Gt (Loc,
Left_Opnd => New_Occurrence_Of (Lnn, Loc),
Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));
Append_To (B_Ass,
Make_Exit_Statement (Loc,
Condition =>
Make_Op_Lt (Loc,
Left_Opnd => New_Occurrence_Of (Lnn, Loc),
Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));
Prepend_To (Statements (Loops),
Make_If_Statement (Loc,
Condition => New_Occurrence_Of (Rev, Loc),
Then_Statements => B_Ass,
Else_Statements => F_Ass));
end;
-- Build the increment/decrement statements
declare
F_Ass : constant List_Id := New_List;
B_Ass : constant List_Id := New_List;
begin
Append_To (F_Ass,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Lnn, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Index, Loc),
Attribute_Name => Name_Succ,
Expressions => New_List (
New_Occurrence_Of (Lnn, Loc)))));
Append_To (F_Ass,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Rnn, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Index, Loc),
Attribute_Name => Name_Succ,
Expressions => New_List (
New_Occurrence_Of (Rnn, Loc)))));
Append_To (B_Ass,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Lnn, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Index, Loc),
Attribute_Name => Name_Pred,
Expressions => New_List (
New_Occurrence_Of (Lnn, Loc)))));
Append_To (B_Ass,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Rnn, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Index, Loc),
Attribute_Name => Name_Pred,
Expressions => New_List (
New_Occurrence_Of (Rnn, Loc)))));
Append_To (Statements (Loops),
Make_If_Statement (Loc,
Condition => New_Occurrence_Of (Rev, Loc),
Then_Statements => B_Ass,
Else_Statements => F_Ass));
end;
Append_To (Stats, Loops);
declare
Spec : Node_Id;
Formals : List_Id := New_List;
begin
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Larray,
Out_Present => True,
Parameter_Type =>
New_Reference_To (Base_Type (Typ), Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Rarray,
Parameter_Type =>
New_Reference_To (Base_Type (Typ), Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Left_Lo,
Parameter_Type =>
New_Reference_To (Index, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Left_Hi,
Parameter_Type =>
New_Reference_To (Index, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Right_Lo,
Parameter_Type =>
New_Reference_To (Index, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Right_Hi,
Parameter_Type =>
New_Reference_To (Index, Loc)));
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier => Rev,
Parameter_Type =>
New_Reference_To (Standard_Boolean, Loc)));
Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Name,
Parameter_Specifications => Formals);
Discard_Node (
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stats)));
end;
Set_TSS (Typ, Proc_Name);
Set_Is_Pure (Proc_Name);
end Build_Slice_Assignment;
------------------------------------
-- Build_Variant_Record_Equality --
------------------------------------
-- Generates:
-- function _Equality (X, Y : T) return Boolean is
-- begin
-- -- Compare discriminants
-- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
-- return False;
-- end if;
-- -- Compare components
-- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
-- return False;
-- end if;
-- -- Compare variant part
-- case X.D1 is
-- when V1 =>
-- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
-- return False;
-- end if;
-- ...
-- when Vn =>
-- if False or else X.Cn /= Y.Cn then
-- return False;
-- end if;
-- end case;
-- return True;
-- end _Equality;
procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
F : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));
X : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => Name_X);
Y : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => Name_Y);
Def : constant Node_Id := Parent (Typ);
Comps : constant Node_Id := Component_List (Type_Definition (Def));
Stmts : constant List_Id := New_List;
Pspecs : constant List_Id := New_List;
begin
-- Derived Unchecked_Union types no longer inherit the equality function
-- of their parent.
if Is_Derived_Type (Typ)
and then not Is_Unchecked_Union (Typ)
and then not Has_New_Non_Standard_Rep (Typ)
then
declare
Parent_Eq : constant Entity_Id :=
TSS (Root_Type (Typ), TSS_Composite_Equality);
begin
if Present (Parent_Eq) then
Copy_TSS (Parent_Eq, Typ);
return;
end if;
end;
end if;
Discard_Node (
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => F,
Parameter_Specifications => Pspecs,
Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts)));
Append_To (Pspecs,
Make_Parameter_Specification (Loc,
Defining_Identifier => X,
Parameter_Type => New_Reference_To (Typ, Loc)));
Append_To (Pspecs,
Make_Parameter_Specification (Loc,
Defining_Identifier => Y,
Parameter_Type => New_Reference_To (Typ, Loc)));
-- Unchecked_Unions require additional machinery to support equality.
-- Two extra parameters (A and B) are added to the equality function
-- parameter list in order to capture the inferred values of the
-- discriminants in later calls.
if Is_Unchecked_Union (Typ) then
declare
Discr_Type : constant Node_Id := Etype (First_Discriminant (Typ));
A : constant Node_Id :=
Make_Defining_Identifier (Loc,
Chars => Name_A);
B : constant Node_Id :=
Make_Defining_Identifier (Loc,
Chars => Name_B);
begin
-- Add A and B to the parameter list
Append_To (Pspecs,
Make_Parameter_Specification (Loc,
Defining_Identifier => A,
Parameter_Type => New_Reference_To (Discr_Type, Loc)));
Append_To (Pspecs,
Make_Parameter_Specification (Loc,
Defining_Identifier => B,
Parameter_Type => New_Reference_To (Discr_Type, Loc)));
-- Generate the following header code to compare the inferred
-- discriminants:
-- if a /= b then
-- return False;
-- end if;
Append_To (Stmts,
Make_If_Statement (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Reference_To (A, Loc),
Right_Opnd => New_Reference_To (B, Loc)),
Then_Statements => New_List (
Make_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc)))));
-- Generate component-by-component comparison. Note that we must
-- propagate one of the inferred discriminant formals to act as
-- the case statement switch.
Append_List_To (Stmts,
Make_Eq_Case (Typ, Comps, A));
end;
-- Normal case (not unchecked union)
else
Append_To (Stmts,
Make_Eq_If (Typ,
Discriminant_Specifications (Def)));
Append_List_To (Stmts,
Make_Eq_Case (Typ, Comps));
end if;
Append_To (Stmts,
Make_Return_Statement (Loc,
Expression => New_Reference_To (Standard_True, Loc)));
Set_TSS (Typ, F);
Set_Is_Pure (F);
if not Debug_Generated_Code then
Set_Debug_Info_Off (F);
end if;
end Build_Variant_Record_Equality;
-----------------------------
-- Check_Stream_Attributes --
-----------------------------
procedure Check_Stream_Attributes (Typ : Entity_Id) is
Comp : Entity_Id;
Par_Read : constant Boolean :=
Stream_Attribute_Available (Typ, TSS_Stream_Read)
and then not Has_Specified_Stream_Read (Typ);
Par_Write : constant Boolean :=
Stream_Attribute_Available (Typ, TSS_Stream_Write)
and then not Has_Specified_Stream_Write (Typ);
procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type);
-- Check that Comp has a user-specified Nam stream attribute
----------------
-- Check_Attr --
----------------
procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is
begin
if not Stream_Attribute_Available (Etype (Comp), TSS_Nam) then
Error_Msg_Name_1 := Nam;
Error_Msg_N
("|component& in limited extension must have% attribute", Comp);
end if;
end Check_Attr;
-- Start of processing for Check_Stream_Attributes
begin
if Par_Read or else Par_Write then
Comp := First_Component (Typ);
while Present (Comp) loop
if Comes_From_Source (Comp)
and then Original_Record_Component (Comp) = Comp
and then Is_Limited_Type (Etype (Comp))
then
if Par_Read then
Check_Attr (Name_Read, TSS_Stream_Read);
end if;
if Par_Write then
Check_Attr (Name_Write, TSS_Stream_Write);
end if;
end if;
Next_Component (Comp);
end loop;
end if;
end Check_Stream_Attributes;
-----------------------------
-- Expand_Record_Extension --
-----------------------------
-- Add a field _parent at the beginning of the record extension. This is
-- used to implement inheritance. Here are some examples of expansion:
-- 1. no discriminants
-- type T2 is new T1 with null record;
-- gives
-- type T2 is new T1 with record
-- _Parent : T1;
-- end record;
-- 2. renamed discriminants
-- type T2 (B, C : Int) is new T1 (A => B) with record
-- _Parent : T1 (A => B);
-- D : Int;
-- end;
-- 3. inherited discriminants
-- type T2 is new T1 with record -- discriminant A inherited
-- _Parent : T1 (A);
-- D : Int;
-- end;
procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
Indic : constant Node_Id := Subtype_Indication (Def);
Loc : constant Source_Ptr := Sloc (Def);
Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
Par_Subtype : Entity_Id;
Comp_List : Node_Id;
Comp_Decl : Node_Id;
Parent_N : Node_Id;
D : Entity_Id;
List_Constr : constant List_Id := New_List;
begin
-- Expand_Record_Extension is called directly from the semantics, so
-- we must check to see whether expansion is active before proceeding
if not Expander_Active then
return;
end if;
-- This may be a derivation of an untagged private type whose full
-- view is tagged, in which case the Derived_Type_Definition has no
-- extension part. Build an empty one now.
if No (Rec_Ext_Part) then
Rec_Ext_Part :=
Make_Record_Definition (Loc,
End_Label => Empty,
Component_List => Empty,
Null_Present => True);
Set_Record_Extension_Part (Def, Rec_Ext_Part);
Mark_Rewrite_Insertion (Rec_Ext_Part);
end if;
Comp_List := Component_List (Rec_Ext_Part);
Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
-- If the derived type inherits its discriminants the type of the
-- _parent field must be constrained by the inherited discriminants
if Has_Discriminants (T)
and then Nkind (Indic) /= N_Subtype_Indication
and then not Is_Constrained (Entity (Indic))
then
D := First_Discriminant (T);
while Present (D) loop
Append_To (List_Constr, New_Occurrence_Of (D, Loc));
Next_Discriminant (D);
end loop;
Par_Subtype :=
Process_Subtype (
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Entity (Indic), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => List_Constr)),
Def);
-- Otherwise the original subtype_indication is just what is needed
else
Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
end if;
Set_Parent_Subtype (T, Par_Subtype);
Comp_Decl :=
Make_Component_Declaration (Loc,
Defining_Identifier => Parent_N,
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Reference_To (Par_Subtype, Loc)));
if Null_Present (Rec_Ext_Part) then
Set_Component_List (Rec_Ext_Part,
Make_Component_List (Loc,
Component_Items => New_List (Comp_Decl),
Variant_Part => Empty,
Null_Present => False));
Set_Null_Present (Rec_Ext_Part, False);
elsif Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Set_Component_Items (Comp_List, New_List (Comp_Decl));
Set_Null_Present (Comp_List, False);
else
Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
end if;
Analyze (Comp_Decl);
end Expand_Record_Extension;
------------------------------------
-- Expand_N_Full_Type_Declaration --
------------------------------------
procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
Def_Id : constant Entity_Id := Defining_Identifier (N);
B_Id : constant Entity_Id := Base_Type (Def_Id);
Par_Id : Entity_Id;
FN : Node_Id;
begin
if Is_Access_Type (Def_Id) then
-- Anonymous access types are created for the components of the
-- record parameter for an entry declaration. No master is created
-- for such a type.
if Has_Task (Designated_Type (Def_Id))
and then Comes_From_Source (N)
then
Build_Master_Entity (Def_Id);
Build_Master_Renaming (Parent (Def_Id), Def_Id);
-- Create a class-wide master because a Master_Id must be generated
-- for access-to-limited-class-wide types whose root may be extended
-- with task components, and for access-to-limited-interfaces because
-- they can be used to reference tasks implementing such interface.
elsif Is_Class_Wide_Type (Designated_Type (Def_Id))
and then (Is_Limited_Type (Designated_Type (Def_Id))
or else
(Is_Interface (Designated_Type (Def_Id))
and then
Is_Limited_Interface (Designated_Type (Def_Id))))
and then Tasking_Allowed
-- Do not create a class-wide master for types whose convention is
-- Java since these types cannot embed Ada tasks anyway. Note that
-- the following test cannot catch the following case:
-- package java.lang.Object is
-- type Typ is tagged limited private;
-- type Ref is access all Typ'Class;
-- private
-- type Typ is tagged limited ...;
-- pragma Convention (Typ, Java)
-- end;
-- Because the convention appears after we have done the
-- processing for type Ref.
and then Convention (Designated_Type (Def_Id)) /= Convention_Java
then
Build_Class_Wide_Master (Def_Id);
elsif Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
Expand_Access_Protected_Subprogram_Type (N);
end if;
elsif Has_Task (Def_Id) then
Expand_Previous_Access_Type (Def_Id);
end if;
Par_Id := Etype (B_Id);
-- The parent type is private then we need to inherit
-- any TSS operations from the full view.
if Ekind (Par_Id) in Private_Kind
and then Present (Full_View (Par_Id))
then
Par_Id := Base_Type (Full_View (Par_Id));
end if;
if Nkind (Type_Definition (Original_Node (N)))
= N_Derived_Type_Definition
and then not Is_Tagged_Type (Def_Id)
and then Present (Freeze_Node (Par_Id))
and then Present (TSS_Elist (Freeze_Node (Par_Id)))
then
Ensure_Freeze_Node (B_Id);
FN := Freeze_Node (B_Id);
if No (TSS_Elist (FN)) then
Set_TSS_Elist (FN, New_Elmt_List);
end if;
declare
T_E : constant Elist_Id := TSS_Elist (FN);
Elmt : Elmt_Id;
begin
Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
while Present (Elmt) loop
if Chars (Node (Elmt)) /= Name_uInit then
Append_Elmt (Node (Elmt), T_E);
end if;
Next_Elmt (Elmt);
end loop;
-- If the derived type itself is private with a full view, then
-- associate the full view with the inherited TSS_Elist as well.
if Ekind (B_Id) in Private_Kind
and then Present (Full_View (B_Id))
then
Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
Set_TSS_Elist
(Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
end if;
end;
end if;
end Expand_N_Full_Type_Declaration;
---------------------------------
-- Expand_N_Object_Declaration --
---------------------------------
-- First we do special processing for objects of a tagged type where this
-- is the point at which the type is frozen. The creation of the dispatch
-- table and the initialization procedure have to be deferred to this
-- point, since we reference previously declared primitive subprograms.
