blob: d756c50dd2f26f5837bf399c2e8b44e266c26143 [file] [log] [blame]
/* Definitions of target machine for GNU compiler.
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
Contributed by James E. Wilson <wilson@cygnus.com> and
David Mosberger <davidm@hpl.hp.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "optabs.h"
#include "except.h"
#include "function.h"
#include "ggc.h"
#include "basic-block.h"
#include "toplev.h"
#include "sched-int.h"
#include "timevar.h"
#include "target.h"
#include "target-def.h"
#include "tm_p.h"
#include "hashtab.h"
#include "langhooks.h"
#include "cfglayout.h"
#include "tree-gimple.h"
/* This is used for communication between ASM_OUTPUT_LABEL and
ASM_OUTPUT_LABELREF. */
int ia64_asm_output_label = 0;
/* Define the information needed to generate branch and scc insns. This is
stored from the compare operation. */
struct rtx_def * ia64_compare_op0;
struct rtx_def * ia64_compare_op1;
/* Register names for ia64_expand_prologue. */
static const char * const ia64_reg_numbers[96] =
{ "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
"r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
"r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
"r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
"r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
"r96", "r97", "r98", "r99", "r100","r101","r102","r103",
"r104","r105","r106","r107","r108","r109","r110","r111",
"r112","r113","r114","r115","r116","r117","r118","r119",
"r120","r121","r122","r123","r124","r125","r126","r127"};
/* ??? These strings could be shared with REGISTER_NAMES. */
static const char * const ia64_input_reg_names[8] =
{ "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7" };
/* ??? These strings could be shared with REGISTER_NAMES. */
static const char * const ia64_local_reg_names[80] =
{ "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7",
"loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15",
"loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23",
"loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31",
"loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39",
"loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47",
"loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55",
"loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63",
"loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71",
"loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79" };
/* ??? These strings could be shared with REGISTER_NAMES. */
static const char * const ia64_output_reg_names[8] =
{ "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7" };
/* String used with the -mfixed-range= option. */
const char *ia64_fixed_range_string;
/* Determines whether we use adds, addl, or movl to generate our
TLS immediate offsets. */
int ia64_tls_size = 22;
/* String used with the -mtls-size= option. */
const char *ia64_tls_size_string;
/* Which cpu are we scheduling for. */
enum processor_type ia64_tune;
/* String used with the -tune= option. */
const char *ia64_tune_string;
/* Determines whether we run our final scheduling pass or not. We always
avoid the normal second scheduling pass. */
static int ia64_flag_schedule_insns2;
/* Determines whether we run variable tracking in machine dependent
reorganization. */
static int ia64_flag_var_tracking;
/* Variables which are this size or smaller are put in the sdata/sbss
sections. */
unsigned int ia64_section_threshold;
/* The following variable is used by the DFA insn scheduler. The value is
TRUE if we do insn bundling instead of insn scheduling. */
int bundling_p = 0;
/* Structure to be filled in by ia64_compute_frame_size with register
save masks and offsets for the current function. */
struct ia64_frame_info
{
HOST_WIDE_INT total_size; /* size of the stack frame, not including
the caller's scratch area. */
HOST_WIDE_INT spill_cfa_off; /* top of the reg spill area from the cfa. */
HOST_WIDE_INT spill_size; /* size of the gr/br/fr spill area. */
HOST_WIDE_INT extra_spill_size; /* size of spill area for others. */
HARD_REG_SET mask; /* mask of saved registers. */
unsigned int gr_used_mask; /* mask of registers in use as gr spill
registers or long-term scratches. */
int n_spilled; /* number of spilled registers. */
int reg_fp; /* register for fp. */
int reg_save_b0; /* save register for b0. */
int reg_save_pr; /* save register for prs. */
int reg_save_ar_pfs; /* save register for ar.pfs. */
int reg_save_ar_unat; /* save register for ar.unat. */
int reg_save_ar_lc; /* save register for ar.lc. */
int reg_save_gp; /* save register for gp. */
int n_input_regs; /* number of input registers used. */
int n_local_regs; /* number of local registers used. */
int n_output_regs; /* number of output registers used. */
int n_rotate_regs; /* number of rotating registers used. */
char need_regstk; /* true if a .regstk directive needed. */
char initialized; /* true if the data is finalized. */
};
/* Current frame information calculated by ia64_compute_frame_size. */
static struct ia64_frame_info current_frame_info;
static int ia64_first_cycle_multipass_dfa_lookahead (void);
static void ia64_dependencies_evaluation_hook (rtx, rtx);
static void ia64_init_dfa_pre_cycle_insn (void);
static rtx ia64_dfa_pre_cycle_insn (void);
static int ia64_first_cycle_multipass_dfa_lookahead_guard (rtx);
static int ia64_dfa_new_cycle (FILE *, int, rtx, int, int, int *);
static rtx gen_tls_get_addr (void);
static rtx gen_thread_pointer (void);
static int find_gr_spill (int);
static int next_scratch_gr_reg (void);
static void mark_reg_gr_used_mask (rtx, void *);
static void ia64_compute_frame_size (HOST_WIDE_INT);
static void setup_spill_pointers (int, rtx, HOST_WIDE_INT);
static void finish_spill_pointers (void);
static rtx spill_restore_mem (rtx, HOST_WIDE_INT);
static void do_spill (rtx (*)(rtx, rtx, rtx), rtx, HOST_WIDE_INT, rtx);
static void do_restore (rtx (*)(rtx, rtx, rtx), rtx, HOST_WIDE_INT);
static rtx gen_movdi_x (rtx, rtx, rtx);
static rtx gen_fr_spill_x (rtx, rtx, rtx);
static rtx gen_fr_restore_x (rtx, rtx, rtx);
static enum machine_mode hfa_element_mode (tree, bool);
static void ia64_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
tree, int *, int);
static bool ia64_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
tree, bool);
static int ia64_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
tree, bool);
static bool ia64_function_ok_for_sibcall (tree, tree);
static bool ia64_return_in_memory (tree, tree);
static bool ia64_rtx_costs (rtx, int, int, int *);
static void fix_range (const char *);
static struct machine_function * ia64_init_machine_status (void);
static void emit_insn_group_barriers (FILE *);
static void emit_all_insn_group_barriers (FILE *);
static void final_emit_insn_group_barriers (FILE *);
static void emit_predicate_relation_info (void);
static void ia64_reorg (void);
static bool ia64_in_small_data_p (tree);
static void process_epilogue (void);
static int process_set (FILE *, rtx);
static rtx ia64_expand_fetch_and_op (optab, enum machine_mode, tree, rtx);
static rtx ia64_expand_op_and_fetch (optab, enum machine_mode, tree, rtx);
static rtx ia64_expand_compare_and_swap (enum machine_mode, enum machine_mode,
int, tree, rtx);
static rtx ia64_expand_lock_test_and_set (enum machine_mode, tree, rtx);
static rtx ia64_expand_lock_release (enum machine_mode, tree, rtx);
static bool ia64_assemble_integer (rtx, unsigned int, int);
static void ia64_output_function_prologue (FILE *, HOST_WIDE_INT);
static void ia64_output_function_epilogue (FILE *, HOST_WIDE_INT);
static void ia64_output_function_end_prologue (FILE *);
static int ia64_issue_rate (void);
static int ia64_adjust_cost (rtx, rtx, rtx, int);
static void ia64_sched_init (FILE *, int, int);
static void ia64_sched_finish (FILE *, int);
static int ia64_dfa_sched_reorder (FILE *, int, rtx *, int *, int, int);
static int ia64_sched_reorder (FILE *, int, rtx *, int *, int);
static int ia64_sched_reorder2 (FILE *, int, rtx *, int *, int);
static int ia64_variable_issue (FILE *, int, rtx, int);
static struct bundle_state *get_free_bundle_state (void);
static void free_bundle_state (struct bundle_state *);
static void initiate_bundle_states (void);
static void finish_bundle_states (void);
static unsigned bundle_state_hash (const void *);
static int bundle_state_eq_p (const void *, const void *);
static int insert_bundle_state (struct bundle_state *);
static void initiate_bundle_state_table (void);
static void finish_bundle_state_table (void);
static int try_issue_nops (struct bundle_state *, int);
static int try_issue_insn (struct bundle_state *, rtx);
static void issue_nops_and_insn (struct bundle_state *, int, rtx, int, int);
static int get_max_pos (state_t);
static int get_template (state_t, int);
static rtx get_next_important_insn (rtx, rtx);
static void bundling (FILE *, int, rtx, rtx);
static void ia64_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
HOST_WIDE_INT, tree);
static void ia64_file_start (void);
static void ia64_select_rtx_section (enum machine_mode, rtx,
unsigned HOST_WIDE_INT);
static void ia64_rwreloc_select_section (tree, int, unsigned HOST_WIDE_INT)
ATTRIBUTE_UNUSED;
static void ia64_rwreloc_unique_section (tree, int)
ATTRIBUTE_UNUSED;
static void ia64_rwreloc_select_rtx_section (enum machine_mode, rtx,
unsigned HOST_WIDE_INT)
ATTRIBUTE_UNUSED;
static unsigned int ia64_section_type_flags (tree, const char *, int);
static void ia64_hpux_add_extern_decl (tree decl)
ATTRIBUTE_UNUSED;
static void ia64_hpux_file_end (void)
ATTRIBUTE_UNUSED;
static void ia64_init_libfuncs (void)
ATTRIBUTE_UNUSED;
static void ia64_hpux_init_libfuncs (void)
ATTRIBUTE_UNUSED;
static void ia64_sysv4_init_libfuncs (void)
ATTRIBUTE_UNUSED;
static void ia64_vms_init_libfuncs (void)
ATTRIBUTE_UNUSED;
static tree ia64_handle_model_attribute (tree *, tree, tree, int, bool *);
static void ia64_encode_section_info (tree, rtx, int);
static rtx ia64_struct_value_rtx (tree, int);
static tree ia64_gimplify_va_arg (tree, tree, tree *, tree *);
static bool ia64_scalar_mode_supported_p (enum machine_mode mode);
static bool ia64_vector_mode_supported_p (enum machine_mode mode);
static bool ia64_cannot_force_const_mem (rtx);
/* Table of valid machine attributes. */
static const struct attribute_spec ia64_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
{ "syscall_linkage", 0, 0, false, true, true, NULL },
{ "model", 1, 1, true, false, false, ia64_handle_model_attribute },
{ NULL, 0, 0, false, false, false, NULL }
};
/* Initialize the GCC target structure. */
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE ia64_attribute_table
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS ia64_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN ia64_expand_builtin
#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP "\tdata1\t"
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\tdata2\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\tdata4\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\tdata8\t"
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP "\tdata2.ua\t"
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP "\tdata4.ua\t"
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP "\tdata8.ua\t"
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER ia64_assemble_integer
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE ia64_output_function_prologue
#undef TARGET_ASM_FUNCTION_END_PROLOGUE
#define TARGET_ASM_FUNCTION_END_PROLOGUE ia64_output_function_end_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE ia64_output_function_epilogue
#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P ia64_in_small_data_p
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST ia64_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE ia64_issue_rate
#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE ia64_variable_issue
#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT ia64_sched_init
#undef TARGET_SCHED_FINISH
#define TARGET_SCHED_FINISH ia64_sched_finish
#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER ia64_sched_reorder
#undef TARGET_SCHED_REORDER2
#define TARGET_SCHED_REORDER2 ia64_sched_reorder2
#undef TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK
#define TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK ia64_dependencies_evaluation_hook
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ia64_first_cycle_multipass_dfa_lookahead
#undef TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN
#define TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN ia64_init_dfa_pre_cycle_insn
#undef TARGET_SCHED_DFA_PRE_CYCLE_INSN
#define TARGET_SCHED_DFA_PRE_CYCLE_INSN ia64_dfa_pre_cycle_insn
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD\
ia64_first_cycle_multipass_dfa_lookahead_guard
#undef TARGET_SCHED_DFA_NEW_CYCLE
#define TARGET_SCHED_DFA_NEW_CYCLE ia64_dfa_new_cycle
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL ia64_function_ok_for_sibcall
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE ia64_pass_by_reference
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES ia64_arg_partial_bytes
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK ia64_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START ia64_file_start
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS ia64_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_0
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG ia64_reorg
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO ia64_encode_section_info
#undef TARGET_SECTION_TYPE_FLAGS
#define TARGET_SECTION_TYPE_FLAGS ia64_section_type_flags
/* ??? ABI doesn't allow us to define this. */
#if 0
#undef TARGET_PROMOTE_FUNCTION_ARGS
#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
#endif
/* ??? ABI doesn't allow us to define this. */
#if 0
#undef TARGET_PROMOTE_FUNCTION_RETURN
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
#endif
/* ??? Investigate. */
#if 0
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
#endif
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX ia64_struct_value_rtx
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY ia64_return_in_memory
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS ia64_setup_incoming_varargs
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR ia64_gimplify_va_arg
#undef TARGET_UNWIND_EMIT
