blob: c9f38a95d922d03b3b04f0672aff5a7b76256af6 [file] [log] [blame]
//===- Local.cpp - Compute a local data structure graph for a function ----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Compute the local version of the data structure graph for a function. The
// external interface to this file is the DSGraph constructor.
//
//===----------------------------------------------------------------------===//
#include "dsa/DataStructure.h"
#include "dsa/DSGraph.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/InlineAsm.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Timer.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/DenseSet.h"
#include <fstream>
// FIXME: This should eventually be a FunctionPass that is automatically
// aggregated into a Pass.
//
#include "llvm/Module.h"
using namespace llvm;
static RegisterPass<LocalDataStructures>
X("dsa-local", "Local Data Structure Analysis");
static cl::opt<std::string> hasMagicSections("dsa-magic-sections",
cl::desc("File with section to global mapping")); //, cl::ReallyHidden);
namespace {
//===--------------------------------------------------------------------===//
// GraphBuilder Class
//===--------------------------------------------------------------------===//
//
/// This class is the builder class that constructs the local data structure
/// graph by performing a single pass over the function in question.
///
class GraphBuilder : InstVisitor<GraphBuilder> {
DSGraph &G;
Function* FB;
DataStructures* DS;
const TargetData& TD;
////////////////////////////////////////////////////////////////////////////
// Helper functions used to implement the visitation functions...
void MergeConstantInitIntoNode(DSNodeHandle &NH, const Type* Ty, Constant *C);
/// createNode - Create a new DSNode, ensuring that it is properly added to
/// the graph.
///
DSNode *createNode()
{
DSNode* ret = new DSNode(&G);
assert(ret->getParentGraph() && "No parent?");
return ret;
}
/// setDestTo - Set the ScalarMap entry for the specified value to point to
/// the specified destination. If the Value already points to a node, make
/// sure to merge the two destinations together.
///
void setDestTo(Value &V, const DSNodeHandle &NH);
/// getValueDest - Return the DSNode that the actual value points to.
///
DSNodeHandle getValueDest(Value* V);
/// getLink - This method is used to return the specified link in the
/// specified node if one exists. If a link does not already exist (it's
/// null), then we create a new node, link it, then return it.
///
DSNodeHandle &getLink(const DSNodeHandle &Node, unsigned Link = 0);
////////////////////////////////////////////////////////////////////////////
// Visitor functions, used to handle each instruction type we encounter...
friend class InstVisitor<GraphBuilder>;
//TODO: generalize
bool visitAllocation(CallSite CS) {
if (Function* F = CS.getCalledFunction()) {
if (F->hasName() && F->getName() == "malloc") {
setDestTo(*CS.getInstruction(), createNode()->setHeapMarker());
return true;
}
}
return false;
}
//FIXME: implement in stdlib pass
// void visitMallocInst(MallocInst &MI)
// { setDestTo(MI, createNode()->setHeapMarker()); }
void visitAllocaInst(AllocaInst &AI)
{ setDestTo(AI, createNode()->setAllocaMarker()); }
//FIXME: implement in stdlib pass
//void visitFreeInst(FreeInst &FI)
//{ if (DSNode *N = getValueDest(FI.getOperand(0)).getNode())
// N->setHeapMarker();
// }
//the simple ones
void visitPHINode(PHINode &PN);
void visitSelectInst(SelectInst &SI);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void visitReturnInst(ReturnInst &RI);
void visitVAArgInst(VAArgInst &I);
void visitIntToPtrInst(IntToPtrInst &I);
void visitPtrToIntInst(PtrToIntInst &I);
void visitBitCastInst(BitCastInst &I);
void visitCmpInst(CmpInst &I);
void visitInsertValueInst(InsertValueInst& I);
void visitExtractValueInst(ExtractValueInst& I);
//the nasty ones
void visitGetElementPtrInst(User &GEP);
void visitCallInst(CallInst &CI);
void visitInvokeInst(InvokeInst &II);
void visitInstruction(Instruction &I);
bool visitIntrinsic(CallSite CS, Function* F);
void visitCallSite(CallSite CS);
public:
GraphBuilder(Function &f, DSGraph &g, DataStructures& DSi)
: G(g), FB(&f), DS(&DSi), TD(g.getTargetData()) {
// Create scalar nodes for all pointer arguments...