-- For all types, we call an initialization procedure if there is one
procedure Expand_N_Object_Declaration (N : Node_Id) is
Def_Id : constant Entity_Id := Defining_Identifier (N);
Typ : constant Entity_Id := Etype (Def_Id);
Loc : constant Source_Ptr := Sloc (N);
Expr : constant Node_Id := Expression (N);
New_Ref : Node_Id;
Id_Ref : Node_Id;
Expr_Q : Node_Id;
begin
-- Don't do anything for deferred constants. All proper actions will
-- be expanded during the full declaration.
if No (Expr) and Constant_Present (N) then
return;
end if;
-- Make shared memory routines for shared passive variable
if Is_Shared_Passive (Def_Id) then
Make_Shared_Var_Procs (N);
end if;
-- If tasks being declared, make sure we have an activation chain
-- defined for the tasks (has no effect if we already have one), and
-- also that a Master variable is established and that the appropriate
-- enclosing construct is established as a task master.
if Has_Task (Typ) then
Build_Activation_Chain_Entity (N);
Build_Master_Entity (Def_Id);
end if;
-- Default initialization required, and no expression present
if No (Expr) then
-- Expand Initialize call for controlled objects. One may wonder why
-- the Initialize Call is not done in the regular Init procedure
-- attached to the record type. That's because the init procedure is
-- recursively called on each component, including _Parent, thus the
-- Init call for a controlled object would generate not only one
-- Initialize call as it is required but one for each ancestor of
-- its type. This processing is suppressed if No_Initialization set.
if not Controlled_Type (Typ)
or else No_Initialization (N)
then
null;
elsif not Abort_Allowed
or else not Comes_From_Source (N)
then
Insert_Actions_After (N,
Make_Init_Call (
Ref => New_Occurrence_Of (Def_Id, Loc),
Typ => Base_Type (Typ),
Flist_Ref => Find_Final_List (Def_Id),
With_Attach => Make_Integer_Literal (Loc, 1)));
-- Abort allowed
else
-- We need to protect the initialize call
-- begin
-- Defer_Abort.all;
-- Initialize (...);
-- at end
-- Undefer_Abort.all;
-- end;
-- ??? this won't protect the initialize call for controlled
-- components which are part of the init proc, so this block
-- should probably also contain the call to _init_proc but this
-- requires some code reorganization...
declare
L : constant List_Id :=
Make_Init_Call (
Ref => New_Occurrence_Of (Def_Id, Loc),
Typ => Base_Type (Typ),
Flist_Ref => Find_Final_List (Def_Id),
With_Attach => Make_Integer_Literal (Loc, 1));
Blk : constant Node_Id :=
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc, L));
begin
Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
Set_At_End_Proc (Handled_Statement_Sequence (Blk),
New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
Insert_Actions_After (N, New_List (Blk));
Expand_At_End_Handler
(Handled_Statement_Sequence (Blk), Entity (Identifier (Blk)));
end;
end if;
-- Call type initialization procedure if there is one. We build the
-- call and put it immediately after the object declaration, so that
-- it will be expanded in the usual manner. Note that this will
-- result in proper handling of defaulted discriminants. The call
-- to the Init_Proc is suppressed if No_Initialization is set.
if Has_Non_Null_Base_Init_Proc (Typ)
and then not No_Initialization (N)
then
-- The call to the initialization procedure does NOT freeze
-- the object being initialized. This is because the call is
-- not a source level call. This works fine, because the only
-- possible statements depending on freeze status that can
-- appear after the _Init call are rep clauses which can
-- safely appear after actual references to the object.
Id_Ref := New_Reference_To (Def_Id, Loc);
Set_Must_Not_Freeze (Id_Ref);
Set_Assignment_OK (Id_Ref);
Insert_Actions_After (N,
Build_Initialization_Call (Loc, Id_Ref, Typ));
-- If simple initialization is required, then set an appropriate
-- simple initialization expression in place. This special
-- initialization is required even though No_Init_Flag is present.
-- An internally generated temporary needs no initialization because
-- it will be assigned subsequently. In particular, there is no
-- point in applying Initialize_Scalars to such a temporary.
elsif Needs_Simple_Initialization (Typ)
and then not Is_Internal (Def_Id)
then
Set_No_Initialization (N, False);
Set_Expression (N, Get_Simple_Init_Val (Typ, Loc, Esize (Def_Id)));
Analyze_And_Resolve (Expression (N), Typ);
end if;
-- Generate attribute for Persistent_BSS if needed
if Persistent_BSS_Mode
and then Comes_From_Source (N)
and then Is_Potentially_Persistent_Type (Typ)
and then Is_Library_Level_Entity (Def_Id)
then
declare
Prag : Node_Id;
begin
Prag :=
Make_Linker_Section_Pragma
(Def_Id, Sloc (N), ".persistent.bss");
Insert_After (N, Prag);
Analyze (Prag);
end;
end if;
-- If access type, then we know it is null if not initialized
if Is_Access_Type (Typ) then
Set_Is_Known_Null (Def_Id);
end if;
-- Explicit initialization present
else
-- Obtain actual expression from qualified expression
if Nkind (Expr) = N_Qualified_Expression then
Expr_Q := Expression (Expr);
else
Expr_Q := Expr;
end if;
-- When we have the appropriate type of aggregate in the expression
-- (it has been determined during analysis of the aggregate by
-- setting the delay flag), let's perform in place assignment and
-- thus avoid creating a temporary.
if Is_Delayed_Aggregate (Expr_Q) then
Convert_Aggr_In_Object_Decl (N);
else
-- In most cases, we must check that the initial value meets any
-- constraint imposed by the declared type. However, there is one
-- very important exception to this rule. If the entity has an
-- unconstrained nominal subtype, then it acquired its constraints
-- from the expression in the first place, and not only does this
-- mean that the constraint check is not needed, but an attempt to
-- perform the constraint check can cause order order of
-- elaboration problems.
if not Is_Constr_Subt_For_U_Nominal (Typ) then
-- If this is an allocator for an aggregate that has been
-- allocated in place, delay checks until assignments are
-- made, because the discriminants are not initialized.
if Nkind (Expr) = N_Allocator
and then No_Initialization (Expr)
then
null;
else
Apply_Constraint_Check (Expr, Typ);
end if;
end if;
-- If the type is controlled we attach the object to the final
-- list and adjust the target after the copy. This
-- ??? incomplete sentence
if Controlled_Type (Typ) then
declare
Flist : Node_Id;
F : Entity_Id;
begin
-- Attach the result to a dummy final list which will never
-- be finalized if Delay_Finalize_Attachis set. It is
-- important to attach to a dummy final list rather than not
-- attaching at all in order to reset the pointers coming
-- from the initial value. Equivalent code exists in the
-- sec-stack case in Exp_Ch4.Expand_N_Allocator.
if Delay_Finalize_Attach (N) then
F :=
Make_Defining_Identifier (Loc, New_Internal_Name ('F'));
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => F,
Object_Definition =>
New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
Flist := New_Reference_To (F, Loc);
else
Flist := Find_Final_List (Def_Id);
end if;
Insert_Actions_After (N,
Make_Adjust_Call (
Ref => New_Reference_To (Def_Id, Loc),
Typ => Base_Type (Typ),
Flist_Ref => Flist,
With_Attach => Make_Integer_Literal (Loc, 1)));
end;
end if;
-- For tagged types, when an init value is given, the tag has to
-- be re-initialized separately in order to avoid the propagation
-- of a wrong tag coming from a view conversion unless the type
-- is class wide (in this case the tag comes from the init value).
-- Suppress the tag assignment when Java_VM because JVM tags are
-- represented implicitly in objects. Ditto for types that are
-- CPP_CLASS, and for initializations that are aggregates, because
-- they have to have the right tag.
if Is_Tagged_Type (Typ)
and then not Is_Class_Wide_Type (Typ)
and then not Is_CPP_Class (Typ)
and then not Java_VM
and then Nkind (Expr) /= N_Aggregate
then
-- The re-assignment of the tag has to be done even if the
-- object is a constant.
New_Ref :=
Make_Selected_Component (Loc,
Prefix => New_Reference_To (Def_Id, Loc),
Selector_Name =>
New_Reference_To (First_Tag_Component (Typ), Loc));
Set_Assignment_OK (New_Ref);
Insert_After (N,
Make_Assignment_Statement (Loc,
Name => New_Ref,
Expression =>
Unchecked_Convert_To (RTE (RE_Tag),
New_Reference_To
(Node
(First_Elmt
(Access_Disp_Table (Base_Type (Typ)))),
Loc))));
-- For discrete types, set the Is_Known_Valid flag if the
-- initializing value is known to be valid.
elsif Is_Discrete_Type (Typ) and then Expr_Known_Valid (Expr) then
Set_Is_Known_Valid (Def_Id);
elsif Is_Access_Type (Typ) then
-- For access types set the Is_Known_Non_Null flag if the
-- initializing value is known to be non-null. We can also set
-- Can_Never_Be_Null if this is a constant.
if Known_Non_Null (Expr) then
Set_Is_Known_Non_Null (Def_Id, True);
if Constant_Present (N) then
Set_Can_Never_Be_Null (Def_Id);
end if;
end if;
end if;
-- If validity checking on copies, validate initial expression
if Validity_Checks_On
and then Validity_Check_Copies
then
Ensure_Valid (Expr);
Set_Is_Known_Valid (Def_Id);
end if;
end if;
-- Cases where the back end cannot handle the initialization directly
-- In such cases, we expand an assignment that will be appropriately
-- handled by Expand_N_Assignment_Statement.