#define TARGET_UNWIND_EMIT process_for_unwind_directive
#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P ia64_scalar_mode_supported_p
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P ia64_vector_mode_supported_p
/* ia64 architecture manual 4.4.7: ... reads, writes, and flushes may occur
in an order different from the specified program order. */
#undef TARGET_RELAXED_ORDERING
#define TARGET_RELAXED_ORDERING true
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM ia64_cannot_force_const_mem
struct gcc_target targetm = TARGET_INITIALIZER;
typedef enum
{
ADDR_AREA_NORMAL, /* normal address area */
ADDR_AREA_SMALL /* addressable by "addl" (-2MB < addr < 2MB) */
}
ia64_addr_area;
static GTY(()) tree small_ident1;
static GTY(()) tree small_ident2;
static void
init_idents (void)
{
if (small_ident1 == 0)
{
small_ident1 = get_identifier ("small");
small_ident2 = get_identifier ("__small__");
}
}
/* Retrieve the address area that has been chosen for the given decl. */
static ia64_addr_area
ia64_get_addr_area (tree decl)
{
tree model_attr;
model_attr = lookup_attribute ("model", DECL_ATTRIBUTES (decl));
if (model_attr)
{
tree id;
init_idents ();
id = TREE_VALUE (TREE_VALUE (model_attr));
if (id == small_ident1 || id == small_ident2)
return ADDR_AREA_SMALL;
}
return ADDR_AREA_NORMAL;
}
static tree
ia64_handle_model_attribute (tree *node, tree name, tree args,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
ia64_addr_area addr_area = ADDR_AREA_NORMAL;
ia64_addr_area area;
tree arg, decl = *node;
init_idents ();
arg = TREE_VALUE (args);
if (arg == small_ident1 || arg == small_ident2)
{
addr_area = ADDR_AREA_SMALL;
}
else
{
warning ("invalid argument of %qs attribute",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
switch (TREE_CODE (decl))
{
case VAR_DECL:
if ((DECL_CONTEXT (decl) && TREE_CODE (DECL_CONTEXT (decl))
== FUNCTION_DECL)
&& !TREE_STATIC (decl))
{
error ("%Jan address area attribute cannot be specified for "
"local variables", decl, decl);
*no_add_attrs = true;
}
area = ia64_get_addr_area (decl);
if (area != ADDR_AREA_NORMAL && addr_area != area)
{
error ("%Jaddress area of '%s' conflicts with previous "
"declaration", decl, decl);
*no_add_attrs = true;
}
break;
case FUNCTION_DECL:
error ("%Jaddress area attribute cannot be specified for functions",
decl, decl);
*no_add_attrs = true;
break;
default:
warning ("%qs attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
break;
}
return NULL_TREE;
}
static void
ia64_encode_addr_area (tree decl, rtx symbol)
{
int flags;
flags = SYMBOL_REF_FLAGS (symbol);
switch (ia64_get_addr_area (decl))
{
case ADDR_AREA_NORMAL: break;
case ADDR_AREA_SMALL: flags |= SYMBOL_FLAG_SMALL_ADDR; break;
default: abort ();
}
SYMBOL_REF_FLAGS (symbol) = flags;
}
static void
ia64_encode_section_info (tree decl, rtx rtl, int first)
{
default_encode_section_info (decl, rtl, first);
/* Careful not to prod global register variables. */
if (TREE_CODE (decl) == VAR_DECL
&& GET_CODE (DECL_RTL (decl)) == MEM
&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == SYMBOL_REF
&& (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
ia64_encode_addr_area (decl, XEXP (rtl, 0));
}
/* Implement CONST_OK_FOR_LETTER_P. */
bool
ia64_const_ok_for_letter_p (HOST_WIDE_INT value, char c)
{
switch (c)
{
case 'I':
return CONST_OK_FOR_I (value);
case 'J':
return CONST_OK_FOR_J (value);
case 'K':
return CONST_OK_FOR_K (value);
case 'L':
return CONST_OK_FOR_L (value);
case 'M':
return CONST_OK_FOR_M (value);
case 'N':
return CONST_OK_FOR_N (value);
case 'O':
return CONST_OK_FOR_O (value);
case 'P':
return CONST_OK_FOR_P (value);
default:
return false;
}
}
/* Implement CONST_DOUBLE_OK_FOR_LETTER_P. */
bool
ia64_const_double_ok_for_letter_p (rtx value, char c)
{
switch (c)
{
case 'G':
return CONST_DOUBLE_OK_FOR_G (value);
default:
return false;
}
}
/* Implement EXTRA_CONSTRAINT. */
bool
ia64_extra_constraint (rtx value, char c)
{
switch (c)
{
case 'Q':
/* Non-volatile memory for FP_REG loads/stores. */
return memory_operand(value, VOIDmode) && !MEM_VOLATILE_P (value);
case 'R':
/* 1..4 for shladd arguments. */
return (GET_CODE (value) == CONST_INT
&& INTVAL (value) >= 1 && INTVAL (value) <= 4);
case 'S':
/* Non-post-inc memory for asms and other unsavory creatures. */
return (GET_CODE (value) == MEM
&& GET_RTX_CLASS (GET_CODE (XEXP (value, 0))) != RTX_AUTOINC
&& (reload_in_progress || memory_operand (value, VOIDmode)));
case 'T':
/* Symbol ref to small-address-area. */
return small_addr_symbolic_operand (value, VOIDmode);
case 'U':
/* Vector zero. */
return value == CONST0_RTX (GET_MODE (value));
case 'W':
/* An integer vector, such that conversion to an integer yields a
value appropriate for an integer 'J' constraint. */
if (GET_CODE (value) == CONST_VECTOR
&& GET_MODE_CLASS (GET_MODE (value)) == MODE_VECTOR_INT)
{
value = simplify_subreg (DImode, value, GET_MODE (value), 0);
return ia64_const_ok_for_letter_p (INTVAL (value), 'J');
}
return false;
case 'Y':
/* A V2SF vector containing elements that satisfy 'G'. */
return
(GET_CODE (value) == CONST_VECTOR
&& GET_MODE (value) == V2SFmode
&& ia64_const_double_ok_for_letter_p (XVECEXP (value, 0, 0), 'G')
&& ia64_const_double_ok_for_letter_p (XVECEXP (value, 0, 1), 'G'));
default:
return false;
}
}
/* Return 1 if the operands of a move are ok. */
int
ia64_move_ok (rtx dst, rtx src)
{
/* If we're under init_recog_no_volatile, we'll not be able to use
memory_operand. So check the code directly and don't worry about
the validity of the underlying address, which should have been
checked elsewhere anyway. */
if (GET_CODE (dst) != MEM)
return 1;
if (GET_CODE (src) == MEM)
return 0;
if (register_operand (src, VOIDmode))
return 1;
/* Otherwise, this must be a constant, and that either 0 or 0.0 or 1.0. */
if (INTEGRAL_MODE_P (GET_MODE (dst)))
return src == const0_rtx;
else
return GET_CODE (src) == CONST_DOUBLE && CONST_DOUBLE_OK_FOR_G (src);
}
int
addp4_optimize_ok (rtx op1, rtx op2)
{
return (basereg_operand (op1, GET_MODE(op1)) !=
basereg_operand (op2, GET_MODE(op2)));
}
/* Check if OP is a mask suitable for use with SHIFT in a dep.z instruction.
Return the length of the field, or <= 0 on failure. */
int
ia64_depz_field_mask (rtx rop, rtx rshift)
{
unsigned HOST_WIDE_INT op = INTVAL (rop);
unsigned HOST_WIDE_INT shift = INTVAL (rshift);
/* Get rid of the zero bits we're shifting in. */
op >>= shift;
/* We must now have a solid block of 1's at bit 0. */
return exact_log2 (op + 1);
}
/* Return the TLS model to use for ADDR. */
static enum tls_model
tls_symbolic_operand_type (rtx addr)
{
enum tls_model tls_kind = 0;
if (GET_CODE (addr) == CONST)
{
if (GET_CODE (XEXP (addr, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF)
tls_kind = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (addr, 0), 0));
}
else if (GET_CODE (addr) == SYMBOL_REF)
tls_kind = SYMBOL_REF_TLS_MODEL (addr);
return tls_kind;
}
/* Return true if X is a constant that is valid for some immediate
field in an instruction. */
bool
ia64_legitimate_constant_p (rtx x)
{
switch (GET_CODE (x))
{
case CONST_INT:
case LABEL_REF:
return true;
case CONST_DOUBLE:
if (GET_MODE (x) == VOIDmode)
return true;
return CONST_DOUBLE_OK_FOR_G (x);
case CONST:
case SYMBOL_REF:
return tls_symbolic_operand_type (x) == 0;
default:
return false;
}
}
/* Don't allow TLS addresses to get spilled to memory. */
static bool
ia64_cannot_force_const_mem (rtx x)
{
return tls_symbolic_operand_type (x) != 0;
}
/* Expand a symbolic constant load. */
bool
ia64_expand_load_address (rtx dest, rtx src)
{
gcc_assert (GET_CODE (dest) == REG);
/* ILP32 mode still loads 64-bits of data from the GOT. This avoids
having to pointer-extend the value afterward. Other forms of address
computation below are also more natural to compute as 64-bit quantities.
If we've been given an SImode destination register, change it. */
if (GET_MODE (dest) != Pmode)
dest = gen_rtx_REG_offset (dest, Pmode, REGNO (dest), 0);
if (TARGET_NO_PIC)
return false;
if (small_addr_symbolic_operand (src, VOIDmode))
return false;
if (TARGET_AUTO_PIC)
emit_insn (gen_load_gprel64 (dest, src));
else if (GET_CODE (src) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (src))
emit_insn (gen_load_fptr (dest, src));
else if (sdata_symbolic_operand (src, VOIDmode))
emit_insn (gen_load_gprel (dest, src));
else
{
HOST_WIDE_INT addend = 0;
rtx tmp;
/* We did split constant offsets in ia64_expand_move, and we did try
to keep them split in move_operand, but we also allowed reload to
rematerialize arbitrary constants rather than spill the value to
the stack and reload it. So we have to be prepared here to split
them apart again. */
if (GET_CODE (src) == CONST)
{
HOST_WIDE_INT hi, lo;
hi = INTVAL (XEXP (XEXP (src, 0), 1));
lo = ((hi & 0x3fff) ^ 0x2000) - 0x2000;
hi = hi - lo;
if (lo != 0)
{
addend = lo;
src = plus_constant (XEXP (XEXP (src, 0), 0), hi);
}
}
tmp = gen_rtx_HIGH (Pmode, src);
tmp = gen_rtx_PLUS (Pmode, tmp, pic_offset_table_rtx);
emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
tmp = gen_rtx_LO_SUM (Pmode, dest, src);
emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
if (addend)
{
tmp = gen_rtx_PLUS (Pmode, dest, GEN_INT (addend));
emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
}
}
return true;
}
static GTY(()) rtx gen_tls_tga;
static rtx
gen_tls_get_addr (void)
{
if (!gen_tls_tga)
gen_tls_tga = init_one_libfunc ("__tls_get_addr");
return gen_tls_tga;
}
static GTY(()) rtx thread_pointer_rtx;
static rtx
gen_thread_pointer (void)
{
if (!thread_pointer_rtx)
thread_pointer_rtx = gen_rtx_REG (Pmode, 13);
return thread_pointer_rtx;
}
static rtx
ia64_expand_tls_address (enum tls_model tls_kind, rtx op0, rtx op1,
HOST_WIDE_INT addend)
{
rtx tga_op1, tga_op2, tga_ret, tga_eqv, tmp, insns;
rtx orig_op0 = op0, orig_op1 = op1;
HOST_WIDE_INT addend_lo, addend_hi;
addend_lo = ((addend & 0x3fff) ^ 0x2000) - 0x2000;
addend_hi = addend - addend_lo;
switch (tls_kind)
{
case TLS_MODEL_GLOBAL_DYNAMIC:
start_sequence ();
tga_op1 = gen_reg_rtx (Pmode);
emit_insn (gen_load_dtpmod (tga_op1, op1));
tga_op2 = gen_reg_rtx (Pmode);
emit_insn (gen_load_dtprel (tga_op2, op1));
tga_ret = emit_library_call_value (gen_tls_get_addr (), NULL_RTX,
LCT_CONST, Pmode, 2, tga_op1,
Pmode, tga_op2, Pmode);
insns = get_insns ();
end_sequence ();
if (GET_MODE (op0) != Pmode)
op0 = tga_ret;
emit_libcall_block (insns, op0, tga_ret, op1);
break;
case TLS_MODEL_LOCAL_DYNAMIC:
/* ??? This isn't the completely proper way to do local-dynamic
If the call to __tls_get_addr is used only by a single symbol,
then we should (somehow) move the dtprel to the second arg
to avoid the extra add. */
start_sequence ();
tga_op1 = gen_reg_rtx (Pmode);
emit_insn (gen_load_dtpmod (tga_op1, op1));
tga_op2 = const0_rtx;
tga_ret = emit_library_call_value (gen_tls_get_addr (), NULL_RTX,
LCT_CONST, Pmode, 2, tga_op1,
Pmode, tga_op2, Pmode);
insns = get_insns ();
end_sequence ();
tga_eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
UNSPEC_LD_BASE);
tmp = gen_reg_rtx (Pmode);
emit_libcall_block (insns, tmp, tga_ret, tga_eqv);
if (!register_operand (op0, Pmode))
op0 = gen_reg_rtx (Pmode);
if (TARGET_TLS64)
{
emit_insn (gen_load_dtprel (op0, op1));
emit_insn (gen_adddi3 (op0, tmp, op0));
}
else
emit_insn (gen_add_dtprel (op0, op1, tmp));
break;
case TLS_MODEL_INITIAL_EXEC:
op1 = plus_constant (op1, addend_hi);
addend = addend_lo;
tmp = gen_reg_rtx (Pmode);
emit_insn (gen_load_tprel (tmp, op1));
if (!register_operand (op0, Pmode))
op0 = gen_reg_rtx (Pmode);
emit_insn (gen_adddi3 (op0, tmp, gen_thread_pointer ()));
break;
case TLS_MODEL_LOCAL_EXEC:
if (!register_operand (op0, Pmode))
op0 = gen_reg_rtx (Pmode);
op1 = orig_op1;
addend = 0;
if (TARGET_TLS64)
{
emit_insn (gen_load_tprel (op0, op1));
emit_insn (gen_adddi3 (op0, op0, gen_thread_pointer ()));
}
else
emit_insn (gen_add_tprel (op0, op1, gen_thread_pointer ()));
break;
default:
abort ();
}
if (addend)
op0 = expand_simple_binop (Pmode, PLUS, op0, GEN_INT (addend),
orig_op0, 1, OPTAB_DIRECT);
if (orig_op0 == op0)
return NULL_RTX;
if (GET_MODE (orig_op0) == Pmode)
return op0;
return gen_lowpart (GET_MODE (orig_op0), op0);
}
rtx
ia64_expand_move (rtx op0, rtx op1)
{
enum machine_mode mode = GET_MODE (op0);
if (!reload_in_progress && !reload_completed && !ia64_move_ok (op0, op1))
op1 = force_reg (mode, op1);
if ((mode == Pmode || mode == ptr_mode) && symbolic_operand (op1, VOIDmode))
{
HOST_WIDE_INT addend = 0;
enum tls_model tls_kind;
rtx sym = op1;
if (GET_CODE (op1) == CONST
&& GET_CODE (XEXP (op1, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT)
{
addend = INTVAL (XEXP (XEXP (op1, 0), 1));
sym = XEXP (XEXP (op1, 0), 0);
}
tls_kind = tls_symbolic_operand_type (sym);
if (tls_kind)
return ia64_expand_tls_address (tls_kind, op0, sym, addend);
if (any_offset_symbol_operand (sym, mode))
addend = 0;
else if (aligned_offset_symbol_operand (sym, mode))
{
HOST_WIDE_INT addend_lo, addend_hi;
addend_lo = ((addend & 0x3fff) ^ 0x2000) - 0x2000;
addend_hi = addend - addend_lo;
if (addend_lo != 0)
{
op1 = plus_constant (sym, addend_hi);
addend = addend_lo;
}
else
addend = 0;
}
else
op1 = sym;
if (reload_completed)
{
/* We really should have taken care of this offset earlier. */
gcc_assert (addend == 0);
if (ia64_expand_load_address (op0, op1))
return NULL_RTX;
}
if (addend)
{
rtx subtarget = no_new_pseudos ? op0 : gen_reg_rtx (mode);
emit_insn (gen_rtx_SET (VOIDmode, subtarget, op1));
op1 = expand_simple_binop (mode, PLUS, subtarget,
GEN_INT (addend), op0, 1, OPTAB_DIRECT);
if (op0 == op1)
return NULL_RTX;
}
}
return op1;
}
/* Split a move from OP1 to OP0 conditional on COND. */
void
ia64_emit_cond_move (rtx op0, rtx op1, rtx cond)
{
rtx insn, first = get_last_insn ();
emit_move_insn (op0, op1);
for (insn = get_last_insn (); insn != first; insn = PREV_INSN (insn))
if (INSN_P (insn))
PATTERN (insn) = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (cond),
PATTERN (insn));
}
/* Split a post-reload TImode or TFmode reference into two DImode
components. This is made extra difficult by the fact that we do
not get any scratch registers to work with, because reload cannot
be prevented from giving us a scratch that overlaps the register
pair involved. So instead, when addressing memory, we tweak the
pointer register up and back down with POST_INCs. Or up and not
back down when we can get away with it.