for (Function::arg_iterator I = f.arg_begin(), E = f.arg_end();
I != E; ++I) {
if (isa<PointerType>(I->getType())) {
DSNode * Node = getValueDest(I).getNode();
if (!f.hasInternalLinkage())
Node->setExternalMarker();
}
}
// Create an entry for the return, which tracks which functions are in
// the graph
g.getOrCreateReturnNodeFor(f);
visit(f); // Single pass over the function
// If there are any constant globals referenced in this function, merge
// their initializers into the local graph from the globals graph.
// This resolves indirect calls in some common cases
// Only merge info for nodes that already exist in the local pass
// otherwise leaf functions could contain less collapsing than the globals
// graph
if (g.getScalarMap().global_begin() != g.getScalarMap().global_end()) {
ReachabilityCloner RC(&g, g.getGlobalsGraph(), 0);
std::vector<const GlobalValue*> GVV(g.getScalarMap().global_begin(),
g.getScalarMap().global_end());
for (std::vector<const GlobalValue*>::iterator I = GVV.begin();
I != GVV.end(); ++I)
if (const GlobalVariable * GV = dyn_cast<GlobalVariable > (*I))
if (GV->isConstant())
RC.merge(g.getNodeForValue(GV), g.getGlobalsGraph()->getNodeForValue(GV));
}
g.markIncompleteNodes(DSGraph::MarkFormalArgs);
// Remove any nodes made dead due to merging...
g.removeDeadNodes(DSGraph::KeepUnreachableGlobals);
}
// GraphBuilder ctor for working on the globals graph
explicit GraphBuilder(DSGraph& g)
:G(g), FB(0), TD(g.getTargetData())
{}
void mergeInGlobalInitializer(GlobalVariable *GV);
void mergeExternalGlobal(GlobalVariable* GV);
void mergeFunction(Function* F) { getValueDest(F); }
};
/// Traverse the whole DSGraph, and propagate the unknown flags through all
/// out edges.
static void propagateUnknownFlag(DSGraph * G) {
std::vector<DSNode *> workList;
DenseSet<DSNode *> visited;
for (DSGraph::node_iterator I = G->node_begin(), E = G->node_end(); I != E; ++I)
if (I->isUnknownNode())
workList.push_back(&*I);
while (!workList.empty()) {
DSNode * N = workList.back();
workList.pop_back();
if (visited.count(N) != 0) continue;
visited.insert(N);
N->setUnknownMarker();
for (DSNode::edge_iterator I = N->edge_begin(), E = N->edge_end(); I != E; ++I)
if (!I->second.isNull())
workList.push_back(I->second.getNode());
}
}
}
//===----------------------------------------------------------------------===//
// Helper method implementations...
//
///
/// getValueDest - Return the DSNode that the actual value points to.
///
DSNodeHandle GraphBuilder::getValueDest(Value* V) {
if (isa<Constant>(V) && cast<Constant>(V)->isNullValue())
return 0; // Null doesn't point to anything, don't add to ScalarMap!
DSNodeHandle &NH = G.getNodeForValue(V);
if (!NH.isNull())
return NH; // Already have a node? Just return it...
// Otherwise we need to create a new node to point to.
// Check first for constant expressions that must be traversed to
// extract the actual value.
DSNode* N;
if (Function * F = dyn_cast<Function > (V)) {
// Create a new global node for this function.
N = createNode();
N->addFunction(F);
if (F->isDeclaration())
N->setExternFuncMarker();
} else if (GlobalValue * GV = dyn_cast<GlobalValue > (V)) {
// Create a new global node for this global variable.