-- The exclusion of the unconstrained case is wrong, but for now it
-- is too much trouble ???
if (Is_Possibly_Unaligned_Slice (Expr)
or else (Is_Possibly_Unaligned_Object (Expr)
and then not Represented_As_Scalar (Etype (Expr))))
-- The exclusion of the unconstrained case is wrong, but for now
-- it is too much trouble ???
and then not (Is_Array_Type (Etype (Expr))
and then not Is_Constrained (Etype (Expr)))
then
declare
Stat : constant Node_Id :=
Make_Assignment_Statement (Loc,
Name => New_Reference_To (Def_Id, Loc),
Expression => Relocate_Node (Expr));
begin
Set_Expression (N, Empty);
Set_No_Initialization (N);
Set_Assignment_OK (Name (Stat));
Set_No_Ctrl_Actions (Stat);
Insert_After (N, Stat);
Analyze (Stat);
end;
end if;
end if;
-- For array type, check for size too large
-- We really need this for record types too???
if Is_Array_Type (Typ) then
Apply_Array_Size_Check (N, Typ);
end if;
exception
when RE_Not_Available =>
return;
end Expand_N_Object_Declaration;
---------------------------------
-- Expand_N_Subtype_Indication --
---------------------------------
-- Add a check on the range of the subtype. The static case is partially
-- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
-- to check here for the static case in order to avoid generating
-- extraneous expanded code.
procedure Expand_N_Subtype_Indication (N : Node_Id) is
Ran : constant Node_Id := Range_Expression (Constraint (N));
Typ : constant Entity_Id := Entity (Subtype_Mark (N));
begin
if Nkind (Parent (N)) = N_Constrained_Array_Definition or else
Nkind (Parent (N)) = N_Slice
then
Resolve (Ran, Typ);
Apply_Range_Check (Ran, Typ);
end if;
end Expand_N_Subtype_Indication;
---------------------------
-- Expand_N_Variant_Part --
---------------------------
-- If the last variant does not contain the Others choice, replace it with
-- an N_Others_Choice node since Gigi always wants an Others. Note that we
-- do not bother to call Analyze on the modified variant part, since it's
-- only effect would be to compute the contents of the
-- Others_Discrete_Choices node laboriously, and of course we already know
-- the list of choices that corresponds to the others choice (it's the
-- list we are replacing!)
procedure Expand_N_Variant_Part (N : Node_Id) is
Last_Var : constant Node_Id := Last_Non_Pragma (Variants (N));
Others_Node : Node_Id;
begin
if Nkind (First (Discrete_Choices (Last_Var))) /= N_Others_Choice then
Others_Node := Make_Others_Choice (Sloc (Last_Var));
Set_Others_Discrete_Choices
(Others_Node, Discrete_Choices (Last_Var));
Set_Discrete_Choices (Last_Var, New_List (Others_Node));
end if;
end Expand_N_Variant_Part;
---------------------------------
-- Expand_Previous_Access_Type --
---------------------------------
procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
T : Entity_Id := First_Entity (Current_Scope);
begin
-- Find all access types declared in the current scope, whose
-- designated type is Def_Id.
while Present (T) loop
if Is_Access_Type (T)
and then Designated_Type (T) = Def_Id
then
Build_Master_Entity (Def_Id);
Build_Master_Renaming (Parent (Def_Id), T);
end if;
Next_Entity (T);
end loop;
end Expand_Previous_Access_Type;
------------------------------
-- Expand_Record_Controller --
------------------------------
procedure Expand_Record_Controller (T : Entity_Id) is
Def : Node_Id := Type_Definition (Parent (T));
Comp_List : Node_Id;
Comp_Decl : Node_Id;
Loc : Source_Ptr;
First_Comp : Node_Id;
Controller_Type : Entity_Id;
Ent : Entity_Id;
begin
if Nkind (Def) = N_Derived_Type_Definition then
Def := Record_Extension_Part (Def);
end if;
if Null_Present (Def) then
Set_Component_List (Def,
Make_Component_List (Sloc (Def),
Component_Items => Empty_List,
Variant_Part => Empty,
Null_Present => True));
end if;
Comp_List := Component_List (Def);
if Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Loc := Sloc (Comp_List);
else
Loc := Sloc (First (Component_Items (Comp_List)));
end if;
if Is_Return_By_Reference_Type (T) then
Controller_Type := RTE (RE_Limited_Record_Controller);
else
Controller_Type := RTE (RE_Record_Controller);
end if;
Ent := Make_Defining_Identifier (Loc, Name_uController);
Comp_Decl :=
Make_Component_Declaration (Loc,
Defining_Identifier => Ent,
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Reference_To (Controller_Type, Loc)));
if Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Set_Component_Items (Comp_List, New_List (Comp_Decl));
Set_Null_Present (Comp_List, False);
else
-- The controller cannot be placed before the _Parent field since
-- gigi lays out field in order and _parent must be first to
-- preserve the polymorphism of tagged types.
First_Comp := First (Component_Items (Comp_List));
if Chars (Defining_Identifier (First_Comp)) /= Name_uParent
and then Chars (Defining_Identifier (First_Comp)) /= Name_uTag
then
Insert_Before (First_Comp, Comp_Decl);
else
Insert_After (First_Comp, Comp_Decl);
end if;
end if;
New_Scope (T);
Analyze (Comp_Decl);
Set_Ekind (Ent, E_Component);
Init_Component_Location (Ent);
-- Move the _controller entity ahead in the list of internal entities
-- of the enclosing record so that it is selected instead of a
-- potentially inherited one.
declare
E : constant Entity_Id := Last_Entity (T);
Comp : Entity_Id;
begin
pragma Assert (Chars (E) = Name_uController);
Set_Next_Entity (E, First_Entity (T));
Set_First_Entity (T, E);
Comp := Next_Entity (E);
while Next_Entity (Comp) /= E loop
Next_Entity (Comp);
end loop;
Set_Next_Entity (Comp, Empty);
Set_Last_Entity (T, Comp);
end;
End_Scope;
exception
when RE_Not_Available =>
return;
end Expand_Record_Controller;
------------------------
-- Expand_Tagged_Root --
------------------------
procedure Expand_Tagged_Root (T : Entity_Id) is
Def : constant Node_Id := Type_Definition (Parent (T));
Comp_List : Node_Id;
Comp_Decl : Node_Id;
Sloc_N : Source_Ptr;
begin
if Null_Present (Def) then
Set_Component_List (Def,
Make_Component_List (Sloc (Def),
Component_Items => Empty_List,
Variant_Part => Empty,
Null_Present => True));
end if;
Comp_List := Component_List (Def);
if Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Sloc_N := Sloc (Comp_List);
else
Sloc_N := Sloc (First (Component_Items (Comp_List)));
end if;
Comp_Decl :=
Make_Component_Declaration (Sloc_N,
Defining_Identifier => First_Tag_Component (T),
Component_Definition =>
Make_Component_Definition (Sloc_N,
Aliased_Present => False,
Subtype_Indication => New_Reference_To (RTE (RE_Tag), Sloc_N)));
if Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Set_Component_Items (Comp_List, New_List (Comp_Decl));
Set_Null_Present (Comp_List, False);
else
Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
end if;
-- We don't Analyze the whole expansion because the tag component has
-- already been analyzed previously. Here we just insure that the tree
-- is coherent with the semantic decoration
Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));
exception
when RE_Not_Available =>
return;
end Expand_Tagged_Root;
-----------------------
-- Freeze_Array_Type --
-----------------------
procedure Freeze_Array_Type (N : Node_Id) is
Typ : constant Entity_Id := Entity (N);
Base : constant Entity_Id := Base_Type (Typ);
begin
if not Is_Bit_Packed_Array (Typ) then
-- If the component contains tasks, so does the array type. This may
-- not be indicated in the array type because the component may have
-- been a private type at the point of definition. Same if component
-- type is controlled.
Set_Has_Task (Base, Has_Task (Component_Type (Typ)));
Set_Has_Controlled_Component (Base,
Has_Controlled_Component (Component_Type (Typ))
or else Is_Controlled (Component_Type (Typ)));
if No (Init_Proc (Base)) then
-- If this is an anonymous array created for a declaration with
-- an initial value, its init_proc will never be called. The
-- initial value itself may have been expanded into assign-
-- ments, in which case the object declaration is carries the
-- No_Initialization flag.
if Is_Itype (Base)
and then Nkind (Associated_Node_For_Itype (Base)) =
N_Object_Declaration
and then (Present (Expression (Associated_Node_For_Itype (Base)))
or else
No_Initialization (Associated_Node_For_Itype (Base)))
then
null;
-- We do not need an init proc for string or wide [wide] string,
-- since the only time these need initialization in normalize or
-- initialize scalars mode, and these types are treated specially
-- and do not need initialization procedures.
elsif Root_Type (Base) = Standard_String
or else Root_Type (Base) = Standard_Wide_String
or else Root_Type (Base) = Standard_Wide_Wide_String
then
null;
-- Otherwise we have to build an init proc for the subtype
else
Build_Array_Init_Proc (Base, N);
end if;
end if;
if Typ = Base and then Has_Controlled_Component (Base) then
Build_Controlling_Procs (Base);
if not Is_Limited_Type (Component_Type (Typ))
and then Number_Dimensions (Typ) = 1
then
Build_Slice_Assignment (Typ);
end if;
end if;
-- For packed case, there is a default initialization, except if the
-- component type is itself a packed structure with an initialization
-- procedure.
elsif Present (Init_Proc (Component_Type (Base)))
and then No (Base_Init_Proc (Base))
then
Build_Array_Init_Proc (Base, N);
end if;
end Freeze_Array_Type;
-----------------------------
-- Freeze_Enumeration_Type --
-----------------------------
procedure Freeze_Enumeration_Type (N : Node_Id) is
Typ : constant Entity_Id := Entity (N);
Loc : constant Source_Ptr := Sloc (Typ);
Ent : Entity_Id;
Lst : List_Id;
Num : Nat;
Arr : Entity_Id;
Fent : Entity_Id;
Ityp : Entity_Id;
Is_Contiguous : Boolean;
Pos_Expr : Node_Id;
Last_Repval : Uint;
Func : Entity_Id;
pragma Warnings (Off, Func);
begin
-- Various optimization are possible if the given representation is
-- contiguous.
Is_Contiguous := True;
Ent := First_Literal (Typ);
Last_Repval := Enumeration_Rep (Ent);
Next_Literal (Ent);
while Present (Ent) loop
if Enumeration_Rep (Ent) - Last_Repval /= 1 then
Is_Contiguous := False;
exit;
else
Last_Repval := Enumeration_Rep (Ent);
end if;
Next_Literal (Ent);
end loop;
if Is_Contiguous then
Set_Has_Contiguous_Rep (Typ);
Ent := First_Literal (Typ);
Num := 1;
Lst := New_List (New_Reference_To (Ent, Sloc (Ent)));
else
-- Build list of literal references
Lst := New_List;
Num := 0;
Ent := First_Literal (Typ);
while Present (Ent) loop
Append_To (Lst, New_Reference_To (Ent, Sloc (Ent)));
Num := Num + 1;
Next_Literal (Ent);
end loop;
end if;
-- Now build an array declaration
-- typA : array (Natural range 0 .. num - 1) of ctype :=
-- (v, v, v, v, v, ....)
-- where ctype is the corresponding integer type. If the representation
-- is contiguous, we only keep the first literal, which provides the
-- offset for Pos_To_Rep computations.
Arr :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), 'A'));
Append_Freeze_Action (Typ,
Make_Object_Declaration (Loc,
Defining_Identifier => Arr,
Constant_Present => True,
Object_Definition =>
Make_Constrained_Array_Definition (Loc,
Discrete_Subtype_Definitions => New_List (
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Standard_Natural, Loc),
Constraint =>
Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound =>
Make_Integer_Literal (Loc, 0),
High_Bound =>
Make_Integer_Literal (Loc, Num - 1))))),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Reference_To (Typ, Loc))),
Expression =>
Make_Aggregate (Loc,
Expressions => Lst)));
Set_Enum_Pos_To_Rep (Typ, Arr);
-- Now we build the function that converts representation values to
-- position values. This function has the form:
-- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
-- begin
-- case ityp!(A) is
-- when enum-lit'Enum_Rep => return posval;
-- when enum-lit'Enum_Rep => return posval;
-- ...
-- when others =>
-- [raise Constraint_Error when F "invalid data"]
-- return -1;
-- end case;
-- end;
-- Note: the F parameter determines whether the others case (no valid
-- representation) raises Constraint_Error or returns a unique value
-- of minus one. The latter case is used, e.g. in 'Valid code.
-- Note: the reason we use Enum_Rep values in the case here is to avoid
-- the code generator making inappropriate assumptions about the range
-- of the values in the case where the value is invalid. ityp is a
-- signed or unsigned integer type of appropriate width.
-- Note: if exceptions are not supported, then we suppress the raise
-- and return -1 unconditionally (this is an erroneous program in any
-- case and there is no obligation to raise Constraint_Error here!) We
-- also do this if pragma Restrictions (No_Exceptions) is active.
-- Representations are signed
if Enumeration_Rep (First_Literal (Typ)) < 0 then
-- The underlying type is signed. Reset the Is_Unsigned_Type
-- explicitly, because it might have been inherited from
-- parent type.
Set_Is_Unsigned_Type (Typ, False);
if Esize (Typ) <= Standard_Integer_Size then
Ityp := Standard_Integer;
else
Ityp := Universal_Integer;
end if;
-- Representations are unsigned
else
if Esize (Typ) <= Standard_Integer_Size then
Ityp := RTE (RE_Unsigned);
else
Ityp := RTE (RE_Long_Long_Unsigned);
end if;
end if;
-- The body of the function is a case statement. First collect case
-- alternatives, or optimize the contiguous case.