REVERSED is true when the loads must be done in reversed order
(high word first) for correctness. DEAD is true when the pointer
dies with the second insn we generate and therefore the second
address must not carry a postmodify.
May return an insn which is to be emitted after the moves. */
static rtx
ia64_split_tmode (rtx out[2], rtx in, bool reversed, bool dead)
{
rtx fixup = 0;
switch (GET_CODE (in))
{
case REG:
out[reversed] = gen_rtx_REG (DImode, REGNO (in));
out[!reversed] = gen_rtx_REG (DImode, REGNO (in) + 1);
break;
case CONST_INT:
case CONST_DOUBLE:
/* Cannot occur reversed. */
if (reversed) abort ();
if (GET_MODE (in) != TFmode)
split_double (in, &out[0], &out[1]);
else
/* split_double does not understand how to split a TFmode
quantity into a pair of DImode constants. */
{
REAL_VALUE_TYPE r;
unsigned HOST_WIDE_INT p[2];
long l[4]; /* TFmode is 128 bits */
REAL_VALUE_FROM_CONST_DOUBLE (r, in);
real_to_target (l, &r, TFmode);
if (FLOAT_WORDS_BIG_ENDIAN)
{
p[0] = (((unsigned HOST_WIDE_INT) l[0]) << 32) + l[1];
p[1] = (((unsigned HOST_WIDE_INT) l[2]) << 32) + l[3];
}
else
{
p[0] = (((unsigned HOST_WIDE_INT) l[3]) << 32) + l[2];
p[1] = (((unsigned HOST_WIDE_INT) l[1]) << 32) + l[0];
}
out[0] = GEN_INT (p[0]);
out[1] = GEN_INT (p[1]);
}
break;
case MEM:
{
rtx base = XEXP (in, 0);
rtx offset;
switch (GET_CODE (base))
{
case REG:
if (!reversed)
{
out[0] = adjust_automodify_address
(in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
out[1] = adjust_automodify_address
(in, DImode, dead ? 0 : gen_rtx_POST_DEC (Pmode, base), 8);
}
else
{
/* Reversal requires a pre-increment, which can only
be done as a separate insn. */
emit_insn (gen_adddi3 (base, base, GEN_INT (8)));
out[0] = adjust_automodify_address
(in, DImode, gen_rtx_POST_DEC (Pmode, base), 8);
out[1] = adjust_address (in, DImode, 0);
}
break;
case POST_INC:
if (reversed || dead) abort ();
/* Just do the increment in two steps. */
out[0] = adjust_automodify_address (in, DImode, 0, 0);
out[1] = adjust_automodify_address (in, DImode, 0, 8);
break;
case POST_DEC:
if (reversed || dead) abort ();
/* Add 8, subtract 24. */
base = XEXP (base, 0);
out[0] = adjust_automodify_address
(in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
out[1] = adjust_automodify_address
(in, DImode,
gen_rtx_POST_MODIFY (Pmode, base, plus_constant (base, -24)),
8);
break;
case POST_MODIFY:
if (reversed || dead) abort ();
/* Extract and adjust the modification. This case is
trickier than the others, because we might have an
index register, or we might have a combined offset that
doesn't fit a signed 9-bit displacement field. We can
assume the incoming expression is already legitimate. */
offset = XEXP (base, 1);
base = XEXP (base, 0);
out[0] = adjust_automodify_address
(in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
if (GET_CODE (XEXP (offset, 1)) == REG)
{
/* Can't adjust the postmodify to match. Emit the
original, then a separate addition insn. */
out[1] = adjust_automodify_address (in, DImode, 0, 8);
fixup = gen_adddi3 (base, base, GEN_INT (-8));
}
else if (GET_CODE (XEXP (offset, 1)) != CONST_INT)
abort ();
else if (INTVAL (XEXP (offset, 1)) < -256 + 8)
{
/* Again the postmodify cannot be made to match, but
in this case it's more efficient to get rid of the
postmodify entirely and fix up with an add insn. */
out[1] = adjust_automodify_address (in, DImode, base, 8);
fixup = gen_adddi3 (base, base,
GEN_INT (INTVAL (XEXP (offset, 1)) - 8));
}
else
{
/* Combined offset still fits in the displacement field.
(We cannot overflow it at the high end.) */
out[1] = adjust_automodify_address
(in, DImode,
gen_rtx_POST_MODIFY (Pmode, base,
gen_rtx_PLUS (Pmode, base,
GEN_INT (INTVAL (XEXP (offset, 1)) - 8))),
8);
}
break;
default:
abort ();
}
break;
}
default:
abort ();
}
return fixup;
}
/* Split a TImode or TFmode move instruction after reload.
This is used by *movtf_internal and *movti_internal. */
void
ia64_split_tmode_move (rtx operands[])
{
rtx in[2], out[2], insn;
rtx fixup[2];
bool dead = false;
bool reversed = false;
/* It is possible for reload to decide to overwrite a pointer with
the value it points to. In that case we have to do the loads in
the appropriate order so that the pointer is not destroyed too
early. Also we must not generate a postmodify for that second
load, or rws_access_regno will abort. */
if (GET_CODE (operands[1]) == MEM
&& reg_overlap_mentioned_p (operands[0], operands[1]))
{
rtx base = XEXP (operands[1], 0);
while (GET_CODE (base) != REG)
base = XEXP (base, 0);
if (REGNO (base) == REGNO (operands[0]))
reversed = true;
dead = true;
}
/* Another reason to do the moves in reversed order is if the first
element of the target register pair is also the second element of
the source register pair. */
if (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG
&& REGNO (operands[0]) == REGNO (operands[1]) + 1)
reversed = true;
fixup[0] = ia64_split_tmode (in, operands[1], reversed, dead);
fixup[1] = ia64_split_tmode (out, operands[0], reversed, dead);
#define MAYBE_ADD_REG_INC_NOTE(INSN, EXP) \
if (GET_CODE (EXP) == MEM \
&& (GET_CODE (XEXP (EXP, 0)) == POST_MODIFY \
|| GET_CODE (XEXP (EXP, 0)) == POST_INC \
|| GET_CODE (XEXP (EXP, 0)) == POST_DEC)) \
REG_NOTES (INSN) = gen_rtx_EXPR_LIST (REG_INC, \
XEXP (XEXP (EXP, 0), 0), \
REG_NOTES (INSN))
insn = emit_insn (gen_rtx_SET (VOIDmode, out[0], in[0]));
MAYBE_ADD_REG_INC_NOTE (insn, in[0]);
MAYBE_ADD_REG_INC_NOTE (insn, out[0]);
insn = emit_insn (gen_rtx_SET (VOIDmode, out[1], in[1]));
MAYBE_ADD_REG_INC_NOTE (insn, in[1]);
MAYBE_ADD_REG_INC_NOTE (insn, out[1]);
if (fixup[0])
emit_insn (fixup[0]);
if (fixup[1])
emit_insn (fixup[1]);
#undef MAYBE_ADD_REG_INC_NOTE
}
/* ??? Fixing GR->FR XFmode moves during reload is hard. You need to go
through memory plus an extra GR scratch register. Except that you can
either get the first from SECONDARY_MEMORY_NEEDED or the second from
SECONDARY_RELOAD_CLASS, but not both.
We got into problems in the first place by allowing a construct like
(subreg:XF (reg:TI)), which we got from a union containing a long double.
This solution attempts to prevent this situation from occurring. When
we see something like the above, we spill the inner register to memory. */
rtx
spill_xfmode_operand (rtx in, int force)
{
if (GET_CODE (in) == SUBREG
&& GET_MODE (SUBREG_REG (in)) == TImode
&& GET_CODE (SUBREG_REG (in)) == REG)
{
rtx memt = assign_stack_temp (TImode, 16, 0);
emit_move_insn (memt, SUBREG_REG (in));
return adjust_address (memt, XFmode, 0);
}
else if (force && GET_CODE (in) == REG)
{
rtx memx = assign_stack_temp (XFmode, 16, 0);
emit_move_insn (memx, in);
return memx;
}
else
return in;
}
/* Emit comparison instruction if necessary, returning the expression
that holds the compare result in the proper mode. */
static GTY(()) rtx cmptf_libfunc;
rtx
ia64_expand_compare (enum rtx_code code, enum machine_mode mode)
{
rtx op0 = ia64_compare_op0, op1 = ia64_compare_op1;
rtx cmp;
/* If we have a BImode input, then we already have a compare result, and
do not need to emit another comparison. */
if (GET_MODE (op0) == BImode)
{
if ((code == NE || code == EQ) && op1 == const0_rtx)
cmp = op0;
else
abort ();
}
/* HPUX TFmode compare requires a library call to _U_Qfcmp, which takes a
magic number as its third argument, that indicates what to do.
The return value is an integer to be compared against zero. */
else if (GET_MODE (op0) == TFmode)
{
enum qfcmp_magic {
QCMP_INV = 1, /* Raise FP_INVALID on SNaN as a side effect. */
QCMP_UNORD = 2,
QCMP_EQ = 4,
QCMP_LT = 8,
QCMP_GT = 16
} magic;
enum rtx_code ncode;
rtx ret, insns;
if (!cmptf_libfunc || GET_MODE (op1) != TFmode)
abort ();
switch (code)
{
/* 1 = equal, 0 = not equal. Equality operators do
not raise FP_INVALID when given an SNaN operand. */
case EQ: magic = QCMP_EQ; ncode = NE; break;
case NE: magic = QCMP_EQ; ncode = EQ; break;
/* isunordered() from C99. */
case UNORDERED: magic = QCMP_UNORD; ncode = NE; break;
case ORDERED: magic = QCMP_UNORD; ncode = EQ; break;
/* Relational operators raise FP_INVALID when given
an SNaN operand. */
case LT: magic = QCMP_LT |QCMP_INV; ncode = NE; break;
case LE: magic = QCMP_LT|QCMP_EQ|QCMP_INV; ncode = NE; break;
case GT: magic = QCMP_GT |QCMP_INV; ncode = NE; break;
case GE: magic = QCMP_GT|QCMP_EQ|QCMP_INV; ncode = NE; break;
/* FUTURE: Implement UNEQ, UNLT, UNLE, UNGT, UNGE, LTGT.