N = createNode();
N->addGlobal(GV);
if (GV->isDeclaration())
N->setExternGlobalMarker();
} else if (Constant *C = dyn_cast<Constant>(V)) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->isCast()) {
if (isa<PointerType>(CE->getOperand(0)->getType()))
NH = getValueDest(CE->getOperand(0));
else
NH = createNode()->setUnknownMarker();
} else if (CE->getOpcode() == Instruction::GetElementPtr) {
visitGetElementPtrInst(*CE);
assert(G.hasNodeForValue(CE) && "GEP didn't get processed right?");
NH = G.getNodeForValue(CE);
} else {
// This returns a conservative unknown node for any unhandled ConstExpr
NH = createNode()->setUnknownMarker();
}
if (NH.isNull()) { // (getelementptr null, X) returns null
G.eraseNodeForValue(V);
return 0;
}
return NH;
} else if (isa<UndefValue>(C)) {
G.eraseNodeForValue(V);
return 0;
} else if (isa<GlobalAlias>(C)) {
// XXX: Need more investigation
// According to Andrew, DSA is broken on global aliasing, since it does
// not handle the aliases of parameters correctly. Here is only a quick
// fix for some special cases.
NH = getValueDest(cast<GlobalAlias>(C)->getAliasee());
return NH;
} else {
errs() << "Unknown constant: " << *C << "\n";
assert(0 && "Unknown constant type!");
}
N = createNode(); // just create a shadow node
} else {
// Otherwise just create a shadow node
N = createNode();
}
NH.setTo(N, 0); // Remember that we are pointing to it...
return NH;
}
/// getLink - This method is used to return the specified link in the
/// specified node if one exists. If a link does not already exist (it's
/// null), then we create a new node, link it, then return it. We must
/// specify the type of the Node field we are accessing so that we know what
/// type should be linked to if we need to create a new node.
///
DSNodeHandle &GraphBuilder::getLink(const DSNodeHandle &node, unsigned LinkNo) {
DSNodeHandle &Node = const_cast<DSNodeHandle&>(node);
DSNodeHandle &Link = Node.getLink(LinkNo);
if (Link.isNull()) {
// If the link hasn't been created yet, make and return a new shadow node
Link = createNode();
}
return Link;
}
/// setDestTo - Set the ScalarMap entry for the specified value to point to the
/// specified destination. If the Value already points to a node, make sure to
/// merge the two destinations together.
///
void GraphBuilder::setDestTo(Value &V, const DSNodeHandle &NH) {
G.getNodeForValue(&V).mergeWith(NH);
}
//===----------------------------------------------------------------------===//
// Specific instruction type handler implementations...
//
// PHINode - Make the scalar for the PHI node point to all of the things the
// incoming values point to... which effectively causes them to be merged.
//
void GraphBuilder::visitPHINode(PHINode &PN) {
if (!isa<PointerType>(PN.getType())) return; // Only pointer PHIs
DSNodeHandle &PNDest = G.getNodeForValue(&PN);
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
PNDest.mergeWith(getValueDest(PN.getIncomingValue(i)));
}
void GraphBuilder::visitSelectInst(SelectInst &SI) {
if (!isa<PointerType>(SI.getType()))
return; // Only pointer Selects
DSNodeHandle &Dest = G.getNodeForValue(&SI);
DSNodeHandle S1 = getValueDest(SI.getOperand(1));
DSNodeHandle S2 = getValueDest(SI.getOperand(2));
Dest.mergeWith(S1);
Dest.mergeWith(S2);
}
void GraphBuilder::visitLoadInst(LoadInst &LI) {
DSNodeHandle Ptr = getValueDest(LI.getOperand(0));
if (Ptr.isNull()) return; // Load from null
// Make that the node is read from...
Ptr.getNode()->setReadMarker();
// Ensure a typerecord exists...
Ptr.getNode()->mergeTypeInfo(LI.getType(), Ptr.getOffset());
if (isa<PointerType>(LI.getType()))
setDestTo(LI, getLink(Ptr));
}
void GraphBuilder::visitStoreInst(StoreInst &SI) {
const Type *StoredTy = SI.getOperand(0)->getType();
DSNodeHandle Dest = getValueDest(SI.getOperand(1));
if (Dest.isNull()) return;
// Mark that the node is written to...
Dest.getNode()->setModifiedMarker();
// Ensure a type-record exists...