Lst := New_List;
-- If representation is contiguous, Pos is computed by subtracting
-- the representation of the first literal.
if Is_Contiguous then
Ent := First_Literal (Typ);
if Enumeration_Rep (Ent) = Last_Repval then
-- Another special case: for a single literal, Pos is zero
Pos_Expr := Make_Integer_Literal (Loc, Uint_0);
else
Pos_Expr :=
Convert_To (Standard_Integer,
Make_Op_Subtract (Loc,
Left_Opnd =>
Unchecked_Convert_To (Ityp,
Make_Identifier (Loc, Name_uA)),
Right_Opnd =>
Make_Integer_Literal (Loc,
Intval =>
Enumeration_Rep (First_Literal (Typ)))));
end if;
Append_To (Lst,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_List (
Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
Low_Bound =>
Make_Integer_Literal (Loc,
Intval => Enumeration_Rep (Ent)),
High_Bound =>
Make_Integer_Literal (Loc, Intval => Last_Repval))),
Statements => New_List (
Make_Return_Statement (Loc,
Expression => Pos_Expr))));
else
Ent := First_Literal (Typ);
while Present (Ent) loop
Append_To (Lst,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_List (
Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
Intval => Enumeration_Rep (Ent))),
Statements => New_List (
Make_Return_Statement (Loc,
Expression =>
Make_Integer_Literal (Loc,
Intval => Enumeration_Pos (Ent))))));
Next_Literal (Ent);
end loop;
end if;
-- In normal mode, add the others clause with the test
if not Restriction_Active (No_Exception_Handlers) then
Append_To (Lst,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_List (Make_Others_Choice (Loc)),
Statements => New_List (
Make_Raise_Constraint_Error (Loc,
Condition => Make_Identifier (Loc, Name_uF),
Reason => CE_Invalid_Data),
Make_Return_Statement (Loc,
Expression =>
Make_Integer_Literal (Loc, -1)))));
-- If Restriction (No_Exceptions_Handlers) is active then we always
-- return -1 (since we cannot usefully raise Constraint_Error in
-- this case). See description above for further details.
else
Append_To (Lst,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_List (Make_Others_Choice (Loc)),
Statements => New_List (
Make_Return_Statement (Loc,
Expression =>
Make_Integer_Literal (Loc, -1)))));
end if;
-- Now we can build the function body
Fent :=
Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));
Func :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Fent,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uA),
Parameter_Type => New_Reference_To (Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uF),
Parameter_Type => New_Reference_To (Standard_Boolean, Loc))),
Result_Definition => New_Reference_To (Standard_Integer, Loc)),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Case_Statement (Loc,
Expression =>
Unchecked_Convert_To (Ityp,
Make_Identifier (Loc, Name_uA)),
Alternatives => Lst))));
Set_TSS (Typ, Fent);
Set_Is_Pure (Fent);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Fent);
end if;
exception
when RE_Not_Available =>
return;
end Freeze_Enumeration_Type;
------------------------
-- Freeze_Record_Type --
------------------------
procedure Freeze_Record_Type (N : Node_Id) is
Comp : Entity_Id;
Def_Id : constant Node_Id := Entity (N);
Predef_List : List_Id;
Type_Decl : constant Node_Id := Parent (Def_Id);
Renamed_Eq : Node_Id := Empty;
-- Could use some comments ???
Wrapper_Decl_List : List_Id := No_List;
Wrapper_Body_List : List_Id := No_List;
begin
-- Build discriminant checking functions if not a derived type (for
-- derived types that are not tagged types, we always use the
-- discriminant checking functions of the parent type). However, for
-- untagged types the derivation may have taken place before the
-- parent was frozen, so we copy explicitly the discriminant checking
-- functions from the parent into the components of the derived type.
if not Is_Derived_Type (Def_Id)
or else Has_New_Non_Standard_Rep (Def_Id)
or else Is_Tagged_Type (Def_Id)
then
Build_Discr_Checking_Funcs (Type_Decl);
elsif Is_Derived_Type (Def_Id)
and then not Is_Tagged_Type (Def_Id)
-- If we have a derived Unchecked_Union, we do not inherit the
-- discriminant checking functions from the parent type since the
-- discriminants are non existent.
and then not Is_Unchecked_Union (Def_Id)
and then Has_Discriminants (Def_Id)
then
declare
Old_Comp : Entity_Id;
begin
Old_Comp :=
First_Component (Base_Type (Underlying_Type (Etype (Def_Id))));
Comp := First_Component (Def_Id);
while Present (Comp) loop
if Ekind (Comp) = E_Component
and then Chars (Comp) = Chars (Old_Comp)
then
Set_Discriminant_Checking_Func (Comp,
Discriminant_Checking_Func (Old_Comp));
end if;
Next_Component (Old_Comp);
Next_Component (Comp);
end loop;
end;
end if;
if Is_Derived_Type (Def_Id)
and then Is_Limited_Type (Def_Id)
and then Is_Tagged_Type (Def_Id)
then
Check_Stream_Attributes (Def_Id);
end if;
-- Update task and controlled component flags, because some of the
-- component types may have been private at the point of the record
-- declaration.
Comp := First_Component (Def_Id);
while Present (Comp) loop
if Has_Task (Etype (Comp)) then
Set_Has_Task (Def_Id);
elsif Has_Controlled_Component (Etype (Comp))
or else (Chars (Comp) /= Name_uParent
and then Is_Controlled (Etype (Comp)))
then
Set_Has_Controlled_Component (Def_Id);
end if;
Next_Component (Comp);
end loop;
-- Creation of the Dispatch Table. Note that a Dispatch Table is
-- created for regular tagged types as well as for Ada types deriving
-- from a C++ Class, but not for tagged types directly corresponding to
-- the C++ classes. In the later case we assume that the Vtable is
-- created in the C++ side and we just use it.
if Is_Tagged_Type (Def_Id) then
if Is_CPP_Class (Def_Id) then
-- Because of the new C++ ABI compatibility we now allow the
-- programer to use the Ada tag (and in this case we must do
-- the normal expansion of the tag)
if Etype (First_Component (Def_Id)) = RTE (RE_Tag)
and then Underlying_Type (Etype (Def_Id)) = Def_Id
then
Expand_Tagged_Root (Def_Id);
end if;
Set_All_DT_Position (Def_Id);
Set_Default_Constructor (Def_Id);
else
-- Usually inherited primitives are not delayed but the first Ada
-- extension of a CPP_Class is an exception since the address of
-- the inherited subprogram has to be inserted in the new Ada
-- Dispatch Table and this is a freezing action (usually the
-- inherited primitive address is inserted in the DT by
-- Inherit_DT)
-- Similarly, if this is an inherited operation whose parent is
-- not frozen yet, it is not in the DT of the parent, and we
-- generate an explicit freeze node for the inherited operation,
-- so that it is properly inserted in the DT of the current type.
declare
Elmt : Elmt_Id := First_Elmt (Primitive_Operations (Def_Id));
Subp : Entity_Id;
begin
while Present (Elmt) loop
Subp := Node (Elmt);
if Present (Alias (Subp)) then
if Is_CPP_Class (Etype (Def_Id)) then
Set_Has_Delayed_Freeze (Subp);
elsif Has_Delayed_Freeze (Alias (Subp))
and then not Is_Frozen (Alias (Subp))
then
Set_Is_Frozen (Subp, False);
Set_Has_Delayed_Freeze (Subp);
end if;
end if;
Next_Elmt (Elmt);
end loop;
end;
if Underlying_Type (Etype (Def_Id)) = Def_Id then
Expand_Tagged_Root (Def_Id);
end if;
-- Unfreeze momentarily the type to add the predefined primitives
-- operations. The reason we unfreeze is so that these predefined
-- operations will indeed end up as primitive operations (which
-- must be before the freeze point).
Set_Is_Frozen (Def_Id, False);
Make_Predefined_Primitive_Specs
(Def_Id, Predef_List, Renamed_Eq);
Insert_List_Before_And_Analyze (N, Predef_List);
-- Ada 2005 (AI-391): For a nonabstract null extension, create
-- wrapper functions for each nonoverridden inherited function
-- with a controlling result of the type. The wrapper for such
-- a function returns an extension aggregate that invokes the
-- the parent function.
if Ada_Version >= Ada_05
and then not Is_Abstract (Def_Id)
and then Is_Null_Extension (Def_Id)
then
Make_Controlling_Function_Wrappers
(Def_Id, Wrapper_Decl_List, Wrapper_Body_List);
Insert_List_Before_And_Analyze (N, Wrapper_Decl_List);
end if;
Set_Is_Frozen (Def_Id, True);
Set_All_DT_Position (Def_Id);
-- Add the controlled component before the freezing actions
-- referenced in those actions.
if Has_New_Controlled_Component (Def_Id) then
Expand_Record_Controller (Def_Id);
end if;
-- Suppress creation of a dispatch table when Java_VM because the
-- dispatching mechanism is handled internally by the JVM.
if not Java_VM then
-- Ada 2005 (AI-251): Build the secondary dispatch tables
declare
ADT : Elist_Id := Access_Disp_Table (Def_Id);
procedure Add_Secondary_Tables (Typ : Entity_Id);
-- Internal subprogram, recursively climb to the ancestors
--------------------------
-- Add_Secondary_Tables --
--------------------------
procedure Add_Secondary_Tables (Typ : Entity_Id) is
E : Entity_Id;
Iface : Elmt_Id;
Result : List_Id;
Suffix_Index : Int;
begin
-- Climb to the ancestor (if any) handling private types
if Present (Full_View (Etype (Typ))) then
if Full_View (Etype (Typ)) /= Typ then
Add_Secondary_Tables (Full_View (Etype (Typ)));
end if;
elsif Etype (Typ) /= Typ then
Add_Secondary_Tables (Etype (Typ));
end if;
if Present (Abstract_Interfaces (Typ))
and then
not Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
then
Iface := First_Elmt (Abstract_Interfaces (Typ));
Suffix_Index := 0;
E := First_Entity (Typ);
while Present (E) loop
if Is_Tag (E) and then Chars (E) /= Name_uTag then
Make_Secondary_DT
(Typ => Def_Id,
Ancestor_Typ => Typ,
Suffix_Index => Suffix_Index,
Iface => Node (Iface),
AI_Tag => E,
Acc_Disp_Tables => ADT,
Result => Result);
Append_Freeze_Actions (Def_Id, Result);
Suffix_Index := Suffix_Index + 1;
Next_Elmt (Iface);
end if;
Next_Entity (E);
end loop;
end if;
end Add_Secondary_Tables;
-- Start of processing to build secondary dispatch tables
begin
-- Handle private types
if Present (Full_View (Def_Id)) then
Add_Secondary_Tables (Full_View (Def_Id));
else
Add_Secondary_Tables (Def_Id);
end if;
Set_Access_Disp_Table (Def_Id, ADT);
Append_Freeze_Actions (Def_Id, Make_DT (Def_Id));
end;
end if;
-- Make sure that the primitives Initialize, Adjust and Finalize
-- are Frozen before other TSS subprograms. We don't want them
-- Frozen inside.
if Is_Controlled (Def_Id) then
if not Is_Limited_Type (Def_Id) then
Append_Freeze_Actions (Def_Id,
Freeze_Entity
(Find_Prim_Op (Def_Id, Name_Adjust), Sloc (Def_Id)));
end if;
Append_Freeze_Actions (Def_Id,
Freeze_Entity
(Find_Prim_Op (Def_Id, Name_Initialize), Sloc (Def_Id)));
Append_Freeze_Actions (Def_Id,
Freeze_Entity
(Find_Prim_Op (Def_Id, Name_Finalize), Sloc (Def_Id)));
end if;
-- Freeze rest of primitive operations
Append_Freeze_Actions
(Def_Id, Predefined_Primitive_Freeze (Def_Id));
Append_Freeze_Actions
(Def_Id, Init_Predefined_Interface_Primitives (Def_Id));
end if;
-- In the non-tagged case, an equality function is provided only for
-- variant records (that are not unchecked unions).
elsif Has_Discriminants (Def_Id)
and then not Is_Limited_Type (Def_Id)
then
declare
Comps : constant Node_Id :=
Component_List (Type_Definition (Type_Decl));
begin
if Present (Comps)
and then Present (Variant_Part (Comps))
then
Build_Variant_Record_Equality (Def_Id);
end if;
end;
end if;
-- Before building the record initialization procedure, if we are
-- dealing with a concurrent record value type, then we must go through
-- the discriminants, exchanging discriminals between the concurrent
-- type and the concurrent record value type. See the section "Handling
-- of Discriminants" in the Einfo spec for details.