Expanders for buneq etc. weuld have to be added to ia64.md
for this to be useful. */
default: abort ();
}
start_sequence ();
ret = emit_library_call_value (cmptf_libfunc, 0, LCT_CONST, DImode, 3,
op0, TFmode, op1, TFmode,
GEN_INT (magic), DImode);
cmp = gen_reg_rtx (BImode);
emit_insn (gen_rtx_SET (VOIDmode, cmp,
gen_rtx_fmt_ee (ncode, BImode,
ret, const0_rtx)));
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, cmp, cmp,
gen_rtx_fmt_ee (code, BImode, op0, op1));
code = NE;
}
else
{
cmp = gen_reg_rtx (BImode);
emit_insn (gen_rtx_SET (VOIDmode, cmp,
gen_rtx_fmt_ee (code, BImode, op0, op1)));
code = NE;
}
return gen_rtx_fmt_ee (code, mode, cmp, const0_rtx);
}
/* Generate an integral vector comparison. */
static bool
ia64_expand_vecint_compare (enum rtx_code code, enum machine_mode mode,
rtx dest, rtx op0, rtx op1)
{
bool negate = false;
rtx x;
switch (code)
{
case EQ:
case GT:
break;
case NE:
code = EQ;
negate = true;
break;
case LE:
code = GT;
negate = true;
break;
case GE:
negate = true;
/* FALLTHRU */
case LT:
x = op0;
op0 = op1;
op1 = x;
code = GT;
break;
case GTU:
case GEU:
case LTU:
case LEU:
{
rtx w0h, w0l, w1h, w1l, ch, cl;
enum machine_mode wmode;
rtx (*unpack_l) (rtx, rtx, rtx);
rtx (*unpack_h) (rtx, rtx, rtx);
rtx (*pack) (rtx, rtx, rtx);
/* We don't have native unsigned comparisons, but we can generate
them better than generic code can. */
if (mode == V2SImode)
abort ();
else if (mode == V8QImode)
{
wmode = V4HImode;
pack = gen_pack2_sss;
unpack_l = gen_unpack1_l;
unpack_h = gen_unpack1_h;
}
else if (mode == V4HImode)
{
wmode = V2SImode;
pack = gen_pack4_sss;
unpack_l = gen_unpack2_l;
unpack_h = gen_unpack2_h;
}
else
abort ();
/* Unpack into wider vectors, zero extending the elements. */
w0l = gen_reg_rtx (wmode);
w0h = gen_reg_rtx (wmode);
w1l = gen_reg_rtx (wmode);
w1h = gen_reg_rtx (wmode);
emit_insn (unpack_l (gen_lowpart (mode, w0l), op0, CONST0_RTX (mode)));
emit_insn (unpack_h (gen_lowpart (mode, w0h), op0, CONST0_RTX (mode)));
emit_insn (unpack_l (gen_lowpart (mode, w1l), op1, CONST0_RTX (mode)));
emit_insn (unpack_h (gen_lowpart (mode, w1h), op1, CONST0_RTX (mode)));
/* Compare in the wider mode. */
cl = gen_reg_rtx (wmode);
ch = gen_reg_rtx (wmode);
code = signed_condition (code);
ia64_expand_vecint_compare (code, wmode, cl, w0l, w1l);
negate = ia64_expand_vecint_compare (code, wmode, ch, w0h, w1h);
/* Repack into a single narrower vector. */
emit_insn (pack (dest, cl, ch));
}
return negate;
default:
abort ();
}
x = gen_rtx_fmt_ee (code, mode, op0, op1);
emit_insn (gen_rtx_SET (VOIDmode, dest, x));
return negate;
}
static void
ia64_expand_vcondu_v2si (enum rtx_code code, rtx operands[])
{
rtx dl, dh, bl, bh, op1l, op1h, op2l, op2h, op4l, op4h, op5l, op5h, x;
/* In this case, we extract the two SImode quantities and generate
normal comparisons for each of them. */
op1l = gen_lowpart (SImode, operands[1]);
op2l = gen_lowpart (SImode, operands[2]);
op4l = gen_lowpart (SImode, operands[4]);
op5l = gen_lowpart (SImode, operands[5]);
op1h = gen_reg_rtx (SImode);
op2h = gen_reg_rtx (SImode);
op4h = gen_reg_rtx (SImode);
op5h = gen_reg_rtx (SImode);
emit_insn (gen_lshrdi3 (gen_lowpart (DImode, op1h),
gen_lowpart (DImode, operands[1]), GEN_INT (32)));
emit_insn (gen_lshrdi3 (gen_lowpart (DImode, op2h),
gen_lowpart (DImode, operands[2]), GEN_INT (32)));
emit_insn (gen_lshrdi3 (gen_lowpart (DImode, op4h),
gen_lowpart (DImode, operands[4]), GEN_INT (32)));
emit_insn (gen_lshrdi3 (gen_lowpart (DImode, op5h),
gen_lowpart (DImode, operands[5]), GEN_INT (32)));
bl = gen_reg_rtx (BImode);
x = gen_rtx_fmt_ee (code, BImode, op4l, op5l);
emit_insn (gen_rtx_SET (VOIDmode, bl, x));
bh = gen_reg_rtx (BImode);
x = gen_rtx_fmt_ee (code, BImode, op4h, op5h);
emit_insn (gen_rtx_SET (VOIDmode, bh, x));
/* With the results of the comparisons, emit conditional moves. */
dl = gen_reg_rtx (SImode);
x = gen_rtx_IF_THEN_ELSE (SImode, bl, op1l, op2l);
emit_insn (gen_rtx_SET (VOIDmode, dl, x));
dh = gen_reg_rtx (SImode);
x = gen_rtx_IF_THEN_ELSE (SImode, bh, op1h, op2h);
emit_insn (gen_rtx_SET (VOIDmode, dh, x));
/* Merge the two partial results back into a vector. */
x = gen_rtx_VEC_CONCAT (V2SImode, dl, dh);
emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
}
/* Emit an integral vector conditional move. */
void
ia64_expand_vecint_cmov (rtx operands[])
{
enum machine_mode mode = GET_MODE (operands[0]);
enum rtx_code code = GET_CODE (operands[3]);
bool negate;
rtx cmp, x, ot, of;
/* Since we don't have unsigned V2SImode comparisons, it's more efficient
to special-case them entirely. */
if (mode == V2SImode
&& (code == GTU || code == GEU || code == LEU || code == LTU))
{
ia64_expand_vcondu_v2si (code, operands);
return;
}
cmp = gen_reg_rtx (mode);
negate = ia64_expand_vecint_compare (code, mode, cmp,
operands[4], operands[5]);
ot = operands[1+negate];
of = operands[2-negate];
if (ot == CONST0_RTX (mode))
{
if (of == CONST0_RTX (mode))
{
emit_move_insn (operands[0], ot);
return;
}
x = gen_rtx_NOT (mode, cmp);
x = gen_rtx_AND (mode, x, of);
emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
}
else if (of == CONST0_RTX (mode))
{
x = gen_rtx_AND (mode, cmp, ot);
emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
}
else
{
rtx t, f;
t = gen_reg_rtx (mode);
x = gen_rtx_AND (mode, cmp, operands[1+negate]);
emit_insn (gen_rtx_SET (VOIDmode, t, x));
f = gen_reg_rtx (mode);
x = gen_rtx_NOT (mode, cmp);
x = gen_rtx_AND (mode, x, operands[2-negate]);
emit_insn (gen_rtx_SET (VOIDmode, f, x));
x = gen_rtx_IOR (mode, t, f);
emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
}
}
/* Emit an integral vector min or max operation. Return true if all done. */
bool
ia64_expand_vecint_minmax (enum rtx_code code, enum machine_mode mode,
rtx operands[])
{
rtx xops[5];
/* These four combinations are supported directly. */
if (mode == V8QImode && (code == UMIN || code == UMAX))
return false;
if (mode == V4HImode && (code == SMIN || code == SMAX))
return false;
/* Everything else implemented via vector comparisons. */
xops[0] = operands[0];
xops[4] = xops[1] = operands[1];
xops[5] = xops[2] = operands[2];
switch (code)
{
case UMIN:
code = LTU;
break;
case UMAX:
code = GTU;
break;
case SMIN:
code = LT;
break;
case SMAX:
code = GT;
break;
default:
abort ();
}
xops[3] = gen_rtx_fmt_ee (code, VOIDmode, operands[1], operands[2]);
ia64_expand_vecint_cmov (xops);
return true;
}
/* Emit the appropriate sequence for a call. */
void
ia64_expand_call (rtx retval, rtx addr, rtx nextarg ATTRIBUTE_UNUSED,
int sibcall_p)
{
rtx insn, b0;
addr = XEXP (addr, 0);
addr = convert_memory_address (DImode, addr);
b0 = gen_rtx_REG (DImode, R_BR (0));
/* ??? Should do this for functions known to bind local too. */
if (TARGET_NO_PIC || TARGET_AUTO_PIC)
{
if (sibcall_p)
insn = gen_sibcall_nogp (addr);
else if (! retval)
insn = gen_call_nogp (addr, b0);
else
insn = gen_call_value_nogp (retval, addr, b0);
insn = emit_call_insn (insn);
}
else
{
if (sibcall_p)
insn = gen_sibcall_gp (addr);
else if (! retval)
insn = gen_call_gp (addr, b0);
else
insn = gen_call_value_gp (retval, addr, b0);
insn = emit_call_insn (insn);
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
}
if (sibcall_p)
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), b0);
}
void
ia64_reload_gp (void)
{
rtx tmp;
if (current_frame_info.reg_save_gp)
tmp = gen_rtx_REG (DImode, current_frame_info.reg_save_gp);
else
{
HOST_WIDE_INT offset;
offset = (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size);
if (frame_pointer_needed)
{
tmp = hard_frame_pointer_rtx;
offset = -offset;
}
else
{
tmp = stack_pointer_rtx;
offset = current_frame_info.total_size - offset;
}
if (CONST_OK_FOR_I (offset))
emit_insn (gen_adddi3 (pic_offset_table_rtx,
tmp, GEN_INT (offset)));
else
{
emit_move_insn (pic_offset_table_rtx, GEN_INT (offset));
emit_insn (gen_adddi3 (pic_offset_table_rtx,
pic_offset_table_rtx, tmp));
}
tmp = gen_rtx_MEM (DImode, pic_offset_table_rtx);
}
emit_move_insn (pic_offset_table_rtx, tmp);
}
void
ia64_split_call (rtx retval, rtx addr, rtx retaddr, rtx scratch_r,
rtx scratch_b, int noreturn_p, int sibcall_p)
{
rtx insn;
bool is_desc = false;
/* If we find we're calling through a register, then we're actually
calling through a descriptor, so load up the values. */
if (REG_P (addr) && GR_REGNO_P (REGNO (addr)))
{
rtx tmp;
bool addr_dead_p;
/* ??? We are currently constrained to *not* use peep2, because
we can legitimately change the global lifetime of the GP
(in the form of killing where previously live). This is
because a call through a descriptor doesn't use the previous
value of the GP, while a direct call does, and we do not
commit to either form until the split here.
That said, this means that we lack precise life info for
whether ADDR is dead after this call. This is not terribly
important, since we can fix things up essentially for free
with the POST_DEC below, but it's nice to not use it when we
can immediately tell it's not necessary. */
addr_dead_p = ((noreturn_p || sibcall_p
|| TEST_HARD_REG_BIT (regs_invalidated_by_call,
REGNO (addr)))
&& !FUNCTION_ARG_REGNO_P (REGNO (addr)));
/* Load the code address into scratch_b. */
tmp = gen_rtx_POST_INC (Pmode, addr);
tmp = gen_rtx_MEM (Pmode, tmp);
emit_move_insn (scratch_r, tmp);
emit_move_insn (scratch_b, scratch_r);
/* Load the GP address. If ADDR is not dead here, then we must
revert the change made above via the POST_INCREMENT. */
if (!addr_dead_p)
tmp = gen_rtx_POST_DEC (Pmode, addr);
else
tmp = addr;
tmp = gen_rtx_MEM (Pmode, tmp);
emit_move_insn (pic_offset_table_rtx, tmp);
is_desc = true;
addr = scratch_b;
}
if (sibcall_p)
insn = gen_sibcall_nogp (addr);
else if (retval)
insn = gen_call_value_nogp (retval, addr, retaddr);
else
insn = gen_call_nogp (addr, retaddr);
emit_call_insn (insn);
if ((!TARGET_CONST_GP || is_desc) && !noreturn_p && !sibcall_p)
ia64_reload_gp ();
}
/* Begin the assembly file. */
static void
ia64_file_start (void)
{
/* Variable tracking should be run after all optimizations which change order
of insns. It also needs a valid CFG. This can't be done in
ia64_override_options, because flag_var_tracking is finallized after
that. */
ia64_flag_var_tracking = flag_var_tracking;
flag_var_tracking = 0;
default_file_start ();
emit_safe_across_calls ();
}
void
emit_safe_across_calls (void)
{
unsigned int rs, re;
int out_state;
rs = 1;
out_state = 0;
while (1)
{
while (rs < 64 && call_used_regs[PR_REG (rs)])
rs++;
if (rs >= 64)
break;
for (re = rs + 1; re < 64 && ! call_used_regs[PR_REG (re)]; re++)
continue;
if (out_state == 0)
{
fputs ("\t.pred.safe_across_calls ", asm_out_file);
out_state = 1;
}
else
fputc (',', asm_out_file);
if (re == rs + 1)
fprintf (asm_out_file, "p%u", rs);
else
fprintf (asm_out_file, "p%u-p%u", rs, re - 1);
rs = re + 1;
}
if (out_state)
fputc ('\n', asm_out_file);
}
/* Helper function for ia64_compute_frame_size: find an appropriate general
register to spill some special register to. SPECIAL_SPILL_MASK contains
bits in GR0 to GR31 that have already been allocated by this routine.