Dest.getNode()->mergeTypeInfo(StoredTy, Dest.getOffset());
// Avoid adding edges from null, or processing non-"pointer" stores
if (isa<PointerType>(StoredTy))
Dest.addEdgeTo(getValueDest(SI.getOperand(0)));
}
void GraphBuilder::visitReturnInst(ReturnInst &RI) {
if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
G.getOrCreateReturnNodeFor(*FB).mergeWith(getValueDest(RI.getOperand(0)));
}
void GraphBuilder::visitVAArgInst(VAArgInst &I) {
//FIXME: also updates the argument
DSNodeHandle Ptr = getValueDest(I.getOperand(0));
if (Ptr.isNull()) return;
// Make that the node is read and written
Ptr.getNode()->setReadMarker()->setModifiedMarker();
// Ensure a type record exists.
DSNode *PtrN = Ptr.getNode();
PtrN->mergeTypeInfo(I.getType(), Ptr.getOffset());
if (isa<PointerType>(I.getType()))
setDestTo(I, getLink(Ptr));
}
void GraphBuilder::visitIntToPtrInst(IntToPtrInst &I) {
// std::cerr << "cast in " << I.getParent()->getParent()->getName() << "\n";
// I.dump();
setDestTo(I, createNode()->setUnknownMarker()->setIntToPtrMarker());
}
void GraphBuilder::visitPtrToIntInst(PtrToIntInst& I) {
if (DSNode* N = getValueDest(I.getOperand(0)).getNode())
N->setPtrToIntMarker();
}
void GraphBuilder::visitBitCastInst(BitCastInst &I) {
if (!isa<PointerType>(I.getType())) return; // Only pointers
DSNodeHandle Ptr = getValueDest(I.getOperand(0));
if (Ptr.isNull()) return;
setDestTo(I, Ptr);
}
void GraphBuilder::visitCmpInst(CmpInst &I) {
//Address can escape through cmps
}
void GraphBuilder::visitInsertValueInst(InsertValueInst& I) {
setDestTo(I, createNode()->setAllocaMarker());
const Type *StoredTy = I.getInsertedValueOperand()->getType();
DSNodeHandle Dest = getValueDest(&I);
Dest.mergeWith(getValueDest(I.getAggregateOperand()));
// Mark that the node is written to...
Dest.getNode()->setModifiedMarker();
// Ensure a type-record exists...
Dest.getNode()->mergeTypeInfo(StoredTy, 0); //FIXME: calculate offset
Dest.getNode()->foldNodeCompletely();
// Avoid adding edges from null, or processing non-"pointer" stores
if (isa<PointerType>(StoredTy))
Dest.addEdgeTo(getValueDest(I.getInsertedValueOperand()));
}
void GraphBuilder::visitExtractValueInst(ExtractValueInst& I) {
DSNodeHandle Ptr = getValueDest(I.getOperand(0));
// Make that the node is read from...
Ptr.getNode()->setReadMarker();
// Ensure a typerecord exists...
// FIXME: calculate offset
Ptr.getNode()->mergeTypeInfo(I.getType(), 0);
if (isa<PointerType>(I.getType()))
setDestTo(I, getLink(Ptr));
}
void GraphBuilder::visitGetElementPtrInst(User &GEP) {
DSNodeHandle Value = getValueDest(GEP.getOperand(0));
if (Value.isNull())
Value = createNode();
// As a special case, if all of the index operands of GEP are constant zeros,
// handle this just like we handle casts (ie, don't do much).
bool AllZeros = true;
for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i) {
if (ConstantInt * CI = dyn_cast<ConstantInt>(GEP.getOperand(i)))
if (CI->isZero()) {
continue;
}
AllZeros = false;
break;
}
// If all of the indices are zero, the result points to the operand without
// applying the type.
if (AllZeros || (!Value.isNull() &&
Value.getNode()->isNodeCompletelyFolded())) {
setDestTo(GEP, Value);
return;
}
//Make sure the uncollapsed node has a large enough size for the struct type
const PointerType *PTy = cast<PointerType > (GEP.getOperand(0)->getType());
const Type *CurTy = PTy->getElementType();
if (TD.getTypeAllocSize(CurTy) + Value.getOffset() > Value.getNode()->getSize())
Value.getNode()->growSize(TD.getTypeAllocSize(CurTy) + Value.getOffset());
#if 0
// Handle the pointer index specially...
if (GEP.getNumOperands() > 1 &&
(!isa<Constant>(GEP.getOperand(1)) ||
!cast<Constant>(GEP.getOperand(1))->isNullValue())) {
// If we already know this is an array being accessed, don't do anything...
if (!TopTypeRec.isArray) {
TopTypeRec.isArray = true;
// If we are treating some inner field pointer as an array, fold the node
// up because we cannot handle it right. This can come because of
// something like this: &((&Pt->X)[1]) == &Pt->Y
//
if (Value.getOffset()) {
// Value is now the pointer we want to GEP to be...
