blob: dd277a95fb1eaac5dde76425e5800125f413655c [file] [log] [blame]
// Copyright (C) 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
* The goal with this application is to compare the performance of
* different allocators in a simple producer-consumer scenario.
*/
// 2004-02-04 Felix Yen <fwy@alumni.brown.edu>
#include <vector>
#include <list>
#include <map>
#include <typeinfo>
#include <sstream>
#include <pthread.h>
#include <ext/mt_allocator.h>
#include <ext/new_allocator.h>
#include <ext/malloc_allocator.h>
#include <ext/bitmap_allocator.h>
#include <ext/pool_allocator.h>
#include <cxxabi.h>
#include <testsuite_performance.h>
using namespace std;
using __gnu_cxx::__mt_alloc;
using __gnu_cxx::new_allocator;
using __gnu_cxx::malloc_allocator;
using __gnu_cxx::bitmap_allocator;
using __gnu_cxx::__pool_alloc;
using abi::__cxa_demangle;
typedef int test_type;
typedef less<test_type> compare_type;
typedef malloc_allocator<test_type> malloc_alloc_type;
typedef new_allocator<test_type> new_alloc_type;
typedef __mt_alloc<test_type> so_alloc_type;
typedef bitmap_allocator<test_type> bit_alloc_type;
typedef __pool_alloc<test_type> po_alloc_type;
typedef pair<const test_type, test_type> pair_type;
typedef malloc_allocator<pair_type> malloc_pair_alloc_type;
typedef new_allocator<pair_type> new_pair_alloc_type;
typedef __mt_alloc<pair_type> so_pair_alloc_type;
typedef bitmap_allocator<pair_type> bit_pair_alloc_type;
typedef __pool_alloc<pair_type> po_pair_alloc_type;
// The number of iterations to be performed.
int iterations = 10000;
// TODO - restore Stefan's comment? i don't understand it. -- fwy
int insert_values = 128;
class Lock
{
public:
Lock() {pthread_mutex_init(&mutex, 0);}
~Lock() {pthread_mutex_destroy(&mutex);}
public:
inline pthread_mutex_t* operator&() {return &mutex;}
public:
inline void lock() {pthread_mutex_lock(&mutex);}
inline void unlock() {pthread_mutex_unlock(&mutex);}
private:
Lock(const Lock&);
Lock& operator=(Lock&);
private:
pthread_mutex_t mutex;
};
class AutoLock
{
public:
AutoLock(Lock& _lock)
: lock(_lock)
{lock.lock();}
~AutoLock() {lock.unlock();}
private:
AutoLock(AutoLock&);
AutoLock& operator=(AutoLock&);
private:
Lock& lock;
};
template<typename Container>
class Queue
{
public:
Queue() {pthread_cond_init(&condition, 0);}
~Queue() {pthread_cond_destroy(&condition);}
public:
void push_back(const typename Container::value_type& x);
void swap(Container& container);
private:
pthread_cond_t condition;
Lock lock;
Container queue;
};
template<typename Container>
void
Queue<Container>::push_back(const typename Container::value_type& value)
{
AutoLock auto_lock(lock);
const bool signal = queue.empty();
queue.insert(queue.end(), value);
if (signal) pthread_cond_signal(&condition);
}
template<typename Container>
void
Queue<Container>::swap(Container& container)
{
AutoLock auto_lock(lock);
while (queue.empty()) pthread_cond_wait(&condition, &lock);
queue.swap(container);
}
class Thread
{
// NB: Make this the last data member of an object defining operator()().