TRY_LOCALS is true if we should attempt to locate a local regnum. */
static int
find_gr_spill (int try_locals)
{
int regno;
/* If this is a leaf function, first try an otherwise unused
call-clobbered register. */
if (current_function_is_leaf)
{
for (regno = GR_REG (1); regno <= GR_REG (31); regno++)
if (! regs_ever_live[regno]
&& call_used_regs[regno]
&& ! fixed_regs[regno]
&& ! global_regs[regno]
&& ((current_frame_info.gr_used_mask >> regno) & 1) == 0)
{
current_frame_info.gr_used_mask |= 1 << regno;
return regno;
}
}
if (try_locals)
{
regno = current_frame_info.n_local_regs;
/* If there is a frame pointer, then we can't use loc79, because
that is HARD_FRAME_POINTER_REGNUM. In particular, see the
reg_name switching code in ia64_expand_prologue. */
if (regno < (80 - frame_pointer_needed))
{
current_frame_info.n_local_regs = regno + 1;
return LOC_REG (0) + regno;
}
}
/* Failed to find a general register to spill to. Must use stack. */
return 0;
}
/* In order to make for nice schedules, we try to allocate every temporary
to a different register. We must of course stay away from call-saved,
fixed, and global registers. We must also stay away from registers
allocated in current_frame_info.gr_used_mask, since those include regs
used all through the prologue.
Any register allocated here must be used immediately. The idea is to
aid scheduling, not to solve data flow problems. */
static int last_scratch_gr_reg;
static int
next_scratch_gr_reg (void)
{
int i, regno;
for (i = 0; i < 32; ++i)
{
regno = (last_scratch_gr_reg + i + 1) & 31;
if (call_used_regs[regno]
&& ! fixed_regs[regno]
&& ! global_regs[regno]
&& ((current_frame_info.gr_used_mask >> regno) & 1) == 0)
{
last_scratch_gr_reg = regno;
return regno;
}
}
/* There must be _something_ available. */
abort ();
}
/* Helper function for ia64_compute_frame_size, called through
diddle_return_value. Mark REG in current_frame_info.gr_used_mask. */
static void
mark_reg_gr_used_mask (rtx reg, void *data ATTRIBUTE_UNUSED)
{
unsigned int regno = REGNO (reg);
if (regno < 32)
{
unsigned int i, n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
for (i = 0; i < n; ++i)
current_frame_info.gr_used_mask |= 1 << (regno + i);
}
}
/* Returns the number of bytes offset between the frame pointer and the stack
pointer for the current function. SIZE is the number of bytes of space
needed for local variables. */
static void
ia64_compute_frame_size (HOST_WIDE_INT size)
{
HOST_WIDE_INT total_size;
HOST_WIDE_INT spill_size = 0;
HOST_WIDE_INT extra_spill_size = 0;
HOST_WIDE_INT pretend_args_size;
HARD_REG_SET mask;
int n_spilled = 0;
int spilled_gr_p = 0;
int spilled_fr_p = 0;
unsigned int regno;
int i;
if (current_frame_info.initialized)
return;
memset (&current_frame_info, 0, sizeof current_frame_info);
CLEAR_HARD_REG_SET (mask);
/* Don't allocate scratches to the return register. */
diddle_return_value (mark_reg_gr_used_mask, NULL);
/* Don't allocate scratches to the EH scratch registers. */
if (cfun->machine->ia64_eh_epilogue_sp)
mark_reg_gr_used_mask (cfun->machine->ia64_eh_epilogue_sp, NULL);
if (cfun->machine->ia64_eh_epilogue_bsp)
mark_reg_gr_used_mask (cfun->machine->ia64_eh_epilogue_bsp, NULL);
/* Find the size of the register stack frame. We have only 80 local
registers, because we reserve 8 for the inputs and 8 for the
outputs. */
/* Skip HARD_FRAME_POINTER_REGNUM (loc79) when frame_pointer_needed,
since we'll be adjusting that down later. */
regno = LOC_REG (78) + ! frame_pointer_needed;
for (; regno >= LOC_REG (0); regno--)
if (regs_ever_live[regno])
break;
current_frame_info.n_local_regs = regno - LOC_REG (0) + 1;
/* For functions marked with the syscall_linkage attribute, we must mark
all eight input registers as in use, so that locals aren't visible to
the caller. */
if (cfun->machine->n_varargs > 0
|| lookup_attribute ("syscall_linkage",
TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
current_frame_info.n_input_regs = 8;
else
{
for (regno = IN_REG (7); regno >= IN_REG (0); regno--)
if (regs_ever_live[regno])
break;
current_frame_info.n_input_regs = regno - IN_REG (0) + 1;
}
for (regno = OUT_REG (7); regno >= OUT_REG (0); regno--)
if (regs_ever_live[regno])
break;
i = regno - OUT_REG (0) + 1;
/* When -p profiling, we need one output register for the mcount argument.
Likewise for -a profiling for the bb_init_func argument. For -ax
profiling, we need two output registers for the two bb_init_trace_func
arguments. */
if (current_function_profile)
i = MAX (i, 1);
current_frame_info.n_output_regs = i;
/* ??? No rotating register support yet. */
current_frame_info.n_rotate_regs = 0;
/* Discover which registers need spilling, and how much room that
will take. Begin with floating point and general registers,
which will always wind up on the stack. */
for (regno = FR_REG (2); regno <= FR_REG (127); regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
SET_HARD_REG_BIT (mask, regno);
spill_size += 16;
n_spilled += 1;
spilled_fr_p = 1;
}
for (regno = GR_REG (1); regno <= GR_REG (31); regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
SET_HARD_REG_BIT (mask, regno);
spill_size += 8;
n_spilled += 1;
spilled_gr_p = 1;
}
for (regno = BR_REG (1); regno <= BR_REG (7); regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
SET_HARD_REG_BIT (mask, regno);
spill_size += 8;
n_spilled += 1;
}
/* Now come all special registers that might get saved in other
general registers. */
if (frame_pointer_needed)
{
current_frame_info.reg_fp = find_gr_spill (1);
/* If we did not get a register, then we take LOC79. This is guaranteed
to be free, even if regs_ever_live is already set, because this is
HARD_FRAME_POINTER_REGNUM. This requires incrementing n_local_regs,
as we don't count loc79 above. */
if (current_frame_info.reg_fp == 0)
{
current_frame_info.reg_fp = LOC_REG (79);
current_frame_info.n_local_regs++;
}
}
if (! current_function_is_leaf)
{
/* Emit a save of BR0 if we call other functions. Do this even
if this function doesn't return, as EH depends on this to be
able to unwind the stack. */
SET_HARD_REG_BIT (mask, BR_REG (0));
current_frame_info.reg_save_b0 = find_gr_spill (1);
if (current_frame_info.reg_save_b0 == 0)
{
spill_size += 8;
n_spilled += 1;
}
/* Similarly for ar.pfs. */
SET_HARD_REG_BIT (mask, AR_PFS_REGNUM);
current_frame_info.reg_save_ar_pfs = find_gr_spill (1);
if (current_frame_info.reg_save_ar_pfs == 0)
{
extra_spill_size += 8;
n_spilled += 1;
}
/* Similarly for gp. Note that if we're calling setjmp, the stacked
registers are clobbered, so we fall back to the stack. */
current_frame_info.reg_save_gp
= (current_function_calls_setjmp ? 0 : find_gr_spill (1));
if (current_frame_info.reg_save_gp == 0)
{
SET_HARD_REG_BIT (mask, GR_REG (1));
spill_size += 8;
n_spilled += 1;
}
}
else
{
if (regs_ever_live[BR_REG (0)] && ! call_used_regs[BR_REG (0)])
{
SET_HARD_REG_BIT (mask, BR_REG (0));
spill_size += 8;
n_spilled += 1;
}
if (regs_ever_live[AR_PFS_REGNUM])
{
SET_HARD_REG_BIT (mask, AR_PFS_REGNUM);
current_frame_info.reg_save_ar_pfs = find_gr_spill (1);
if (current_frame_info.reg_save_ar_pfs == 0)
{
extra_spill_size += 8;
n_spilled += 1;
}
}
}
/* Unwind descriptor hackery: things are most efficient if we allocate
consecutive GR save registers for RP, PFS, FP in that order. However,
it is absolutely critical that FP get the only hard register that's
guaranteed to be free, so we allocated it first. If all three did
happen to be allocated hard regs, and are consecutive, rearrange them
into the preferred order now. */
if (current_frame_info.reg_fp != 0
&& current_frame_info.reg_save_b0 == current_frame_info.reg_fp + 1
&& current_frame_info.reg_save_ar_pfs == current_frame_info.reg_fp + 2)
{
current_frame_info.reg_save_b0 = current_frame_info.reg_fp;
current_frame_info.reg_save_ar_pfs = current_frame_info.reg_fp + 1;
current_frame_info.reg_fp = current_frame_info.reg_fp + 2;
}
/* See if we need to store the predicate register block. */
for (regno = PR_REG (0); regno <= PR_REG (63); regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
break;
if (regno <= PR_REG (63))
{
SET_HARD_REG_BIT (mask, PR_REG (0));
current_frame_info.reg_save_pr = find_gr_spill (1);
if (current_frame_info.reg_save_pr == 0)
{
extra_spill_size += 8;
n_spilled += 1;
}
/* ??? Mark them all as used so that register renaming and such
are free to use them. */
for (regno = PR_REG (0); regno <= PR_REG (63); regno++)
regs_ever_live[regno] = 1;
}
/* If we're forced to use st8.spill, we're forced to save and restore
ar.unat as well. The check for existing liveness allows inline asm
to touch ar.unat. */
if (spilled_gr_p || cfun->machine->n_varargs
|| regs_ever_live[AR_UNAT_REGNUM])
{
regs_ever_live[AR_UNAT_REGNUM] = 1;
SET_HARD_REG_BIT (mask, AR_UNAT_REGNUM);
current_frame_info.reg_save_ar_unat = find_gr_spill (spill_size == 0);
if (current_frame_info.reg_save_ar_unat == 0)
{
extra_spill_size += 8;
n_spilled += 1;
}
}
if (regs_ever_live[AR_LC_REGNUM])
{
SET_HARD_REG_BIT (mask, AR_LC_REGNUM);
current_frame_info.reg_save_ar_lc = find_gr_spill (spill_size == 0);
if (current_frame_info.reg_save_ar_lc == 0)
{
extra_spill_size += 8;
n_spilled += 1;
}
}
/* If we have an odd number of words of pretend arguments written to
the stack, then the FR save area will be unaligned. We round the
size of this area up to keep things 16 byte aligned. */
if (spilled_fr_p)
pretend_args_size = IA64_STACK_ALIGN (current_function_pretend_args_size);
else
pretend_args_size = current_function_pretend_args_size;
total_size = (spill_size + extra_spill_size + size + pretend_args_size
+ current_function_outgoing_args_size);
total_size = IA64_STACK_ALIGN (total_size);
/* We always use the 16-byte scratch area provided by the caller, but
if we are a leaf function, there's no one to which we need to provide
a scratch area. */
if (current_function_is_leaf)
total_size = MAX (0, total_size - 16);
current_frame_info.total_size = total_size;
current_frame_info.spill_cfa_off = pretend_args_size - 16;
current_frame_info.spill_size = spill_size;
current_frame_info.extra_spill_size = extra_spill_size;
COPY_HARD_REG_SET (current_frame_info.mask, mask);
current_frame_info.n_spilled = n_spilled;
current_frame_info.initialized = reload_completed;
}
/* Compute the initial difference between the specified pair of registers. */
HOST_WIDE_INT
ia64_initial_elimination_offset (int from, int to)
{
HOST_WIDE_INT offset;
ia64_compute_frame_size (get_frame_size ());
switch (from)
{
case FRAME_POINTER_REGNUM:
if (to == HARD_FRAME_POINTER_REGNUM)
{
if (current_function_is_leaf)
offset = -current_frame_info.total_size;
else
offset = -(current_frame_info.total_size
- current_function_outgoing_args_size - 16);
}
else if (to == STACK_POINTER_REGNUM)
{
if (current_function_is_leaf)
offset = 0;
else
offset = 16 + current_function_outgoing_args_size;
}
else
abort ();
break;
case ARG_POINTER_REGNUM:
/* Arguments start above the 16 byte save area, unless stdarg
in which case we store through the 16 byte save area. */
if (to == HARD_FRAME_POINTER_REGNUM)
offset = 16 - current_function_pretend_args_size;
else if (to == STACK_POINTER_REGNUM)
offset = (current_frame_info.total_size
+ 16 - current_function_pretend_args_size);
else
abort ();
break;
default:
abort ();
}
return offset;
}
/* If there are more than a trivial number of register spills, we use
two interleaved iterators so that we can get two memory references
per insn group.