if Is_Concurrent_Record_Type (Def_Id)
and then Has_Discriminants (Def_Id)
then
declare
Ctyp : constant Entity_Id :=
Corresponding_Concurrent_Type (Def_Id);
Conc_Discr : Entity_Id;
Rec_Discr : Entity_Id;
Temp : Entity_Id;
begin
Conc_Discr := First_Discriminant (Ctyp);
Rec_Discr := First_Discriminant (Def_Id);
while Present (Conc_Discr) loop
Temp := Discriminal (Conc_Discr);
Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
Set_Discriminal (Rec_Discr, Temp);
Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
Next_Discriminant (Conc_Discr);
Next_Discriminant (Rec_Discr);
end loop;
end;
end if;
if Has_Controlled_Component (Def_Id) then
if No (Controller_Component (Def_Id)) then
Expand_Record_Controller (Def_Id);
end if;
Build_Controlling_Procs (Def_Id);
end if;
Adjust_Discriminants (Def_Id);
Build_Record_Init_Proc (Type_Decl, Def_Id);
-- For tagged type, build bodies of primitive operations. Note that we
-- do this after building the record initialization experiment, since
-- the primitive operations may need the initialization routine
if Is_Tagged_Type (Def_Id) then
Predef_List := Predefined_Primitive_Bodies (Def_Id, Renamed_Eq);
Append_Freeze_Actions (Def_Id, Predef_List);
-- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
-- inherited functions, then add their bodies to the freeze actions.
if Present (Wrapper_Body_List) then
Append_Freeze_Actions (Def_Id, Wrapper_Body_List);
end if;
-- Populate the two auxiliary tables used for dispatching
-- asynchronous, conditional and timed selects for synchronized
-- types that implement a limited interface.
if Ada_Version >= Ada_05
and then not Restriction_Active (No_Dispatching_Calls)
and then Is_Concurrent_Record_Type (Def_Id)
and then Implements_Interface (
Typ => Def_Id,
Kind => Any_Limited_Interface,
Check_Parent => True)
then
Append_Freeze_Actions (Def_Id,
Make_Select_Specific_Data_Table (Def_Id));
end if;
end if;
end Freeze_Record_Type;
------------------------------
-- Freeze_Stream_Operations --
------------------------------
procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
Names : constant array (1 .. 4) of TSS_Name_Type :=
(TSS_Stream_Input,
TSS_Stream_Output,
TSS_Stream_Read,
TSS_Stream_Write);
Stream_Op : Entity_Id;
begin
-- Primitive operations of tagged types are frozen when the dispatch
-- table is constructed.
if not Comes_From_Source (Typ)
or else Is_Tagged_Type (Typ)
then
return;
end if;
for J in Names'Range loop
Stream_Op := TSS (Typ, Names (J));
if Present (Stream_Op)
and then Is_Subprogram (Stream_Op)
and then Nkind (Unit_Declaration_Node (Stream_Op)) =
N_Subprogram_Declaration
and then not Is_Frozen (Stream_Op)
then
Append_Freeze_Actions
(Typ, Freeze_Entity (Stream_Op, Sloc (N)));
end if;
end loop;
end Freeze_Stream_Operations;
-----------------
-- Freeze_Type --
-----------------
-- Full type declarations are expanded at the point at which the type is
-- frozen. The formal N is the Freeze_Node for the type. Any statements or
-- declarations generated by the freezing (e.g. the procedure generated
-- for initialization) are chained in the Actions field list of the freeze
-- node using Append_Freeze_Actions.
function Freeze_Type (N : Node_Id) return Boolean is
Def_Id : constant Entity_Id := Entity (N);
RACW_Seen : Boolean := False;
Result : Boolean := False;
begin
-- Process associated access types needing special processing
if Present (Access_Types_To_Process (N)) then
declare
E : Elmt_Id := First_Elmt (Access_Types_To_Process (N));
begin
while Present (E) loop
if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
RACW_Seen := True;
end if;
E := Next_Elmt (E);
end loop;
end;
if RACW_Seen then
-- If there are RACWs designating this type, make stubs now
Remote_Types_Tagged_Full_View_Encountered (Def_Id);
end if;
end if;
-- Freeze processing for record types
if Is_Record_Type (Def_Id) then
if Ekind (Def_Id) = E_Record_Type then
Freeze_Record_Type (N);
-- The subtype may have been declared before the type was frozen. If
-- the type has controlled components it is necessary to create the
-- entity for the controller explicitly because it did not exist at
-- the point of the subtype declaration. Only the entity is needed,
-- the back-end will obtain the layout from the type. This is only
-- necessary if this is constrained subtype whose component list is
-- not shared with the base type.
elsif Ekind (Def_Id) = E_Record_Subtype
and then Has_Discriminants (Def_Id)
and then Last_Entity (Def_Id) /= Last_Entity (Base_Type (Def_Id))
and then Present (Controller_Component (Def_Id))
then
declare
Old_C : constant Entity_Id := Controller_Component (Def_Id);
New_C : Entity_Id;
begin
if Scope (Old_C) = Base_Type (Def_Id) then
-- The entity is the one in the parent. Create new one
New_C := New_Copy (Old_C);
Set_Parent (New_C, Parent (Old_C));
New_Scope (Def_Id);
Enter_Name (New_C);
End_Scope;
end if;
end;
if Is_Itype (Def_Id)
and then Is_Record_Type (Underlying_Type (Scope (Def_Id)))
then
-- The freeze node is only used to introduce the controller,
-- the back-end has no use for it for a discriminated
-- component.
Set_Freeze_Node (Def_Id, Empty);
Set_Has_Delayed_Freeze (Def_Id, False);
Result := True;
end if;
-- Similar process if the controller of the subtype is not present
-- but the parent has it. This can happen with constrained
-- record components where the subtype is an itype.
elsif Ekind (Def_Id) = E_Record_Subtype
and then Is_Itype (Def_Id)
and then No (Controller_Component (Def_Id))
and then Present (Controller_Component (Etype (Def_Id)))
then
declare
Old_C : constant Entity_Id :=
Controller_Component (Etype (Def_Id));
New_C : constant Entity_Id := New_Copy (Old_C);
begin
Set_Next_Entity (New_C, First_Entity (Def_Id));
Set_First_Entity (Def_Id, New_C);
-- The freeze node is only used to introduce the controller,
-- the back-end has no use for it for a discriminated
-- component.
Set_Freeze_Node (Def_Id, Empty);
Set_Has_Delayed_Freeze (Def_Id, False);
Result := True;
end;
end if;
-- Freeze processing for array types
elsif Is_Array_Type (Def_Id) then
Freeze_Array_Type (N);
-- Freeze processing for access types
-- For pool-specific access types, find out the pool object used for
-- this type, needs actual expansion of it in some cases. Here are the
-- different cases :
-- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
-- ---> don't use any storage pool
-- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
-- Expand:
-- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
-- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
-- ---> Storage Pool is the specified one
-- See GNAT Pool packages in the Run-Time for more details
elsif Ekind (Def_Id) = E_Access_Type
or else Ekind (Def_Id) = E_General_Access_Type
then
declare
Loc : constant Source_Ptr := Sloc (N);
Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
Pool_Object : Entity_Id;
Siz_Exp : Node_Id;
Freeze_Action_Typ : Entity_Id;
begin
if Has_Storage_Size_Clause (Def_Id) then
Siz_Exp := Expression (Parent (Storage_Size_Variable (Def_Id)));
else
Siz_Exp := Empty;
end if;
-- Case 1
-- Rep Clause "for Def_Id'Storage_Size use 0;"
-- ---> don't use any storage pool
if Has_Storage_Size_Clause (Def_Id)
and then Compile_Time_Known_Value (Siz_Exp)
and then Expr_Value (Siz_Exp) = 0
then
null;
-- Case 2
-- Rep Clause : for Def_Id'Storage_Size use Expr.
-- ---> Expand:
-- Def_Id__Pool : Stack_Bounded_Pool
-- (Expr, DT'Size, DT'Alignment);
elsif Has_Storage_Size_Clause (Def_Id) then
declare
DT_Size : Node_Id;
DT_Align : Node_Id;
begin
-- For unconstrained composite types we give a size of zero
-- so that the pool knows that it needs a special algorithm
-- for variable size object allocation.
if Is_Composite_Type (Desig_Type)
and then not Is_Constrained (Desig_Type)
then
DT_Size :=
Make_Integer_Literal (Loc, 0);
DT_Align :=
Make_Integer_Literal (Loc, Maximum_Alignment);
else
DT_Size :=
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Desig_Type, Loc),
Attribute_Name => Name_Max_Size_In_Storage_Elements);
DT_Align :=
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Desig_Type, Loc),
Attribute_Name => Name_Alignment);
end if;
Pool_Object :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Def_Id), 'P'));
-- We put the code associated with the pools in the entity
-- that has the later freeze node, usually the acces type
-- but it can also be the designated_type; because the pool
-- code requires both those types to be frozen
if Is_Frozen (Desig_Type)
and then (No (Freeze_Node (Desig_Type))
or else Analyzed (Freeze_Node (Desig_Type)))
then
Freeze_Action_Typ := Def_Id;
-- A Taft amendment type cannot get the freeze actions
-- since the full view is not there.
elsif Is_Incomplete_Or_Private_Type (Desig_Type)
and then No (Full_View (Desig_Type))
then
Freeze_Action_Typ := Def_Id;
else
Freeze_Action_Typ := Desig_Type;
end if;
Append_Freeze_Action (Freeze_Action_Typ,
Make_Object_Declaration (Loc,
Defining_Identifier => Pool_Object,
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Reference_To
(RTE (RE_Stack_Bounded_Pool), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (
-- First discriminant is the Pool Size
New_Reference_To (
Storage_Size_Variable (Def_Id), Loc),
-- Second discriminant is the element size
DT_Size,
-- Third discriminant is the alignment
DT_Align)))));
end;
Set_Associated_Storage_Pool (Def_Id, Pool_Object);
-- Case 3
-- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
-- ---> Storage Pool is the specified one
elsif Present (Associated_Storage_Pool (Def_Id)) then
-- Nothing to do the associated storage pool has been attached
-- when analyzing the rep. clause
null;
end if;
-- For access-to-controlled types (including class-wide types and
-- Taft-amendment types which potentially have controlled
-- components), expand the list controller object that will store
-- the dynamically allocated objects. Do not do this
-- transformation for expander-generated access types, but do it
-- for types that are the full view of types derived from other
-- private types. Also suppress the list controller in the case
-- of a designated type with convention Java, since this is used
-- when binding to Java API specs, where there's no equivalent of
-- a finalization list and we don't want to pull in the
-- finalization support if not needed.
if not Comes_From_Source (Def_Id)
and then not Has_Private_Declaration (Def_Id)
then
null;
elsif (Controlled_Type (Desig_Type)
and then Convention (Desig_Type) /= Convention_Java)
or else
(Is_Incomplete_Or_Private_Type (Desig_Type)
and then No (Full_View (Desig_Type))
-- An exception is made for types defined in the run-time
-- because Ada.Tags.Tag itself is such a type and cannot
-- afford this unnecessary overhead that would generates a
-- loop in the expansion scheme...
and then not In_Runtime (Def_Id)
-- Another exception is if Restrictions (No_Finalization)
-- is active, since then we know nothing is controlled.
and then not Restriction_Active (No_Finalization))
-- If the designated type is not frozen yet, its controlled
-- status must be retrieved explicitly.
or else (Is_Array_Type (Desig_Type)
and then not Is_Frozen (Desig_Type)
and then Controlled_Type (Component_Type (Desig_Type)))
then
Set_Associated_Final_Chain (Def_Id,
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Def_Id), 'L')));
Append_Freeze_Action (Def_Id,
Make_Object_Declaration (Loc,
Defining_Identifier => Associated_Final_Chain (Def_Id),
Object_Definition =>
New_Reference_To (RTE (RE_List_Controller), Loc)));
end if;
end;
-- Freeze processing for enumeration types
elsif Ekind (Def_Id) = E_Enumeration_Type then
-- We only have something to do if we have a non-standard
-- representation (i.e. at least one literal whose pos value
-- is not the same as its representation)
if Has_Non_Standard_Rep (Def_Id) then
Freeze_Enumeration_Type (N);
end if;
-- Private types that are completed by a derivation from a private
-- type have an internally generated full view, that needs to be
-- frozen. This must be done explicitly because the two views share
-- the freeze node, and the underlying full view is not visible when
-- the freeze node is analyzed.
elsif Is_Private_Type (Def_Id)
and then Is_Derived_Type (Def_Id)
and then Present (Full_View (Def_Id))
and then Is_Itype (Full_View (Def_Id))
and then Has_Private_Declaration (Full_View (Def_Id))
and then Freeze_Node (Full_View (Def_Id)) = N
then
Set_Entity (N, Full_View (Def_Id));
Result := Freeze_Type (N);
Set_Entity (N, Def_Id);
-- All other types require no expander action. There are such cases
-- (e.g. task types and protected types). In such cases, the freeze
-- nodes are there for use by Gigi.
end if;
Freeze_Stream_Operations (N, Def_Id);
return Result;
exception
when RE_Not_Available =>
return False;
end Freeze_Type;
-------------------------
-- Get_Simple_Init_Val --
-------------------------
function Get_Simple_Init_Val
(T : Entity_Id;
Loc : Source_Ptr;
Size : Uint := No_Uint) return Node_Id
is
Val : Node_Id;
Result : Node_Id;
Val_RE : RE_Id;
Size_To_Use : Uint;
-- This is the size to be used for computation of the appropriate
-- initial value for the Normalize_Scalars and Initialize_Scalars case.