Value.getNode()->foldNodeCompletely();
setDestTo(GEP, Value); // GEP result points to folded node
return;
} else {
// This is a pointer to the first byte of the node. Make sure that we
// are pointing to the outter most type in the node.
// FIXME: We need to check one more case here...
}
}
}
#endif
// All of these subscripts are indexing INTO the elements we have...
unsigned Offset = 0;
for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
I != E; ++I)
if (const StructType *STy = dyn_cast<StructType>(*I)) {
const ConstantInt* CUI = cast<ConstantInt>(I.getOperand());
int FieldNo = CUI->getSExtValue();
Offset += (unsigned)TD.getStructLayout(STy)->getElementOffset(FieldNo);
} else if (isa<PointerType>(*I)) {
if (!isa<Constant>(I.getOperand()) ||
!cast<Constant>(I.getOperand())->isNullValue())
Value.getNode()->setArrayMarker();
}
#if 0
if (const SequentialType *STy = cast<SequentialType>(*I)) {
CurTy = STy->getElementType();
if (ConstantInt *CS = dyn_cast<ConstantInt>(GEP.getOperand(i))) {
Offset +=
(CS->getType()->isSigned() ? CS->getSExtValue() : CS->getZExtValue())
* TD.getTypeAllocSize(CurTy);
} else {
// Variable index into a node. We must merge all of the elements of the
// sequential type here.
if (isa<PointerType>(STy)) {
DEBUG(errs() << "Pointer indexing not handled yet!\n");
} else {
const ArrayType *ATy = cast<ArrayType>(STy);
unsigned ElSize = TD.getTypeAllocSize(CurTy);
DSNode *N = Value.getNode();
assert(N && "Value must have a node!");
unsigned RawOffset = Offset+Value.getOffset();
// Loop over all of the elements of the array, merging them into the
// zeroth element.
for (unsigned i = 1, e = ATy->getNumElements(); i != e; ++i)
// Merge all of the byte components of this array element
for (unsigned j = 0; j != ElSize; ++j)
N->mergeIndexes(RawOffset+j, RawOffset+i*ElSize+j);
}
}
}
#endif
// Add in the offset calculated...
Value.setOffset(Value.getOffset()+Offset);
// Check the offset
DSNode *N = Value.getNode();
if (N &&
!N->isNodeCompletelyFolded() &&
(N->getSize() != 0 || Offset != 0) &&
!N->isForwarding()) {
if ((Offset >= N->getSize()) || int(Offset) < 0) {
// Accessing offsets out of node size range
// This is seen in the "magic" struct in named (from bind), where the
// fourth field is an array of length 0, presumably used to create struct
// instances of different sizes
// Collapse the node since its size is now variable
N->foldNodeCompletely();
}
}
// Value is now the pointer we want to GEP to be...
setDestTo(GEP, Value);
}
void GraphBuilder::visitCallInst(CallInst &CI) {
visitCallSite(&CI);
}
void GraphBuilder::visitInvokeInst(InvokeInst &II) {
visitCallSite(&II);
}
/// returns true if the intrinsic is handled
bool GraphBuilder::visitIntrinsic(CallSite CS, Function *F) {
switch (F->getIntrinsicID()) {
case Intrinsic::vastart: {
// Mark the memory written by the vastart intrinsic as incomplete
DSNodeHandle RetNH = getValueDest(*CS.arg_begin());
if (DSNode *N = RetNH.getNode()) {
N->setModifiedMarker()->setAllocaMarker()->setIncompleteMarker()
->setVAStartMarker()->setUnknownMarker()->foldNodeCompletely();
}
if (RetNH.hasLink(0)) {
DSNodeHandle Link = RetNH.getLink(0);
if (DSNode *N = Link.getNode()) {
N->setModifiedMarker()->setAllocaMarker()->setIncompleteMarker()
->setVAStartMarker()->setUnknownMarker()->foldNodeCompletely();
}
} else {
//
// Sometimes the argument to the vastart is casted and has no DSNode.