In order to simplify things in the prologue and epilogue expanders,
we use helper functions to fix up the memory references after the
fact with the appropriate offsets to a POST_MODIFY memory mode.
The following data structure tracks the state of the two iterators
while insns are being emitted. */
struct spill_fill_data
{
rtx init_after; /* point at which to emit initializations */
rtx init_reg[2]; /* initial base register */
rtx iter_reg[2]; /* the iterator registers */
rtx *prev_addr[2]; /* address of last memory use */
rtx prev_insn[2]; /* the insn corresponding to prev_addr */
HOST_WIDE_INT prev_off[2]; /* last offset */
int n_iter; /* number of iterators in use */
int next_iter; /* next iterator to use */
unsigned int save_gr_used_mask;
};
static struct spill_fill_data spill_fill_data;
static void
setup_spill_pointers (int n_spills, rtx init_reg, HOST_WIDE_INT cfa_off)
{
int i;
spill_fill_data.init_after = get_last_insn ();
spill_fill_data.init_reg[0] = init_reg;
spill_fill_data.init_reg[1] = init_reg;
spill_fill_data.prev_addr[0] = NULL;
spill_fill_data.prev_addr[1] = NULL;
spill_fill_data.prev_insn[0] = NULL;
spill_fill_data.prev_insn[1] = NULL;
spill_fill_data.prev_off[0] = cfa_off;
spill_fill_data.prev_off[1] = cfa_off;
spill_fill_data.next_iter = 0;
spill_fill_data.save_gr_used_mask = current_frame_info.gr_used_mask;
spill_fill_data.n_iter = 1 + (n_spills > 2);
for (i = 0; i < spill_fill_data.n_iter; ++i)
{
int regno = next_scratch_gr_reg ();
spill_fill_data.iter_reg[i] = gen_rtx_REG (DImode, regno);
current_frame_info.gr_used_mask |= 1 << regno;
}
}
static void
finish_spill_pointers (void)
{
current_frame_info.gr_used_mask = spill_fill_data.save_gr_used_mask;
}
static rtx
spill_restore_mem (rtx reg, HOST_WIDE_INT cfa_off)
{
int iter = spill_fill_data.next_iter;
HOST_WIDE_INT disp = spill_fill_data.prev_off[iter] - cfa_off;
rtx disp_rtx = GEN_INT (disp);
rtx mem;
if (spill_fill_data.prev_addr[iter])
{
if (CONST_OK_FOR_N (disp))
{
*spill_fill_data.prev_addr[iter]
= gen_rtx_POST_MODIFY (DImode, spill_fill_data.iter_reg[iter],
gen_rtx_PLUS (DImode,
spill_fill_data.iter_reg[iter],
disp_rtx));
REG_NOTES (spill_fill_data.prev_insn[iter])
= gen_rtx_EXPR_LIST (REG_INC, spill_fill_data.iter_reg[iter],
REG_NOTES (spill_fill_data.prev_insn[iter]));
}
else
{
/* ??? Could use register post_modify for loads. */
if (! CONST_OK_FOR_I (disp))
{
rtx tmp = gen_rtx_REG (DImode, next_scratch_gr_reg ());
emit_move_insn (tmp, disp_rtx);
disp_rtx = tmp;
}
emit_insn (gen_adddi3 (spill_fill_data.iter_reg[iter],
spill_fill_data.iter_reg[iter], disp_rtx));
}
}
/* Micro-optimization: if we've created a frame pointer, it's at
CFA 0, which may allow the real iterator to be initialized lower,
slightly increasing parallelism. Also, if there are few saves
it may eliminate the iterator entirely. */
else if (disp == 0
&& spill_fill_data.init_reg[iter] == stack_pointer_rtx
&& frame_pointer_needed)
{
mem = gen_rtx_MEM (GET_MODE (reg), hard_frame_pointer_rtx);
set_mem_alias_set (mem, get_varargs_alias_set ());
return mem;
}
else
{
rtx seq, insn;
if (disp == 0)
seq = gen_movdi (spill_fill_data.iter_reg[iter],
spill_fill_data.init_reg[iter]);
else
{
start_sequence ();
if (! CONST_OK_FOR_I (disp))
{
rtx tmp = gen_rtx_REG (DImode, next_scratch_gr_reg ());
emit_move_insn (tmp, disp_rtx);
disp_rtx = tmp;
}
emit_insn (gen_adddi3 (spill_fill_data.iter_reg[iter],
spill_fill_data.init_reg[iter],
disp_rtx));
seq = get_insns ();
end_sequence ();
}
/* Careful for being the first insn in a sequence. */
if (spill_fill_data.init_after)
insn = emit_insn_after (seq, spill_fill_data.init_after);
else
{
rtx first = get_insns ();
if (first)
insn = emit_insn_before (seq, first);
else
insn = emit_insn (seq);
}
spill_fill_data.init_after = insn;
/* If DISP is 0, we may or may not have a further adjustment
afterward. If we do, then the load/store insn may be modified
to be a post-modify. If we don't, then this copy may be
eliminated by copyprop_hardreg_forward, which makes this
insn garbage, which runs afoul of the sanity check in
propagate_one_insn. So mark this insn as legal to delete. */
if (disp == 0)
REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx,
REG_NOTES (insn));
}
mem = gen_rtx_MEM (GET_MODE (reg), spill_fill_data.iter_reg[iter]);
/* ??? Not all of the spills are for varargs, but some of them are.
The rest of the spills belong in an alias set of their own. But
it doesn't actually hurt to include them here. */
set_mem_alias_set (mem, get_varargs_alias_set ());
spill_fill_data.prev_addr[iter] = &XEXP (mem, 0);
spill_fill_data.prev_off[iter] = cfa_off;
if (++iter >= spill_fill_data.n_iter)
iter = 0;
spill_fill_data.next_iter = iter;
return mem;
}
static void
do_spill (rtx (*move_fn) (rtx, rtx, rtx), rtx reg, HOST_WIDE_INT cfa_off,
rtx frame_reg)
{
int iter = spill_fill_data.next_iter;
rtx mem, insn;
mem = spill_restore_mem (reg, cfa_off);
insn = emit_insn ((*move_fn) (mem, reg, GEN_INT (cfa_off)));
spill_fill_data.prev_insn[iter] = insn;
if (frame_reg)
{
rtx base;
HOST_WIDE_INT off;
RTX_FRAME_RELATED_P (insn) = 1;
/* Don't even pretend that the unwind code can intuit its way
through a pair of interleaved post_modify iterators. Just
provide the correct answer. */
if (frame_pointer_needed)
{
base = hard_frame_pointer_rtx;
off = - cfa_off;
}
else
{
base = stack_pointer_rtx;
off = current_frame_info.total_size - cfa_off;
}
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode,
gen_rtx_MEM (GET_MODE (reg),
plus_constant (base, off)),
frame_reg),
REG_NOTES (insn));
}
}
static void
do_restore (rtx (*move_fn) (rtx, rtx, rtx), rtx reg, HOST_WIDE_INT cfa_off)
{
int iter = spill_fill_data.next_iter;
rtx insn;
insn = emit_insn ((*move_fn) (reg, spill_restore_mem (reg, cfa_off),
GEN_INT (cfa_off)));
spill_fill_data.prev_insn[iter] = insn;
}
/* Wrapper functions that discards the CONST_INT spill offset. These
exist so that we can give gr_spill/gr_fill the offset they need and
use a consistent function interface. */
static rtx
gen_movdi_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
{
return gen_movdi (dest, src);
}
static rtx
gen_fr_spill_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
{
return gen_fr_spill (dest, src);
}
static rtx
gen_fr_restore_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
{
return gen_fr_restore (dest, src);
}
/* Called after register allocation to add any instructions needed for the
prologue. Using a prologue insn is favored compared to putting all of the
instructions in output_function_prologue(), since it allows the scheduler
to intermix instructions with the saves of the caller saved registers. In
some cases, it might be necessary to emit a barrier instruction as the last
insn to prevent such scheduling.
Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
so that the debug info generation code can handle them properly.
The register save area is layed out like so:
cfa+16
[ varargs spill area ]
[ fr register spill area ]
[ br register spill area ]
[ ar register spill area ]
[ pr register spill area ]
[ gr register spill area ] */
/* ??? Get inefficient code when the frame size is larger than can fit in an
adds instruction. */
void
ia64_expand_prologue (void)
{
rtx insn, ar_pfs_save_reg, ar_unat_save_reg;
int i, epilogue_p, regno, alt_regno, cfa_off, n_varargs;
rtx reg, alt_reg;
ia64_compute_frame_size (get_frame_size ());
last_scratch_gr_reg = 15;
/* If there is no epilogue, then we don't need some prologue insns.
We need to avoid emitting the dead prologue insns, because flow
will complain about them. */
if (optimize)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
if ((e->flags & EDGE_FAKE) == 0
&& (e->flags & EDGE_FALLTHRU) != 0)
break;
epilogue_p = (e != NULL);
}
else
epilogue_p = 1;
/* Set the local, input, and output register names. We need to do this
for GNU libc, which creates crti.S/crtn.S by splitting initfini.c in
half. If we use in/loc/out register names, then we get assembler errors
in crtn.S because there is no alloc insn or regstk directive in there. */
if (! TARGET_REG_NAMES)
{
int inputs = current_frame_info.n_input_regs;
int locals = current_frame_info.n_local_regs;
int outputs = current_frame_info.n_output_regs;
for (i = 0; i < inputs; i++)
reg_names[IN_REG (i)] = ia64_reg_numbers[i];
for (i = 0; i < locals; i++)
reg_names[LOC_REG (i)] = ia64_reg_numbers[inputs + i];
for (i = 0; i < outputs; i++)
reg_names[OUT_REG (i)] = ia64_reg_numbers[inputs + locals + i];
}
/* Set the frame pointer register name. The regnum is logically loc79,
but of course we'll not have allocated that many locals. Rather than
worrying about renumbering the existing rtxs, we adjust the name. */
/* ??? This code means that we can never use one local register when
there is a frame pointer. loc79 gets wasted in this case, as it is
renamed to a register that will never be used. See also the try_locals
code in find_gr_spill. */
if (current_frame_info.reg_fp)
{
const char *tmp = reg_names[HARD_FRAME_POINTER_REGNUM];
reg_names[HARD_FRAME_POINTER_REGNUM]
= reg_names[current_frame_info.reg_fp];
reg_names[current_frame_info.reg_fp] = tmp;
}
/* We don't need an alloc instruction if we've used no outputs or locals. */
if (current_frame_info.n_local_regs == 0
&& current_frame_info.n_output_regs == 0
&& current_frame_info.n_input_regs <= current_function_args_info.int_regs
&& !TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM))
{
/* If there is no alloc, but there are input registers used, then we
need a .regstk directive. */
current_frame_info.need_regstk = (TARGET_REG_NAMES != 0);
ar_pfs_save_reg = NULL_RTX;
}
else
{
current_frame_info.need_regstk = 0;
if (current_frame_info.reg_save_ar_pfs)
regno = current_frame_info.reg_save_ar_pfs;
else
regno = next_scratch_gr_reg ();
ar_pfs_save_reg = gen_rtx_REG (DImode, regno);
insn = emit_insn (gen_alloc (ar_pfs_save_reg,
GEN_INT (current_frame_info.n_input_regs),
GEN_INT (current_frame_info.n_local_regs),
GEN_INT (current_frame_info.n_output_regs),
GEN_INT (current_frame_info.n_rotate_regs)));
RTX_FRAME_RELATED_P (insn) = (current_frame_info.reg_save_ar_pfs != 0);
}
/* Set up frame pointer, stack pointer, and spill iterators. */
n_varargs = cfun->machine->n_varargs;
setup_spill_pointers (current_frame_info.n_spilled + n_varargs,
stack_pointer_rtx, 0);
if (frame_pointer_needed)
{
insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
}
if (current_frame_info.total_size != 0)
{
rtx frame_size_rtx = GEN_INT (- current_frame_info.total_size);
rtx offset;
if (CONST_OK_FOR_I (- current_frame_info.total_size))
offset = frame_size_rtx;
else
{
regno = next_scratch_gr_reg ();
offset = gen_rtx_REG (DImode, regno);
emit_move_insn (offset, frame_size_rtx);
}
insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
stack_pointer_rtx, offset));
if (! frame_pointer_needed)
{
RTX_FRAME_RELATED_P (insn) = 1;
if (GET_CODE (offset) != CONST_INT)
{
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
gen_rtx_PLUS (DImode,
stack_pointer_rtx,
frame_size_rtx)),
REG_NOTES (insn));
}
}
/* ??? At this point we must generate a magic insn that appears to
modify the stack pointer, the frame pointer, and all spill
iterators. This would allow the most scheduling freedom. For
now, just hard stop. */
emit_insn (gen_blockage ());
}
/* Must copy out ar.unat before doing any integer spills. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
{
if (current_frame_info.reg_save_ar_unat)
ar_unat_save_reg
= gen_rtx_REG (DImode, current_frame_info.reg_save_ar_unat);
else
{
alt_regno = next_scratch_gr_reg ();
ar_unat_save_reg = gen_rtx_REG (DImode, alt_regno);
current_frame_info.gr_used_mask |= 1 << alt_regno;
}
reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
insn = emit_move_insn (ar_unat_save_reg, reg);
RTX_FRAME_RELATED_P (insn) = (current_frame_info.reg_save_ar_unat != 0);
/* Even if we're not going to generate an epilogue, we still
need to save the register so that EH works. */
if (! epilogue_p && current_frame_info.reg_save_ar_unat)
emit_insn (gen_prologue_use (ar_unat_save_reg));