Lo_Bound : Uint;
Hi_Bound : Uint;
-- These are the values computed by the procedure Check_Subtype_Bounds
procedure Check_Subtype_Bounds;
-- This procedure examines the subtype T, and its ancestor subtypes and
-- derived types to determine the best known information about the
-- bounds of the subtype. After the call Lo_Bound is set either to
-- No_Uint if no information can be determined, or to a value which
-- represents a known low bound, i.e. a valid value of the subtype can
-- not be less than this value. Hi_Bound is similarly set to a known
-- high bound (valid value cannot be greater than this).
--------------------------
-- Check_Subtype_Bounds --
--------------------------
procedure Check_Subtype_Bounds is
ST1 : Entity_Id;
ST2 : Entity_Id;
Lo : Node_Id;
Hi : Node_Id;
Loval : Uint;
Hival : Uint;
begin
Lo_Bound := No_Uint;
Hi_Bound := No_Uint;
-- Loop to climb ancestor subtypes and derived types
ST1 := T;
loop
if not Is_Discrete_Type (ST1) then
return;
end if;
Lo := Type_Low_Bound (ST1);
Hi := Type_High_Bound (ST1);
if Compile_Time_Known_Value (Lo) then
Loval := Expr_Value (Lo);
if Lo_Bound = No_Uint or else Lo_Bound < Loval then
Lo_Bound := Loval;
end if;
end if;
if Compile_Time_Known_Value (Hi) then
Hival := Expr_Value (Hi);
if Hi_Bound = No_Uint or else Hi_Bound > Hival then
Hi_Bound := Hival;
end if;
end if;
ST2 := Ancestor_Subtype (ST1);
if No (ST2) then
ST2 := Etype (ST1);
end if;
exit when ST1 = ST2;
ST1 := ST2;
end loop;
end Check_Subtype_Bounds;
-- Start of processing for Get_Simple_Init_Val
begin
-- For a private type, we should always have an underlying type
-- (because this was already checked in Needs_Simple_Initialization).
-- What we do is to get the value for the underlying type and then do
-- an Unchecked_Convert to the private type.
if Is_Private_Type (T) then
Val := Get_Simple_Init_Val (Underlying_Type (T), Loc, Size);
-- A special case, if the underlying value is null, then qualify it
-- with the underlying type, so that the null is properly typed
-- Similarly, if it is an aggregate it must be qualified, because an
-- unchecked conversion does not provide a context for it.
if Nkind (Val) = N_Null
or else Nkind (Val) = N_Aggregate
then
Val :=
Make_Qualified_Expression (Loc,
Subtype_Mark =>
New_Occurrence_Of (Underlying_Type (T), Loc),
Expression => Val);
end if;
Result := Unchecked_Convert_To (T, Val);
-- Don't truncate result (important for Initialize/Normalize_Scalars)
if Nkind (Result) = N_Unchecked_Type_Conversion
and then Is_Scalar_Type (Underlying_Type (T))
then
Set_No_Truncation (Result);
end if;
return Result;
-- For scalars, we must have normalize/initialize scalars case
elsif Is_Scalar_Type (T) then
pragma Assert (Init_Or_Norm_Scalars);
-- Compute size of object. If it is given by the caller, we can use
-- it directly, otherwise we use Esize (T) as an estimate. As far as
-- we know this covers all cases correctly.
if Size = No_Uint or else Size <= Uint_0 then
Size_To_Use := UI_Max (Uint_1, Esize (T));
else
Size_To_Use := Size;
end if;
-- Maximum size to use is 64 bits, since we will create values
-- of type Unsigned_64 and the range must fit this type.
if Size_To_Use /= No_Uint and then Size_To_Use > Uint_64 then
Size_To_Use := Uint_64;
end if;
-- Check known bounds of subtype
Check_Subtype_Bounds;
-- Processing for Normalize_Scalars case
if Normalize_Scalars then
-- If zero is invalid, it is a convenient value to use that is
-- for sure an appropriate invalid value in all situations.
if Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
Val := Make_Integer_Literal (Loc, 0);
-- Cases where all one bits is the appropriate invalid value
-- For modular types, all 1 bits is either invalid or valid. If
-- it is valid, then there is nothing that can be done since there
-- are no invalid values (we ruled out zero already).
-- For signed integer types that have no negative values, either
-- there is room for negative values, or there is not. If there
-- is, then all 1 bits may be interpretecd as minus one, which is
-- certainly invalid. Alternatively it is treated as the largest
-- positive value, in which case the observation for modular types
-- still applies.
-- For float types, all 1-bits is a NaN (not a number), which is
-- certainly an appropriately invalid value.
elsif Is_Unsigned_Type (T)
or else Is_Floating_Point_Type (T)
or else Is_Enumeration_Type (T)
then
Val := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1);
-- Resolve as Unsigned_64, because the largest number we
-- can generate is out of range of universal integer.
Analyze_And_Resolve (Val, RTE (RE_Unsigned_64));
-- Case of signed types
else
declare
Signed_Size : constant Uint :=
UI_Min (Uint_63, Size_To_Use - 1);
begin
-- Normally we like to use the most negative number. The
-- one exception is when this number is in the known
-- subtype range and the largest positive number is not in
-- the known subtype range.
-- For this exceptional case, use largest positive value
if Lo_Bound /= No_Uint and then Hi_Bound /= No_Uint
and then Lo_Bound <= (-(2 ** Signed_Size))
and then Hi_Bound < 2 ** Signed_Size
then
Val := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1);
-- Normal case of largest negative value
else
Val := Make_Integer_Literal (Loc, -(2 ** Signed_Size));
end if;
end;
end if;
-- Here for Initialize_Scalars case
else
-- For float types, use float values from System.Scalar_Values
if Is_Floating_Point_Type (T) then
if Root_Type (T) = Standard_Short_Float then
Val_RE := RE_IS_Isf;
elsif Root_Type (T) = Standard_Float then
Val_RE := RE_IS_Ifl;
elsif Root_Type (T) = Standard_Long_Float then
Val_RE := RE_IS_Ilf;
else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
Val_RE := RE_IS_Ill;
end if;
-- If zero is invalid, use zero values from System.Scalar_Values
elsif Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
if Size_To_Use <= 8 then
Val_RE := RE_IS_Iz1;
elsif Size_To_Use <= 16 then
Val_RE := RE_IS_Iz2;
elsif Size_To_Use <= 32 then
Val_RE := RE_IS_Iz4;
else
Val_RE := RE_IS_Iz8;
end if;
-- For unsigned, use unsigned values from System.Scalar_Values
elsif Is_Unsigned_Type (T) then
if Size_To_Use <= 8 then
Val_RE := RE_IS_Iu1;
elsif Size_To_Use <= 16 then
Val_RE := RE_IS_Iu2;
elsif Size_To_Use <= 32 then
Val_RE := RE_IS_Iu4;
else
Val_RE := RE_IS_Iu8;
end if;
-- For signed, use signed values from System.Scalar_Values
else
if Size_To_Use <= 8 then
Val_RE := RE_IS_Is1;
elsif Size_To_Use <= 16 then
Val_RE := RE_IS_Is2;
elsif Size_To_Use <= 32 then
Val_RE := RE_IS_Is4;
else
Val_RE := RE_IS_Is8;
end if;
end if;
Val := New_Occurrence_Of (RTE (Val_RE), Loc);
end if;
-- The final expression is obtained by doing an unchecked conversion
-- of this result to the base type of the required subtype. We use
-- the base type to avoid the unchecked conversion from chopping
-- bits, and then we set Kill_Range_Check to preserve the "bad"
-- value.
Result := Unchecked_Convert_To (Base_Type (T), Val);
-- Ensure result is not truncated, since we want the "bad" bits
-- and also kill range check on result.
if Nkind (Result) = N_Unchecked_Type_Conversion then
Set_No_Truncation (Result);
Set_Kill_Range_Check (Result, True);
end if;
return Result;
-- String or Wide_[Wide]_String (must have Initialize_Scalars set)
elsif Root_Type (T) = Standard_String
or else
Root_Type (T) = Standard_Wide_String
or else
Root_Type (T) = Standard_Wide_Wide_String
then
pragma Assert (Init_Or_Norm_Scalars);
return
Make_Aggregate (Loc,
Component_Associations => New_List (
Make_Component_Association (Loc,
Choices => New_List (
Make_Others_Choice (Loc)),
Expression =>
Get_Simple_Init_Val
(Component_Type (T), Loc, Esize (Root_Type (T))))));
-- Access type is initialized to null
elsif Is_Access_Type (T) then
return
Make_Null (Loc);
-- No other possibilities should arise, since we should only be
-- calling Get_Simple_Init_Val if Needs_Simple_Initialization
-- returned True, indicating one of the above cases held.
else
raise Program_Error;
end if;
exception
when RE_Not_Available =>
return Empty;
end Get_Simple_Init_Val;
------------------------------
-- Has_New_Non_Standard_Rep --
------------------------------
function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
begin
if not Is_Derived_Type (T) then
return Has_Non_Standard_Rep (T)
or else Has_Non_Standard_Rep (Root_Type (T));
-- If Has_Non_Standard_Rep is not set on the derived type, the
-- representation is fully inherited.
elsif not Has_Non_Standard_Rep (T) then
return False;
else
return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
-- May need a more precise check here: the First_Rep_Item may
-- be a stream attribute, which does not affect the representation
-- of the type ???
end if;
end Has_New_Non_Standard_Rep;
----------------
-- In_Runtime --
----------------
function In_Runtime (E : Entity_Id) return Boolean is
S1 : Entity_Id := Scope (E);
begin
while Scope (S1) /= Standard_Standard loop
S1 := Scope (S1);
end loop;
return Chars (S1) = Name_System or else Chars (S1) = Name_Ada;
end In_Runtime;
------------------
-- Init_Formals --
------------------
function Init_Formals (Typ : Entity_Id) return List_Id is
Loc : constant Source_Ptr := Sloc (Typ);
Formals : List_Id;
begin
-- First parameter is always _Init : in out typ. Note that we need
-- this to be in/out because in the case of the task record value,
-- there are default record fields (_Priority, _Size, -Task_Info)
-- that may be referenced in the generated initialization routine.
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uInit),
In_Present => True,
Out_Present => True,
Parameter_Type => New_Reference_To (Typ, Loc)));
-- For task record value, or type that contains tasks, add two more
-- formals, _Master : Master_Id and _Chain : in out Activation_Chain
-- We also add these parameters for the task record type case.
if Has_Task (Typ)
or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
then
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uMaster),
Parameter_Type => New_Reference_To (RTE (RE_Master_Id), Loc)));
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uChain),
In_Present => True,
Out_Present => True,
Parameter_Type =>
New_Reference_To (RTE (RE_Activation_Chain), Loc)));
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uTask_Name),
In_Present => True,
Parameter_Type =>
New_Reference_To (Standard_String, Loc)));
end if;
return Formals;
exception
when RE_Not_Available =>
return Empty_List;
end Init_Formals;
-------------------------------------
-- Make_Predefined_Primitive_Specs --
-------------------------------------
procedure Make_Controlling_Function_Wrappers
(Tag_Typ : Entity_Id;
Decl_List : out List_Id;
Body_List : out List_Id)
is
Loc : constant Source_Ptr := Sloc (Tag_Typ);
Prim_Elmt : Elmt_Id;
Subp : Entity_Id;
Actual_List : List_Id;
Formal_List : List_Id;
Formal : Entity_Id;
Par_Formal : Entity_Id;
Formal_Node : Node_Id;
Func_Spec : Node_Id;
Func_Decl : Node_Id;
Func_Body : Node_Id;
Return_Stmt : Node_Id;
begin
Decl_List := New_List;
Body_List := New_List;
Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim_Elmt) loop
Subp := Node (Prim_Elmt);
-- If a primitive function with a controlling result of the type has
-- not been overridden by the user, then we must create a wrapper
-- function here that effectively overrides it and invokes the
-- abstract inherited function's nonabstract parent. This can only
-- occur for a null extension. Note that functions with anonymous
-- controlling access results don't qualify and must be overridden.