public:
class Attributes
{
public:
Attributes(int state = PTHREAD_CREATE_JOINABLE);
~Attributes() {pthread_attr_destroy(&attributes);}
public:
inline pthread_attr_t* operator&() {return &attributes;}
private:
pthread_attr_t attributes;
};
public:
Thread() {thread = pthread_self();}
~Thread();
public:
template <typename ThreadOwner>
void create(ThreadOwner* owner);
private:
pthread_t thread;
};
Thread::Attributes::Attributes(int state)
{
pthread_attr_init(&attributes);
pthread_attr_setdetachstate(&attributes, state);
}
Thread::~Thread()
{
if (!pthread_equal(thread, pthread_self()))
pthread_join(thread, 0);
}
template<typename ThreadOwner>
void*
create_thread(void* _this)
{
ThreadOwner* owner = static_cast<ThreadOwner*>(_this);
(*owner)();
return 0;
}
template<typename ThreadOwner>
void
Thread::create(ThreadOwner* owner)
{
Thread::Attributes attributes;
pthread_create(&thread, &attributes, create_thread<ThreadOwner>, owner);
}
template<typename Container>
class Consumer
{
public:
Consumer(Queue<Container>& _queue)
: queue(_queue)
{thread.create(this);}
public:
void operator()();
private:
Queue<Container>& queue;
Thread thread;
};
template<typename Container>
void
Consumer<Container>::operator()()
{
for (int j = insert_values * iterations; j > 0;)
{
Container container;
queue.swap(container);
j -= container.size();
}
}
template<typename TestType>
struct Value : public pair<TestType, TestType>
{
Value()
: pair<TestType, TestType>(0, 0)
{ }
inline Value operator++() {return ++this->first, *this;}
inline operator TestType() const {return this->first;}
};
template<typename Container>
class ProducerConsumer : private Queue<Container>
{
public:
ProducerConsumer() {thread.create(this);}
public:
void operator()();
private:
Thread thread;
};
template<typename Container>
void
ProducerConsumer<Container>::operator()()
{
Consumer<Container> consumer(*this);
Value<test_type> test_value;
for (int j = insert_values * iterations; j-- > 0;)
this->push_back(++test_value);
}
template<typename Container>
void
test_container(Container obj)
{
using namespace __gnu_test;
int status;
time_counter time;
resource_counter resource;
clear_counters(time, resource);
start_counters(time, resource);
{
ProducerConsumer<Container> pc1;
ProducerConsumer<Container> pc2;
}
stop_counters(time, resource);
std::ostringstream comment;
comment << "iterations: " << iterations << '\t';
comment << "type: " << __cxa_demangle(typeid(obj).name(), 0, 0, &status);
report_header(__FILE__, comment.str());
report_performance(__FILE__, string(), time, resource);
}
int main(void)
{
#ifdef TEST_T0
test_container(vector<test_type, malloc_alloc_type>());
#endif
#ifdef TEST_T1
test_container(vector<test_type, new_alloc_type>());
#endif
#ifdef TEST_T2
test_container(vector<test_type, so_alloc_type>());
#endif
#ifdef TEST_T3
test_container(vector<test_type, bit_alloc_type>());
#endif
#ifdef TEST_T4
test_container(vector<test_type, po_alloc_type>());
#endif
#ifdef TEST_T5
test_container(list<test_type, malloc_alloc_type>());
#endif
#ifdef TEST_T6
test_container(list<test_type, new_alloc_type>());
#endif
#ifdef TEST_T7
test_container(list<test_type, so_alloc_type>());
#endif
#ifdef TEST_T8
test_container(list<test_type, bit_alloc_type>());
#endif
#ifdef TEST_T9
test_container(list<test_type, po_alloc_type>());
#endif
#ifdef TEST_T10
test_container(map<test_type, test_type, compare_type,
malloc_pair_alloc_type>());
#endif
#ifdef TEST_T11
test_container(map<test_type, test_type, compare_type,
new_pair_alloc_type>());
#endif
#ifdef TEST_T12
test_container(map<test_type, test_type, compare_type,
so_pair_alloc_type>());
#endif
#ifdef TEST_T13
test_container(map<test_type, test_type, compare_type,
bit_pair_alloc_type>());
#endif
#ifdef TEST_T14
test_container(map<test_type, test_type, compare_type,
po_pair_alloc_type>());
#endif
return 0;
}