}
else
ar_unat_save_reg = NULL_RTX;
/* Spill all varargs registers. Do this before spilling any GR registers,
since we want the UNAT bits for the GR registers to override the UNAT
bits from varargs, which we don't care about. */
cfa_off = -16;
for (regno = GR_ARG_FIRST + 7; n_varargs > 0; --n_varargs, --regno)
{
reg = gen_rtx_REG (DImode, regno);
do_spill (gen_gr_spill, reg, cfa_off += 8, NULL_RTX);
}
/* Locate the bottom of the register save area. */
cfa_off = (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size
+ current_frame_info.extra_spill_size);
/* Save the predicate register block either in a register or in memory. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, PR_REG (0)))
{
reg = gen_rtx_REG (DImode, PR_REG (0));
if (current_frame_info.reg_save_pr != 0)
{
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_pr);
insn = emit_move_insn (alt_reg, reg);
/* ??? Denote pr spill/fill by a DImode move that modifies all
64 hard registers. */
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode, alt_reg, reg),
REG_NOTES (insn));
/* Even if we're not going to generate an epilogue, we still
need to save the register so that EH works. */
if (! epilogue_p)
emit_insn (gen_prologue_use (alt_reg));
}
else
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
insn = emit_move_insn (alt_reg, reg);
do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
cfa_off -= 8;
}
}
/* Handle AR regs in numerical order. All of them get special handling. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM)
&& current_frame_info.reg_save_ar_unat == 0)
{
reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
do_spill (gen_movdi_x, ar_unat_save_reg, cfa_off, reg);
cfa_off -= 8;
}
/* The alloc insn already copied ar.pfs into a general register. The
only thing we have to do now is copy that register to a stack slot
if we'd not allocated a local register for the job. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM)
&& current_frame_info.reg_save_ar_pfs == 0)
{
reg = gen_rtx_REG (DImode, AR_PFS_REGNUM);
do_spill (gen_movdi_x, ar_pfs_save_reg, cfa_off, reg);
cfa_off -= 8;
}
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_LC_REGNUM))
{
reg = gen_rtx_REG (DImode, AR_LC_REGNUM);
if (current_frame_info.reg_save_ar_lc != 0)
{
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_ar_lc);
insn = emit_move_insn (alt_reg, reg);
RTX_FRAME_RELATED_P (insn) = 1;
/* Even if we're not going to generate an epilogue, we still
need to save the register so that EH works. */
if (! epilogue_p)
emit_insn (gen_prologue_use (alt_reg));
}
else
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
emit_move_insn (alt_reg, reg);
do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
cfa_off -= 8;
}
}
if (current_frame_info.reg_save_gp)
{
insn = emit_move_insn (gen_rtx_REG (DImode,
current_frame_info.reg_save_gp),
pic_offset_table_rtx);
/* We don't know for sure yet if this is actually needed, since
we've not split the PIC call patterns. If all of the calls
are indirect, and not followed by any uses of the gp, then
this save is dead. Allow it to go away. */
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx, REG_NOTES (insn));
}
/* We should now be at the base of the gr/br/fr spill area. */
if (cfa_off != (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size))
abort ();
/* Spill all general registers. */
for (regno = GR_REG (1); regno <= GR_REG (31); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
{
reg = gen_rtx_REG (DImode, regno);
do_spill (gen_gr_spill, reg, cfa_off, reg);
cfa_off -= 8;
}
/* Handle BR0 specially -- it may be getting stored permanently in
some GR register. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0)))
{
reg = gen_rtx_REG (DImode, BR_REG (0));
if (current_frame_info.reg_save_b0 != 0)
{
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_b0);
insn = emit_move_insn (alt_reg, reg);
RTX_FRAME_RELATED_P (insn) = 1;
/* Even if we're not going to generate an epilogue, we still
need to save the register so that EH works. */
if (! epilogue_p)
emit_insn (gen_prologue_use (alt_reg));
}
else
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
emit_move_insn (alt_reg, reg);
do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
cfa_off -= 8;
}
}
/* Spill the rest of the BR registers. */
for (regno = BR_REG (1); regno <= BR_REG (7); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
reg = gen_rtx_REG (DImode, regno);
emit_move_insn (alt_reg, reg);
do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
cfa_off -= 8;
}
/* Align the frame and spill all FR registers. */
for (regno = FR_REG (2); regno <= FR_REG (127); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
{
if (cfa_off & 15)
abort ();
reg = gen_rtx_REG (XFmode, regno);
do_spill (gen_fr_spill_x, reg, cfa_off, reg);
cfa_off -= 16;
}
if (cfa_off != current_frame_info.spill_cfa_off)
abort ();
finish_spill_pointers ();
}
/* Called after register allocation to add any instructions needed for the
epilogue. Using an epilogue insn is favored compared to putting all of the
instructions in output_function_prologue(), since it allows the scheduler
to intermix instructions with the saves of the caller saved registers. In
some cases, it might be necessary to emit a barrier instruction as the last
insn to prevent such scheduling. */
void
ia64_expand_epilogue (int sibcall_p)
{
rtx insn, reg, alt_reg, ar_unat_save_reg;
int regno, alt_regno, cfa_off;
ia64_compute_frame_size (get_frame_size ());
/* If there is a frame pointer, then we use it instead of the stack
pointer, so that the stack pointer does not need to be valid when
the epilogue starts. See EXIT_IGNORE_STACK. */
if (frame_pointer_needed)
setup_spill_pointers (current_frame_info.n_spilled,
hard_frame_pointer_rtx, 0);
else
setup_spill_pointers (current_frame_info.n_spilled, stack_pointer_rtx,
current_frame_info.total_size);
if (current_frame_info.total_size != 0)
{
/* ??? At this point we must generate a magic insn that appears to
modify the spill iterators and the frame pointer. This would
allow the most scheduling freedom. For now, just hard stop. */
emit_insn (gen_blockage ());
}
/* Locate the bottom of the register save area. */
cfa_off = (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size
+ current_frame_info.extra_spill_size);
/* Restore the predicate registers. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, PR_REG (0)))
{
if (current_frame_info.reg_save_pr != 0)
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_pr);
else
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
do_restore (gen_movdi_x, alt_reg, cfa_off);
cfa_off -= 8;
}
reg = gen_rtx_REG (DImode, PR_REG (0));
emit_move_insn (reg, alt_reg);
}
/* Restore the application registers. */
/* Load the saved unat from the stack, but do not restore it until
after the GRs have been restored. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
{
if (current_frame_info.reg_save_ar_unat != 0)
ar_unat_save_reg
= gen_rtx_REG (DImode, current_frame_info.reg_save_ar_unat);
else
{
alt_regno = next_scratch_gr_reg ();
ar_unat_save_reg = gen_rtx_REG (DImode, alt_regno);
current_frame_info.gr_used_mask |= 1 << alt_regno;
do_restore (gen_movdi_x, ar_unat_save_reg, cfa_off);
cfa_off -= 8;
}
}
else
ar_unat_save_reg = NULL_RTX;
if (current_frame_info.reg_save_ar_pfs != 0)
{
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_ar_pfs);
reg = gen_rtx_REG (DImode, AR_PFS_REGNUM);
emit_move_insn (reg, alt_reg);
}
else if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM))
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
do_restore (gen_movdi_x, alt_reg, cfa_off);
cfa_off -= 8;
reg = gen_rtx_REG (DImode, AR_PFS_REGNUM);
emit_move_insn (reg, alt_reg);
}
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_LC_REGNUM))
{
if (current_frame_info.reg_save_ar_lc != 0)
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_ar_lc);
else
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
do_restore (gen_movdi_x, alt_reg, cfa_off);
cfa_off -= 8;
}
reg = gen_rtx_REG (DImode, AR_LC_REGNUM);
emit_move_insn (reg, alt_reg);
}
/* We should now be at the base of the gr/br/fr spill area. */
if (cfa_off != (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size))
abort ();
/* The GP may be stored on the stack in the prologue, but it's
never restored in the epilogue. Skip the stack slot. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, GR_REG (1)))
cfa_off -= 8;
/* Restore all general registers. */
for (regno = GR_REG (2); regno <= GR_REG (31); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
{
reg = gen_rtx_REG (DImode, regno);
do_restore (gen_gr_restore, reg, cfa_off);
cfa_off -= 8;
}
/* Restore the branch registers. Handle B0 specially, as it may
have gotten stored in some GR register. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0)))
{
if (current_frame_info.reg_save_b0 != 0)
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_b0);
else
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
do_restore (gen_movdi_x, alt_reg, cfa_off);
cfa_off -= 8;
}
reg = gen_rtx_REG (DImode, BR_REG (0));
emit_move_insn (reg, alt_reg);
}
for (regno = BR_REG (1); regno <= BR_REG (7); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
do_restore (gen_movdi_x, alt_reg, cfa_off);
cfa_off -= 8;
reg = gen_rtx_REG (DImode, regno);
emit_move_insn (reg, alt_reg);
}
/* Restore floating point registers. */
for (regno = FR_REG (2); regno <= FR_REG (127); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
{
if (cfa_off & 15)
abort ();
reg = gen_rtx_REG (XFmode, regno);
do_restore (gen_fr_restore_x, reg, cfa_off);
cfa_off -= 16;
}
/* Restore ar.unat for real. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
{
reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
emit_move_insn (reg, ar_unat_save_reg);
}
if (cfa_off != current_frame_info.spill_cfa_off)
abort ();
finish_spill_pointers ();
if (current_frame_info.total_size || cfun->machine->ia64_eh_epilogue_sp)
{
/* ??? At this point we must generate a magic insn that appears to
modify the spill iterators, the stack pointer, and the frame
pointer. This would allow the most scheduling freedom. For now,
just hard stop. */
emit_insn (gen_blockage ());
}
if (cfun->machine->ia64_eh_epilogue_sp)
emit_move_insn (stack_pointer_rtx, cfun->machine->ia64_eh_epilogue_sp);
else if (frame_pointer_needed)
{
insn = emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
}
else if (current_frame_info.total_size)
{
rtx offset, frame_size_rtx;
frame_size_rtx = GEN_INT (current_frame_info.total_size);
if (CONST_OK_FOR_I (current_frame_info.total_size))
offset = frame_size_rtx;
else
{
regno = next_scratch_gr_reg ();
offset = gen_rtx_REG (DImode, regno);
emit_move_insn (offset, frame_size_rtx);
}
insn = emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
offset));
RTX_FRAME_RELATED_P (insn) = 1;
if (GET_CODE (offset) != CONST_INT)
{
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
gen_rtx_PLUS (DImode,
stack_pointer_rtx,
frame_size_rtx)),
REG_NOTES (insn));
}
}
if (cfun->machine->ia64_eh_epilogue_bsp)
emit_insn (gen_set_bsp (cfun->machine->ia64_eh_epilogue_bsp));
if (! sibcall_p)
emit_jump_insn (gen_return_internal (gen_rtx_REG (DImode, BR_REG (0))));
else
{
int fp = GR_REG (2);
/* We need a throw away register here, r0 and r1 are reserved, so r2 is the
first available call clobbered register. If there was a frame_pointer
register, we may have swapped the names of r2 and HARD_FRAME_POINTER_REGNUM,
so we have to make sure we're using the string "r2" when emitting
the register name for the assembler. */
if (current_frame_info.reg_fp && current_frame_info.reg_fp == GR_REG (2))
fp = HARD_FRAME_POINTER_REGNUM;
/* We must emit an alloc to force the input registers to become output
registers. Otherwise, if the callee tries to pass its parameters
through to another call without an intervening alloc, then these
values get lost. */
/* ??? We don't need to preserve all input registers. We only need to
preserve those input registers used as arguments to the sibling call.