-- We also exclude Input attributes, since each type will have its
-- own version of Input constructed by the expander. The test for
-- Comes_From_Source is needed to distinguish inherited operations
-- from renamings (which also have Alias set).
if Is_Abstract (Subp)
and then Present (Alias (Subp))
and then not Comes_From_Source (Subp)
and then Ekind (Subp) = E_Function
and then Has_Controlling_Result (Subp)
and then not Is_Access_Type (Etype (Subp))
and then not Is_TSS (Subp, TSS_Stream_Input)
then
Formal_List := No_List;
Formal := First_Formal (Subp);
if Present (Formal) then
Formal_List := New_List;
while Present (Formal) loop
Append
(Make_Parameter_Specification
(Loc,
Defining_Identifier =>
Make_Defining_Identifier (Sloc (Formal),
Chars => Chars (Formal)),
In_Present => In_Present (Parent (Formal)),
Out_Present => Out_Present (Parent (Formal)),
Parameter_Type =>
New_Reference_To (Etype (Formal), Loc),
Expression =>
New_Copy_Tree (Expression (Parent (Formal)))),
Formal_List);
Next_Formal (Formal);
end loop;
end if;
Func_Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Loc, Chars (Subp)),
Parameter_Specifications =>
Formal_List,
Result_Definition =>
New_Reference_To (Etype (Subp), Loc));
Func_Decl := Make_Subprogram_Declaration (Loc, Func_Spec);
Append_To (Decl_List, Func_Decl);
-- Build a wrapper body that calls the parent function. The body
-- contains a single return statement that returns an extension
-- aggregate whose ancestor part is a call to the parent function,
-- passing the formals as actuals (with any controlling arguments
-- converted to the types of the corresponding formals of the
-- parent function, which might be anonymous access types), and
-- having a null extension.
Formal := First_Formal (Subp);
Par_Formal := First_Formal (Alias (Subp));
Formal_Node := First (Formal_List);
if Present (Formal) then
Actual_List := New_List;
else
Actual_List := No_List;
end if;
while Present (Formal) loop
if Is_Controlling_Formal (Formal) then
Append_To (Actual_List,
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Etype (Par_Formal), Loc),
Expression =>
New_Reference_To
(Defining_Identifier (Formal_Node), Loc)));
else
Append_To
(Actual_List,
New_Reference_To
(Defining_Identifier (Formal_Node), Loc));
end if;
Next_Formal (Formal);
Next_Formal (Par_Formal);
Next (Formal_Node);
end loop;
Return_Stmt :=
Make_Return_Statement (Loc,
Expression =>
Make_Extension_Aggregate (Loc,
Ancestor_Part =>
Make_Function_Call (Loc,
Name => New_Reference_To (Alias (Subp), Loc),
Parameter_Associations => Actual_List),
Null_Record_Present => True));
Func_Body :=
Make_Subprogram_Body (Loc,
Specification => New_Copy_Tree (Func_Spec),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Return_Stmt)));
Set_Defining_Unit_Name
(Specification (Func_Body),
Make_Defining_Identifier (Loc, Chars (Subp)));
Append_To (Body_List, Func_Body);
-- Replace the inherited function with the wrapper function
-- in the primitive operations list.
Override_Dispatching_Operation
(Tag_Typ, Subp, New_Op => Defining_Unit_Name (Func_Spec));
end if;
Next_Elmt (Prim_Elmt);
end loop;
end Make_Controlling_Function_Wrappers;
------------------
-- Make_Eq_Case --
------------------
-- <Make_Eq_if shared components>
-- case X.D1 is
-- when V1 => <Make_Eq_Case> on subcomponents
-- ...
-- when Vn => <Make_Eq_Case> on subcomponents
-- end case;
function Make_Eq_Case
(E : Entity_Id;
CL : Node_Id;
Discr : Entity_Id := Empty) return List_Id
is
Loc : constant Source_Ptr := Sloc (E);
Result : constant List_Id := New_List;
Variant : Node_Id;
Alt_List : List_Id;
begin
Append_To (Result, Make_Eq_If (E, Component_Items (CL)));
if No (Variant_Part (CL)) then
return Result;
end if;
Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
if No (Variant) then
return Result;
end if;
Alt_List := New_List;
while Present (Variant) loop
Append_To (Alt_List,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
Statements => Make_Eq_Case (E, Component_List (Variant))));
Next_Non_Pragma (Variant);
end loop;
-- If we have an Unchecked_Union, use one of the parameters that
-- captures the discriminants.
if Is_Unchecked_Union (E) then
Append_To (Result,
Make_Case_Statement (Loc,
Expression => New_Reference_To (Discr, Loc),
Alternatives => Alt_List));
else
Append_To (Result,
Make_Case_Statement (Loc,
Expression =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_X),
Selector_Name => New_Copy (Name (Variant_Part (CL)))),
Alternatives => Alt_List));
end if;
return Result;
end Make_Eq_Case;
----------------
-- Make_Eq_If --
----------------
-- Generates:
-- if
-- X.C1 /= Y.C1
-- or else
-- X.C2 /= Y.C2
-- ...
-- then
-- return False;
-- end if;
-- or a null statement if the list L is empty
function Make_Eq_If
(E : Entity_Id;
L : List_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (E);
C : Node_Id;
Field_Name : Name_Id;
Cond : Node_Id;
begin
if No (L) then
return Make_Null_Statement (Loc);
else
Cond := Empty;
C := First_Non_Pragma (L);
while Present (C) loop
Field_Name := Chars (Defining_Identifier (C));
-- The tags must not be compared they are not part of the value.
-- Note also that in the following, we use Make_Identifier for
-- the component names. Use of New_Reference_To to identify the
-- components would be incorrect because the wrong entities for
-- discriminants could be picked up in the private type case.
if Field_Name /= Name_uTag then
Evolve_Or_Else (Cond,
Make_Op_Ne (Loc,
Left_Opnd =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_X),
Selector_Name =>
Make_Identifier (Loc, Field_Name)),
Right_Opnd =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_Y),
Selector_Name =>
Make_Identifier (Loc, Field_Name))));
end if;
Next_Non_Pragma (C);
end loop;
if No (Cond) then
return Make_Null_Statement (Loc);
else
return
Make_Implicit_If_Statement (E,
Condition => Cond,
Then_Statements => New_List (
Make_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc))));
end if;
end if;
end Make_Eq_If;
-------------------------------------
-- Make_Predefined_Primitive_Specs --
-------------------------------------
procedure Make_Predefined_Primitive_Specs
(Tag_Typ : Entity_Id;
Predef_List : out List_Id;
Renamed_Eq : out Node_Id)
is
Loc : constant Source_Ptr := Sloc (Tag_Typ);
Res : constant List_Id := New_List;
Prim : Elmt_Id;
Eq_Needed : Boolean;
Eq_Spec : Node_Id;
Eq_Name : Name_Id := Name_Op_Eq;
function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
-- Returns true if Prim is a renaming of an unresolved predefined
-- equality operation.
-------------------------------
-- Is_Predefined_Eq_Renaming --
-------------------------------
function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
begin
return Chars (Prim) /= Name_Op_Eq
and then Present (Alias (Prim))
and then Comes_From_Source (Prim)
and then Is_Intrinsic_Subprogram (Alias (Prim))
and then Chars (Alias (Prim)) = Name_Op_Eq;
end Is_Predefined_Eq_Renaming;
-- Start of processing for Make_Predefined_Primitive_Specs
begin
Renamed_Eq := Empty;
-- Spec of _Size
Append_To (Res, Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uSize,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
Ret_Type => Standard_Long_Long_Integer));
-- Spec of _Alignment
Append_To (Res, Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uAlignment,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
Ret_Type => Standard_Integer));
-- Specs for dispatching stream attributes
declare
Stream_Op_TSS_Names :
constant array (Integer range <>) of TSS_Name_Type :=
(TSS_Stream_Read,
TSS_Stream_Write,
TSS_Stream_Input,
TSS_Stream_Output);
begin
for Op in Stream_Op_TSS_Names'Range loop
if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then
Append_To (Res,
Predef_Stream_Attr_Spec (Loc, Tag_Typ,
Stream_Op_TSS_Names (Op)));
end if;
end loop;
end;
-- Spec of "=" if expanded if the type is not limited and if a
-- user defined "=" was not already declared for the non-full
-- view of a private extension
if not Is_Limited_Type (Tag_Typ) then
Eq_Needed := True;
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
-- If a primitive is encountered that renames the predefined
-- equality operator before reaching any explicit equality
-- primitive, then we still need to create a predefined
-- equality function, because calls to it can occur via
-- the renaming. A new name is created for the equality
-- to avoid conflicting with any user-defined equality.
-- (Note that this doesn't account for renamings of
-- equality nested within subpackages???)
if Is_Predefined_Eq_Renaming (Node (Prim)) then
Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
elsif Chars (Node (Prim)) = Name_Op_Eq
and then (No (Alias (Node (Prim)))
or else Nkind (Unit_Declaration_Node (Node (Prim))) =
N_Subprogram_Renaming_Declaration)
and then Etype (First_Formal (Node (Prim))) =
Etype (Next_Formal (First_Formal (Node (Prim))))
and then Base_Type (Etype (Node (Prim))) = Standard_Boolean
then
Eq_Needed := False;
exit;
-- If the parent equality is abstract, the inherited equality is
-- abstract as well, and no body can be created for for it.
elsif Chars (Node (Prim)) = Name_Op_Eq
and then Present (Alias (Node (Prim)))
and then Is_Abstract (Alias (Node (Prim)))
then
Eq_Needed := False;
exit;
end if;
Next_Elmt (Prim);
end loop;
-- If a renaming of predefined equality was found
-- but there was no user-defined equality (so Eq_Needed
-- is still true), then set the name back to Name_Op_Eq.
-- But in the case where a user-defined equality was
-- located after such a renaming, then the predefined
-- equality function is still needed, so Eq_Needed must
-- be set back to True.
if Eq_Name /= Name_Op_Eq then
if Eq_Needed then
Eq_Name := Name_Op_Eq;
else
Eq_Needed := True;
end if;
end if;
if Eq_Needed then
Eq_Spec := Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Eq_Name,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
Ret_Type => Standard_Boolean);
Append_To (Res, Eq_Spec);
if Eq_Name /= Name_Op_Eq then
Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
-- Any renamings of equality that appeared before an
-- overriding equality must be updated to refer to
-- the entity for the predefined equality, otherwise
-- calls via the renaming would get incorrectly
-- resolved to call the user-defined equality function.
if Is_Predefined_Eq_Renaming (Node (Prim)) then
Set_Alias (Node (Prim), Renamed_Eq);
-- Exit upon encountering a user-defined equality
elsif Chars (Node (Prim)) = Name_Op_Eq
and then No (Alias (Node (Prim)))
then
exit;
end if;
Next_Elmt (Prim);
end loop;
end if;
end if;
-- Spec for dispatching assignment
Append_To (Res, Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uAssign,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Out_Present => True,
Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Reference_To (Tag_Typ, Loc)))));
end if;
-- Generate the declarations for the following primitive operations:
-- disp_asynchronous_select
-- disp_conditional_select
-- disp_get_prim_op_kind
-- disp_get_task_id
-- disp_timed_select
-- for limited interfaces and synchronized types that implement a
-- limited interface.
if Ada_Version >= Ada_05
and then
((Is_Interface (Tag_Typ) and then Is_Limited_Record (Tag_Typ))
or else
(Is_Concurrent_Record_Type (Tag_Typ)
and then Implements_Interface (
Typ => Tag_Typ,
Kind => Any_Limited_Interface,
Check_Parent => True)))
then
Append_To (Res,
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
Append_To (Res,
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Conditional_Select_Spec (Tag_Typ)));
Append_To (Res,
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
Append_To (Res,
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
Append_To (Res,
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Timed_Select_Spec (Tag_Typ)));
end if;
-- Specs for finalization actions that may be required in case a
-- future extension contain a controlled element. We generate those
-- only for root tagged types where they will get dummy bodies or
-- when the type has controlled components and their body must be
-- generated. It is also impossible to provide those for tagged
-- types defined within s-finimp since it would involve circularity
-- problems
if In_Finalization_Root (Tag_Typ) then
null;
-- We also skip these if finalization is not available
elsif Restriction_Active (No_Finalization) then
null;
elsif Etype (Tag_Typ) = Tag_Typ or else Controlled_Type (Tag_Typ) then
if not Is_Limited_Type (Tag_Typ) then
Append_To (Res,
Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
end if;
Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
end if;
Predef_List := Res;
end Make_Predefined_Primitive_Specs;
---------------------------------
-- Needs_Simple_Initialization --
---------------------------------
function Needs_Simple_Initialization (T : Entity_Id) return Boolean is
begin
-- Check for private type, in which case test applies to the
-- underlying type of the private type.
if Is_Private_Type (T) then
declare
RT : constant Entity_Id := Underlying_Type (T);
begin
if Present (RT) then
return Needs_Simple_Initialization (RT);
else
return False;
end if;
end;
-- Cases needing simple initialization are access types, and, if pragma
-- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
-- types.