// Peer past the cast.
//
Value * Operand = CS.getInstruction()->getOperand(1);
if (CastInst * CI = dyn_cast<CastInst>(Operand))
Operand = CI->getOperand (0);
RetNH = getValueDest(Operand);
if (DSNode *N = RetNH.getNode()) {
N->setModifiedMarker()->setAllocaMarker()->setIncompleteMarker()
->setVAStartMarker()->setUnknownMarker()->foldNodeCompletely();
}
}
return true;
}
case Intrinsic::vacopy:
getValueDest(CS.getInstruction()).
mergeWith(getValueDest(*(CS.arg_begin())));
return true;
case Intrinsic::stacksave: {
DSNode * Node = createNode();
Node->setAllocaMarker()->setIncompleteMarker()->setUnknownMarker();
Node->foldNodeCompletely();
setDestTo (*(CS.getInstruction()), Node);
return true;
}
case Intrinsic::stackrestore:
getValueDest(CS.getInstruction()).getNode()->setAllocaMarker()
->setIncompleteMarker()
->setUnknownMarker()
->foldNodeCompletely();
return true;
case Intrinsic::vaend:
case Intrinsic::memory_barrier:
return true; // noop
case Intrinsic::memcpy:
case Intrinsic::memmove: {
// Merge the first & second arguments, and mark the memory read and
// modified.
DSNodeHandle RetNH = getValueDest(*CS.arg_begin());
RetNH.mergeWith(getValueDest(*(CS.arg_begin()+1)));
if (DSNode *N = RetNH.getNode())
N->setModifiedMarker()->setReadMarker();
return true;
}
case Intrinsic::memset:
// Mark the memory modified.
if (DSNode *N = getValueDest(*CS.arg_begin()).getNode())
N->setModifiedMarker();
return true;
case Intrinsic::eh_exception: {
DSNode * Node = createNode();
Node->setIncompleteMarker();
Node->foldNodeCompletely();
setDestTo (*(CS.getInstruction()), Node);
return true;
}
case Intrinsic::atomic_cmp_swap: {
DSNodeHandle Ptr = getValueDest(*CS.arg_begin());
Ptr.getNode()->setReadMarker();
Ptr.getNode()->setModifiedMarker();
if (isa<PointerType>(F->getReturnType())) {
setDestTo(*(CS.getInstruction()), getValueDest(*(CS.arg_begin() + 1)));
getValueDest(*(CS.arg_begin() + 1))
.mergeWith(getValueDest(*(CS.arg_begin() + 2)));
}
}
case Intrinsic::atomic_swap:
case Intrinsic::atomic_load_add:
case Intrinsic::atomic_load_sub:
case Intrinsic::atomic_load_and:
case Intrinsic::atomic_load_nand:
case Intrinsic::atomic_load_or:
case Intrinsic::atomic_load_xor:
case Intrinsic::atomic_load_max:
case Intrinsic::atomic_load_min:
case Intrinsic::atomic_load_umax:
case Intrinsic::atomic_load_umin:
{
DSNodeHandle Ptr = getValueDest(*CS.arg_begin());
Ptr.getNode()->setReadMarker();
Ptr.getNode()->setModifiedMarker();
if (isa<PointerType>(F->getReturnType()))
setDestTo(*CS.getInstruction(), getValueDest(*(CS.arg_begin() + 1)));
}
case Intrinsic::prefetch:
return true;
//
// The return address aliases with the stack, is type-unknown, and should
// have the unknown flag set since we don't know where it goes.
//
case Intrinsic::returnaddress: {
DSNode * Node = createNode();
Node->setAllocaMarker()->setIncompleteMarker()->setUnknownMarker();
Node->foldNodeCompletely();
setDestTo (*(CS.getInstruction()), Node);
return true;
}
default: {
//ignore pointer free intrinsics
if (!isa<PointerType>(F->getReturnType())) {
bool hasPtr = false;
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E && !hasPtr; ++I)
if (isa<PointerType>(I->getType()))
hasPtr = true;
if (!hasPtr)
return true;
}
DEBUG(errs() << "[dsa:local] Unhandled intrinsic: " << F->getName() << "\n");
assert(0 && "Unhandled intrinsic");
return false;
}
}
}
void GraphBuilder::visitCallSite(CallSite CS) {
Value *Callee = CS.getCalledValue();
// Special case handling of certain libc allocation functions here.
if (Function *F = dyn_cast<Function>(Callee))
if (F->isIntrinsic() && visitIntrinsic(CS, F))
return;
if (visitAllocation(CS))
return;
if (isa<InlineAsm>(CS.getCalledValue())) return;
// if (InlineAsm* IASM = dyn_cast<InlineAsm>(CS.getCalledValue())) {
// if (IASM->hasSideEffects())
// errs() << ASM w/ Side Effects\n";
// return;
// }
// Set up the return value...
DSNodeHandle RetVal;
Instruction *I = CS.getInstruction();
if (isa<PointerType>(I->getType()))
RetVal = getValueDest(I);
if (!isa<Function>(Callee))
if (ConstantExpr* EX = dyn_cast<ConstantExpr>(Callee))
if (EX->isCast() && isa<Function>(EX->getOperand(0)))
Callee = cast<Function>(EX->getOperand(0));
DSNode *CalleeNode = 0;
if (!isa<Function>(Callee)) {
CalleeNode = getValueDest(Callee).getNode();
if (CalleeNode == 0) {
DEBUG(errs() << "WARNING: Program is calling through a null pointer?\n" << *I);
return; // Calling a null pointer?
}
}
std::vector<DSNodeHandle> Args;
Args.reserve(CS.arg_end()-CS.arg_begin());
// Calculate the arguments vector...
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I)
if (isa<PointerType>((*I)->getType()))
Args.push_back(getValueDest(*I));
// Add a new function call entry...
if (CalleeNode) {
G.getFunctionCalls().push_back(DSCallSite(CS, RetVal, CalleeNode, Args));
// DS->callee_site(CS.getInstruction());
}else
G.getFunctionCalls().push_back(DSCallSite(CS, RetVal, cast<Function>(Callee),
Args));
}
// visitInstruction - For all other instruction types, if we have any arguments
// that are of pointer type, make them have unknown composition bits, and merge
// the nodes together.
void GraphBuilder::visitInstruction(Instruction &Inst) {
DSNodeHandle CurNode;
if (isa<PointerType>(Inst.getType()))
CurNode = getValueDest(&Inst);
for (User::op_iterator I = Inst.op_begin(), E = Inst.op_end(); I != E; ++I)
if (isa<PointerType>((*I)->getType()))
CurNode.mergeWith(getValueDest(*I));
if (DSNode *N = CurNode.getNode())
N->setUnknownMarker();
}
//===----------------------------------------------------------------------===//
// LocalDataStructures Implementation
//===----------------------------------------------------------------------===//
// MergeConstantInitIntoNode - Merge the specified constant into the node
// pointed to by NH.
void GraphBuilder::MergeConstantInitIntoNode(DSNodeHandle &NH, const Type* Ty, Constant *C) {
// Ensure a type-record exists...
DSNode *NHN = NH.getNode();
NHN->mergeTypeInfo(Ty, NH.getOffset());
if (isa<PointerType>(Ty)) {
// Avoid adding edges from null, or processing non-"pointer" stores
NH.addEdgeTo(getValueDest(C));
return;
}
if (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()) return;
if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
// We don't currently do any indexing for arrays...