elsif Is_Access_Type (T)
or else (Init_Or_Norm_Scalars and then (Is_Scalar_Type (T)))
then
return True;
-- If Initialize/Normalize_Scalars is in effect, string objects also
-- need initialization, unless they are created in the course of
-- expanding an aggregate (since in the latter case they will be
-- filled with appropriate initializing values before they are used).
elsif Init_Or_Norm_Scalars
and then
(Root_Type (T) = Standard_String
or else Root_Type (T) = Standard_Wide_String
or else Root_Type (T) = Standard_Wide_Wide_String)
and then
(not Is_Itype (T)
or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
then
return True;
else
return False;
end if;
end Needs_Simple_Initialization;
----------------------
-- Predef_Deep_Spec --
----------------------
function Predef_Deep_Spec
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : TSS_Name_Type;
For_Body : Boolean := False) return Node_Id
is
Prof : List_Id;
Type_B : Entity_Id;
begin
if Name = TSS_Deep_Finalize then
Prof := New_List;
Type_B := Standard_Boolean;
else
Prof := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_L),
In_Present => True,
Out_Present => True,
Parameter_Type =>
New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
Type_B := Standard_Short_Short_Integer;
end if;
Append_To (Prof,
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
In_Present => True,
Out_Present => True,
Parameter_Type => New_Reference_To (Tag_Typ, Loc)));
Append_To (Prof,
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_B),
Parameter_Type => New_Reference_To (Type_B, Loc)));
return Predef_Spec_Or_Body (Loc,
Name => Make_TSS_Name (Tag_Typ, Name),
Tag_Typ => Tag_Typ,
Profile => Prof,
For_Body => For_Body);
exception
when RE_Not_Available =>
return Empty;
end Predef_Deep_Spec;
-------------------------
-- Predef_Spec_Or_Body --
-------------------------
function Predef_Spec_Or_Body
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : Name_Id;
Profile : List_Id;
Ret_Type : Entity_Id := Empty;
For_Body : Boolean := False) return Node_Id
is
Id : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
Spec : Node_Id;
begin
Set_Is_Public (Id, Is_Public (Tag_Typ));
-- The internal flag is set to mark these declarations because
-- they have specific properties. First they are primitives even
-- if they are not defined in the type scope (the freezing point
-- is not necessarily in the same scope), furthermore the
-- predefined equality can be overridden by a user-defined
-- equality, no body will be generated in this case.
Set_Is_Internal (Id);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Id);
end if;
if No (Ret_Type) then
Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Id,
Parameter_Specifications => Profile);
else
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => Id,
Parameter_Specifications => Profile,
Result_Definition =>
New_Reference_To (Ret_Type, Loc));
end if;
-- If body case, return empty subprogram body. Note that this is
-- ill-formed, because there is not even a null statement, and
-- certainly not a return in the function case. The caller is
-- expected to do surgery on the body to add the appropriate stuff.
if For_Body then
return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
-- For the case of Input/Output attributes applied to an abstract type,
-- generate abstract specifications. These will never be called,
-- but we need the slots allocated in the dispatching table so
-- that typ'Class'Input and typ'Class'Output will work properly.
elsif (Is_TSS (Name, TSS_Stream_Input)
or else
Is_TSS (Name, TSS_Stream_Output))
and then Is_Abstract (Tag_Typ)
then
return Make_Abstract_Subprogram_Declaration (Loc, Spec);
-- Normal spec case, where we return a subprogram declaration
else
return Make_Subprogram_Declaration (Loc, Spec);
end if;
end Predef_Spec_Or_Body;
-----------------------------
-- Predef_Stream_Attr_Spec --
-----------------------------
function Predef_Stream_Attr_Spec
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : TSS_Name_Type;
For_Body : Boolean := False) return Node_Id
is
Ret_Type : Entity_Id;
begin
if Name = TSS_Stream_Input then
Ret_Type := Tag_Typ;
else
Ret_Type := Empty;
end if;
return Predef_Spec_Or_Body (Loc,
Name => Make_TSS_Name (Tag_Typ, Name),
Tag_Typ => Tag_Typ,
Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
Ret_Type => Ret_Type,
For_Body => For_Body);
end Predef_Stream_Attr_Spec;
---------------------------------
-- Predefined_Primitive_Bodies --
---------------------------------
function Predefined_Primitive_Bodies
(Tag_Typ : Entity_Id;
Renamed_Eq : Node_Id) return List_Id
is
Loc : constant Source_Ptr := Sloc (Tag_Typ);
Res : constant List_Id := New_List;
Decl : Node_Id;
Prim : Elmt_Id;
Eq_Needed : Boolean;
Eq_Name : Name_Id;
Ent : Entity_Id;
begin
-- See if we have a predefined "=" operator
if Present (Renamed_Eq) then
Eq_Needed := True;
Eq_Name := Chars (Renamed_Eq);
else
Eq_Needed := False;
Eq_Name := No_Name;
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
if Chars (Node (Prim)) = Name_Op_Eq
and then Is_Internal (Node (Prim))
then
Eq_Needed := True;
Eq_Name := Name_Op_Eq;
end if;
Next_Elmt (Prim);
end loop;
end if;
-- Body of _Alignment
Decl := Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uAlignment,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
Ret_Type => Standard_Integer,
For_Body => True);
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, New_List (
Make_Return_Statement (Loc,
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_X),
Attribute_Name => Name_Alignment)))));
Append_To (Res, Decl);
-- Body of _Size
Decl := Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uSize,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
Ret_Type => Standard_Long_Long_Integer,
For_Body => True);
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, New_List (
Make_Return_Statement (Loc,
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_X),
Attribute_Name => Name_Size)))));
Append_To (Res, Decl);
-- Bodies for Dispatching stream IO routines. We need these only for
-- non-limited types (in the limited case there is no dispatching).
-- We also skip them if dispatching or finalization are not available.
if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read)
and then No (TSS (Tag_Typ, TSS_Stream_Read))
then
Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write)
and then No (TSS (Tag_Typ, TSS_Stream_Write))
then
Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
-- Skip bodies of _Input and _Output for the abstract case, since
-- the corresponding specs are abstract (see Predef_Spec_Or_Body)
if not Is_Abstract (Tag_Typ) then
if Stream_Operation_OK (Tag_Typ, TSS_Stream_Input)
and then No (TSS (Tag_Typ, TSS_Stream_Input))
then
Build_Record_Or_Elementary_Input_Function
(Loc, Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output)
and then No (TSS (Tag_Typ, TSS_Stream_Output))
then
Build_Record_Or_Elementary_Output_Procedure
(Loc, Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
end if;
-- Generate the bodies for the following primitive operations:
-- disp_asynchronous_select
-- disp_conditional_select
-- disp_get_prim_op_kind
-- disp_get_task_id
-- disp_timed_select
-- for limited interfaces and synchronized types that implement a
-- limited interface. The interface versions will have null bodies.
if Ada_Version >= Ada_05
and then
not Restriction_Active (No_Dispatching_Calls)
and then
((Is_Interface (Tag_Typ) and then Is_Limited_Record (Tag_Typ))
or else
(Is_Concurrent_Record_Type (Tag_Typ)
and then Implements_Interface (
Typ => Tag_Typ,
Kind => Any_Limited_Interface,
Check_Parent => True)))
then
Append_To (Res, Make_Disp_Asynchronous_Select_Body (Tag_Typ));
Append_To (Res, Make_Disp_Conditional_Select_Body (Tag_Typ));
Append_To (Res, Make_Disp_Get_Prim_Op_Kind_Body (Tag_Typ));
Append_To (Res, Make_Disp_Get_Task_Id_Body (Tag_Typ));
Append_To (Res, Make_Disp_Timed_Select_Body (Tag_Typ));
end if;
if not Is_Limited_Type (Tag_Typ) then
-- Body for equality
if Eq_Needed then
Decl :=
Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Eq_Name,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
Ret_Type => Standard_Boolean,
For_Body => True);
declare
Def : constant Node_Id := Parent (Tag_Typ);
Stmts : constant List_Id := New_List;
Variant_Case : Boolean := Has_Discriminants (Tag_Typ);
Comps : Node_Id := Empty;
Typ_Def : Node_Id := Type_Definition (Def);
begin
if Variant_Case then
if Nkind (Typ_Def) = N_Derived_Type_Definition then
Typ_Def := Record_Extension_Part (Typ_Def);
end if;
if Present (Typ_Def) then
Comps := Component_List (Typ_Def);
end if;
Variant_Case := Present (Comps)
and then Present (Variant_Part (Comps));
end if;
if Variant_Case then
Append_To (Stmts,
Make_Eq_If (Tag_Typ, Discriminant_Specifications (Def)));
Append_List_To (Stmts, Make_Eq_Case (Tag_Typ, Comps));
Append_To (Stmts,
Make_Return_Statement (Loc,
Expression => New_Reference_To (Standard_True, Loc)));
else
Append_To (Stmts,
Make_Return_Statement (Loc,
Expression =>
Expand_Record_Equality (Tag_Typ,
Typ => Tag_Typ,
Lhs => Make_Identifier (Loc, Name_X),
Rhs => Make_Identifier (Loc, Name_Y),
Bodies => Declarations (Decl))));
end if;
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, Stmts));
end;
Append_To (Res, Decl);
end if;
-- Body for dispatching assignment
Decl :=
Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uAssign,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Out_Present => True,
Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
For_Body => True);
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, New_List (
Make_Assignment_Statement (Loc,
Name => Make_Identifier (Loc, Name_X),
Expression => Make_Identifier (Loc, Name_Y)))));
Append_To (Res, Decl);
end if;
-- Generate dummy bodies for finalization actions of types that have
-- no controlled components.
-- Skip this processing if we are in the finalization routine in the
-- runtime itself, otherwise we get hopelessly circularly confused!
if In_Finalization_Root (Tag_Typ) then
null;
-- Skip this if finalization is not available
elsif Restriction_Active (No_Finalization) then
null;
elsif (Etype (Tag_Typ) = Tag_Typ or else Is_Controlled (Tag_Typ))
and then not Has_Controlled_Component (Tag_Typ)
then
if not Is_Limited_Type (Tag_Typ) then
Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);
if Is_Controlled (Tag_Typ) then
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc,
Make_Adjust_Call (
Ref => Make_Identifier (Loc, Name_V),
Typ => Tag_Typ,
Flist_Ref => Make_Identifier (Loc, Name_L),
With_Attach => Make_Identifier (Loc, Name_B))));
else
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, New_List (
Make_Null_Statement (Loc))));
end if;
Append_To (Res, Decl);
end if;
Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);
if Is_Controlled (Tag_Typ) then
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc,
Make_Final_Call (
Ref => Make_Identifier (Loc, Name_V),
Typ => Tag_Typ,
With_Detach => Make_Identifier (Loc, Name_B))));
else
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, New_List (
Make_Null_Statement (Loc))));
end if;
Append_To (Res, Decl);
end if;
return Res;
end Predefined_Primitive_Bodies;
---------------------------------
-- Predefined_Primitive_Freeze --
---------------------------------
function Predefined_Primitive_Freeze
(Tag_Typ : Entity_Id) return List_Id
is
Loc : constant Source_Ptr := Sloc (Tag_Typ);
Res : constant List_Id := New_List;
Prim : Elmt_Id;
Frnodes : List_Id;
begin
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
if Is_Internal (Node (Prim)) then
Frnodes := Freeze_Entity (Node (Prim), Loc);
if Present (Frnodes) then
Append_List_To (Res, Frnodes);
end if;
end if;
Next_Elmt (Prim);
end loop;
return Res;
end Predefined_Primitive_Freeze;
-------------------------
-- Stream_Operation_OK --
-------------------------
function Stream_Operation_OK
(Typ : Entity_Id;
Operation : TSS_Name_Type) return Boolean
is
Has_Inheritable_Stream_Attribute : Boolean := False;
begin
if Is_Limited_Type (Typ)
and then Is_Tagged_Type (Typ)
and then Is_Derived_Type (Typ)
then
-- Special case of a limited type extension: a default implementation
-- of the stream attributes Read and Write exists if the attribute
-- has been specified for an ancestor type.
Has_Inheritable_Stream_Attribute :=
Present (Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation));
end if;
return
not (Is_Limited_Type (Typ)
and then not Has_Inheritable_Stream_Attribute)
and then not Has_Unknown_Discriminants (Typ)
and then RTE_Available (RE_Tag)
and then RTE_Available (RE_Root_Stream_Type)
and then not Restriction_Active (No_Dispatch)
and then not Restriction_Active (No_Streams);
end Stream_Operation_OK;
end Exp_Ch3;