MergeConstantInitIntoNode(NH, cast<ArrayType>(Ty)->getElementType(), cast<Constant>(CA->getOperand(i)));
} else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
const StructLayout *SL = TD.getStructLayout(cast<StructType>(Ty));
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
DSNode *NHN = NH.getNode();
//Some programmers think ending a structure with a [0 x sbyte] is cute
if (SL->getElementOffset(i) < SL->getSizeInBytes()) {
DSNodeHandle NewNH(NHN, NH.getOffset()+(unsigned)SL->getElementOffset(i));
MergeConstantInitIntoNode(NewNH, cast<StructType>(Ty)->getElementType(i), cast<Constant>(CS->getOperand(i)));
} else if (SL->getElementOffset(i) == SL->getSizeInBytes()) {
DEBUG(errs() << "Zero size element at end of struct\n" );
NHN->foldNodeCompletely();
} else {
assert(0 && "type was smaller than offsets of of struct layout indicate");
}
}
} else if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) {
// Noop
} else {
assert(0 && "Unknown constant type!");
}
}
void GraphBuilder::mergeInGlobalInitializer(GlobalVariable *GV) {
assert(!GV->isDeclaration() && "Cannot merge in external global!");
// Get a node handle to the global node and merge the initializer into it.
DSNodeHandle NH = getValueDest(GV);
MergeConstantInitIntoNode(NH, GV->getType()->getElementType(), GV->getInitializer());
}
void GraphBuilder::mergeExternalGlobal(GlobalVariable *GV) {
// Get a node handle to the global node and merge the initializer into it.
DSNodeHandle NH = getValueDest(GV);
}
// some evil programs use sections as linker generated arrays
// read a description of this behavior in and apply it
// format: numglobals section globals...
// terminates when numglobals == 0
void handleMagicSections(DSGraph* GlobalsGraph, Module& M) {
std::ifstream msf(hasMagicSections.c_str(), std::ifstream::in);
if (msf.good()) {
//no checking happens here
unsigned count = 0;
msf >> count;
while (count) {
std::string section;
msf >> section;
sv::set<Value*> inSection;
for (Module::iterator MI = M.begin(), ME = M.end();
MI != ME; ++MI)
if (MI->hasSection() && MI->getSection() == section)
inSection.insert(MI);
for (Module::global_iterator MI = M.global_begin(), ME = M.global_end();
MI != ME; ++MI)
if (MI->hasSection() && MI->getSection() == section)
inSection.insert(MI);
for (unsigned x = 0; x < count; ++x) {
std::string global;
msf >> global;
Value* V = M.getNamedValue(global);
if (V) {
DSNodeHandle& DHV = GlobalsGraph->getNodeForValue(V);
for (sv::set<Value*>::iterator SI = inSection.begin(),
SE = inSection.end(); SI != SE; ++SI) {
DEBUG(errs() << "Merging " << V->getNameStr() << " with "
<< (*SI)->getNameStr() << "\n");
GlobalsGraph->getNodeForValue(*SI).mergeWith(DHV);
}
//DHV.getNode()->dump();
}
}
msf >> count;
}
} else {
errs() << "Failed to open magic sections file:" << hasMagicSections <<
"\n";
}
}
char LocalDataStructures::ID;
bool LocalDataStructures::runOnModule(Module &M) {
init(&getAnalysis<TargetData>());
// First step, build the globals graph.
{
GraphBuilder GGB(*GlobalsGraph);
// Add initializers for all of the globals to the globals graph.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
if (I->isDeclaration())
GGB.mergeExternalGlobal(I);
else
GGB.mergeInGlobalInitializer(I);
// Add Functions to the globals graph.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (I->hasAddressTaken())
GGB.mergeFunction(I);
}
if (hasMagicSections.size())
handleMagicSections(GlobalsGraph, M);
// Next step, iterate through the nodes in the globals graph, unioning
// together the globals into equivalence classes.
formGlobalECs();
// Calculate all of the graphs...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isDeclaration()) {
DSGraph* G = new DSGraph(GlobalECs, getTargetData(), *TypeSS, GlobalsGraph);
GraphBuilder GGB(*I, *G, *this);
G->getAuxFunctionCalls() = G->getFunctionCalls();
setDSGraph(*I, G);
propagateUnknownFlag(G);
}
GlobalsGraph->removeTriviallyDeadNodes();
GlobalsGraph->markIncompleteNodes(DSGraph::MarkFormalArgs);
// Now that we've computed all of the graphs, and merged all of the info into
// the globals graph, see if we have further constrained the globals in the
// program if so, update GlobalECs and remove the extraneous globals from the
// program.
formGlobalECs();
propagateUnknownFlag(GlobalsGraph);
return false;
}