It is unclear how to compute that number here. */
if (current_frame_info.n_input_regs != 0)
{
rtx n_inputs = GEN_INT (current_frame_info.n_input_regs);
insn = emit_insn (gen_alloc (gen_rtx_REG (DImode, fp),
const0_rtx, const0_rtx,
n_inputs, const0_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
}
/* Return 1 if br.ret can do all the work required to return from a
function. */
int
ia64_direct_return (void)
{
if (reload_completed && ! frame_pointer_needed)
{
ia64_compute_frame_size (get_frame_size ());
return (current_frame_info.total_size == 0
&& current_frame_info.n_spilled == 0
&& current_frame_info.reg_save_b0 == 0
&& current_frame_info.reg_save_pr == 0
&& current_frame_info.reg_save_ar_pfs == 0
&& current_frame_info.reg_save_ar_unat == 0
&& current_frame_info.reg_save_ar_lc == 0);
}
return 0;
}
/* Return the magic cookie that we use to hold the return address
during early compilation. */
rtx
ia64_return_addr_rtx (HOST_WIDE_INT count, rtx frame ATTRIBUTE_UNUSED)
{
if (count != 0)
return NULL;
return gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_RET_ADDR);
}
/* Split this value after reload, now that we know where the return
address is saved. */
void
ia64_split_return_addr_rtx (rtx dest)
{
rtx src;
if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0)))
{
if (current_frame_info.reg_save_b0 != 0)
src = gen_rtx_REG (DImode, current_frame_info.reg_save_b0);
else
{
HOST_WIDE_INT off;
unsigned int regno;
/* Compute offset from CFA for BR0. */
/* ??? Must be kept in sync with ia64_expand_prologue. */
off = (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size);
for (regno = GR_REG (1); regno <= GR_REG (31); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
off -= 8;
/* Convert CFA offset to a register based offset. */
if (frame_pointer_needed)
src = hard_frame_pointer_rtx;
else
{
src = stack_pointer_rtx;
off += current_frame_info.total_size;
}
/* Load address into scratch register. */
if (CONST_OK_FOR_I (off))
emit_insn (gen_adddi3 (dest, src, GEN_INT (off)));
else
{
emit_move_insn (dest, GEN_INT (off));
emit_insn (gen_adddi3 (dest, src, dest));
}
src = gen_rtx_MEM (Pmode, dest);
}
}
else
src = gen_rtx_REG (DImode, BR_REG (0));
emit_move_insn (dest, src);
}
int
ia64_hard_regno_rename_ok (int from, int to)
{
/* Don't clobber any of the registers we reserved for the prologue. */
if (to == current_frame_info.reg_fp
|| to == current_frame_info.reg_save_b0
|| to == current_frame_info.reg_save_pr
|| to == current_frame_info.reg_save_ar_pfs
|| to == current_frame_info.reg_save_ar_unat
|| to == current_frame_info.reg_save_ar_lc)
return 0;
if (from == current_frame_info.reg_fp
|| from == current_frame_info.reg_save_b0
|| from == current_frame_info.reg_save_pr
|| from == current_frame_info.reg_save_ar_pfs
|| from == current_frame_info.reg_save_ar_unat
|| from == current_frame_info.reg_save_ar_lc)
return 0;
/* Don't use output registers outside the register frame. */
if (OUT_REGNO_P (to) && to >= OUT_REG (current_frame_info.n_output_regs))
return 0;
/* Retain even/oddness on predicate register pairs. */
if (PR_REGNO_P (from) && PR_REGNO_P (to))
return (from & 1) == (to & 1);
return 1;
}
/* Target hook for assembling integer objects. Handle word-sized
aligned objects and detect the cases when @fptr is needed. */
static bool
ia64_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
if (size == POINTER_SIZE / BITS_PER_UNIT
&& !(TARGET_NO_PIC || TARGET_AUTO_PIC)
&& GET_CODE (x) == SYMBOL_REF
&& SYMBOL_REF_FUNCTION_P (x))
{
static const char * const directive[2][2] = {
/* 64-bit pointer */ /* 32-bit pointer */
{ "\tdata8.ua\t@fptr(", "\tdata4.ua\t@fptr("}, /* unaligned */
{ "\tdata8\t@fptr(", "\tdata4\t@fptr("} /* aligned */
};
fputs (directive[(aligned_p != 0)][POINTER_SIZE == 32], asm_out_file);
output_addr_const (asm_out_file, x);
fputs (")\n", asm_out_file);
return true;
}
return default_assemble_integer (x, size, aligned_p);
}
/* Emit the function prologue. */
static void
ia64_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
int mask, grsave, grsave_prev;
if (current_frame_info.need_regstk)
fprintf (file, "\t.regstk %d, %d, %d, %d\n",
current_frame_info.n_input_regs,
current_frame_info.n_local_regs,
current_frame_info.n_output_regs,
current_frame_info.n_rotate_regs);
if (!flag_unwind_tables && (!flag_exceptions || USING_SJLJ_EXCEPTIONS))
return;
/* Emit the .prologue directive. */
mask = 0;
grsave = grsave_prev = 0;
if (current_frame_info.reg_save_b0 != 0)
{
mask |= 8;
grsave = grsave_prev = current_frame_info.reg_save_b0;
}
if (current_frame_info.reg_save_ar_pfs != 0
&& (grsave_prev == 0
|| current_frame_info.reg_save_ar_pfs == grsave_prev + 1))
{
mask |= 4;
if (grsave_prev == 0)
grsave = current_frame_info.reg_save_ar_pfs;
grsave_prev = current_frame_info.reg_save_ar_pfs;
}
if (current_frame_info.reg_fp != 0
&& (grsave_prev == 0
|| current_frame_info.reg_fp == grsave_prev + 1))
{
mask |= 2;
if (grsave_prev == 0)
grsave = HARD_FRAME_POINTER_REGNUM;
grsave_prev = current_frame_info.reg_fp;
}
if (current_frame_info.reg_save_pr != 0
&& (grsave_prev == 0
|| current_frame_info.reg_save_pr == grsave_prev + 1))
{
mask |= 1;
if (grsave_prev == 0)
grsave = current_frame_info.reg_save_pr;
}
if (mask && TARGET_GNU_AS)
fprintf (file, "\t.prologue %d, %d\n", mask,
ia64_dbx_register_number (grsave));
else
fputs ("\t.prologue\n", file);
/* Emit a .spill directive, if necessary, to relocate the base of
the register spill area. */
if (current_frame_info.spill_cfa_off != -16)
fprintf (file, "\t.spill %ld\n",
(long) (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size));
}
/* Emit the .body directive at the scheduled end of the prologue. */
static void
ia64_output_function_end_prologue (FILE *file)
{
if (!flag_unwind_tables && (!flag_exceptions || USING_SJLJ_EXCEPTIONS))
return;
fputs ("\t.body\n", file);
}
/* Emit the function epilogue. */
static void
ia64_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
int i;
if (current_frame_info.reg_fp)
{
const char *tmp = reg_names[HARD_FRAME_POINTER_REGNUM];
reg_names[HARD_FRAME_POINTER_REGNUM]
= reg_names[current_frame_info.reg_fp];
reg_names[current_frame_info.reg_fp] = tmp;
}
if (! TARGET_REG_NAMES)
{
for (i = 0; i < current_frame_info.n_input_regs; i++)
reg_names[IN_REG (i)] = ia64_input_reg_names[i];
for (i = 0; i < current_frame_info.n_local_regs; i++)
reg_names[LOC_REG (i)] = ia64_local_reg_names[i];
for (i = 0; i < current_frame_info.n_output_regs; i++)
reg_names[OUT_REG (i)] = ia64_output_reg_names[i];
}
current_frame_info.initialized = 0;
}
int
ia64_dbx_register_number (int regno)
{
/* In ia64_expand_prologue we quite literally renamed the frame pointer
from its home at loc79 to something inside the register frame. We
must perform the same renumbering here for the debug info. */
if (current_frame_info.reg_fp)
{
if (regno == HARD_FRAME_POINTER_REGNUM)
regno = current_frame_info.reg_fp;
else if (regno == current_frame_info.reg_fp)
regno = HARD_FRAME_POINTER_REGNUM;
}
if (IN_REGNO_P (regno))
return 32 + regno - IN_REG (0);
else if (LOC_REGNO_P (regno))
return 32 + current_frame_info.n_input_regs + regno - LOC_REG (0);
else if (OUT_REGNO_P (regno))
return (32 + current_frame_info.n_input_regs
+ current_frame_info.n_local_regs + regno - OUT_REG (0));
else
return regno;
}
void
ia64_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain)
{
rtx addr_reg, eight = GEN_INT (8);
/* The Intel assembler requires that the global __ia64_trampoline symbol
be declared explicitly */
if (!TARGET_GNU_AS)
{
static bool declared_ia64_trampoline = false;
if (!declared_ia64_trampoline)
{
declared_ia64_trampoline = true;
(*targetm.asm_out.globalize_label) (asm_out_file,
"__ia64_trampoline");
}
}
/* Make sure addresses are Pmode even if we are in ILP32 mode. */
addr = convert_memory_address (Pmode, addr);
fnaddr = convert_memory_address (Pmode, fnaddr);
static_chain = convert_memory_address (Pmode, static_chain);
/* Load up our iterator. */
addr_reg = gen_reg_rtx (Pmode);
emit_move_insn (addr_reg, addr);
/* The first two words are the fake descriptor:
__ia64_trampoline, ADDR+16. */
emit_move_insn (gen_rtx_MEM (Pmode, addr_reg),
gen_rtx_SYMBOL_REF (Pmode, "__ia64_trampoline"));
emit_insn (gen_adddi3 (addr_reg, addr_reg, eight));
emit_move_insn (gen_rtx_MEM (Pmode, addr_reg),
copy_to_reg (plus_constant (addr, 16)));
emit_insn (gen_adddi3 (addr_reg, addr_reg, eight));
/* The third word is the target descriptor. */
emit_move_insn (gen_rtx_MEM (Pmode, addr_reg), fnaddr);
emit_insn (gen_adddi3 (addr_reg, addr_reg, eight));
/* The fourth word is the static chain. */
emit_move_insn (gen_rtx_MEM (Pmode, addr_reg), static_chain);
}
/* Do any needed setup for a variadic function. CUM has not been updated
for the last named argument which has type TYPE and mode MODE.
We generate the actual spill instructions during prologue generation. */
static void
ia64_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int * pretend_size,
int second_time ATTRIBUTE_UNUSED)
{
CUMULATIVE_ARGS next_cum = *cum;
/* Skip the current argument. */
ia64_function_arg_advance (&next_cum, mode, type, 1);
if (next_cum.words < MAX_ARGUMENT_SLOTS)
{
int n = MAX_ARGUMENT_SLOTS - next_cum.words;
*pretend_size = n * UNITS_PER_WORD;
cfun->machine->n_varargs = n;
}
}
/* Check whether TYPE is a homogeneous floating point aggregate. If
it is, return the mode of the floating point type that appears
in all leafs. If it is not, return VOIDmode.
An aggregate is a homogeneous floating point aggregate is if all
fields/elements in it have the same floating point type (e.g,
SFmode). 128-bit quad-precision floats are excluded.
Variable sized aggregates should never arrive here, since we should
have already decided to pass them by reference. Top-level zero-sized
aggregates are excluded because our parallels crash the middle-end. */
static enum machine_mode
hfa_element_mode (tree type, bool nested)
{
enum machine_mode element_mode = VOIDmode;
enum machine_mode mode;
enum tree_code code = TREE_CODE (type);
int know_element_mode = 0;
tree t;
if (!nested && (!TYPE_SIZE (type) || integer_zerop (TYPE_SIZE (type))))
return VOIDmode;
switch (code)
{
case VOID_TYPE: case INTEGER_TYPE: case ENUMERAL_TYPE:
case BOOLEAN_TYPE: case CHAR_TYPE: case POINTER_TYPE:
case OFFSET_TYPE: case REFERENCE_TYPE: case METHOD_TYPE:
case FILE_TYPE: case LANG_TYPE: case FUNCTION_TYPE:
return VOIDmode;
/* Fortran complex types are supposed to be HFAs, so we need to handle
gcc's COMPLEX_TYPEs as HFAs. We need to exclude the integral complex
types though. */
case COMPLEX_TYPE:
if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT
&& TYPE_MODE (type) != TCmode)
return GET_MODE_INNER (TYPE_MODE (type));
else
return VOIDmode;
case REAL_TYPE:
/* We want to return VOIDmode for raw REAL_TYPEs, but the actual
mode if this is contained within an aggregate. */
if (nested && TYPE_MODE (type) != TFmode)
return TYPE_MODE (type);
else
return VOIDmode;
case ARRAY_TYPE:
return hfa_element_mode (TREE_TYPE (type), 1);
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
{
if (TREE_CODE (t) != FIELD_DECL)
continue;
mode = hfa_element_mode (TREE_TYPE (t), 1);
if (know_element_mode)
{
if (mode != element_mode)
return VOIDmode;
}
else if (GET_MODE_CLASS (mode) != MODE_FLOAT)
return VOIDmode;
else
{
know_element_mode = 1;
element_mode = mode;
}
}
return element_mode;
default:
/* If we reach here, we probably have some front-end specific type
that the backend doesn't know about. This can happen via the
aggregate_value_p call in init_function_start. All we can do is
ignore unknown tree types. */
return VOIDmode;
}
return VOIDmode;
}
/* Return the number of words required to hold a quantity of TYPE and MODE
when passed as an argument. */
static int
ia64_function_arg_words (tree type, enum machine_mode mode)
{
int words;
if (mode == BLKmode)
words = int_size_in_bytes (type);
else
words = GET_MODE_SIZE (mode);
return (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* round up */
}
/* Return the number of registers that should be skipped so the current
argument (described by TYPE and WORDS) will be properly aligned.
Integer and float arguments larger than 8 bytes start at the next
even boundary. Aggregates larger than 8 bytes start at the next
even boundary if the aggregate has 16 byte alignment. Note that
in the 32-bit ABI, TImode and TFmode have only 8-byte alignment
but are still to be aligned in registers.
??? The ABI does not specify how to handle aggregates with
alignment from 9 to 15 bytes, or greater than 16. We handle them
all as if they had 16 byte alignment. Such aggregates can occur
only if gcc extensions are used. */
static int
ia64_function_arg_offset (CUMULATIVE_ARGS *cum, tree type, int words)
{
if ((cum->words & 1) == 0)
return 0;
if (type
&& TREE_CODE (type) != INTEGER_TYPE
&& TREE_CODE (type) != REAL_TYPE)
return TYPE_ALIGN (type) > 8 * BITS_PER_UNIT;
else
return words > 1;
}
/* Return rtx for register where argument is passed, or zero if it is passed
on the stack. */
/* ??? 128-bit quad-precision floats are always passed in general
registers. */
rtx
ia64_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
int named, int incoming)
{
int basereg = (incoming ? GR_ARG_FIRST : AR_ARG_FIRST);
int words = ia64_function_arg_words (type, mode);
int offset = ia64_function_arg_offset (cum, type, words);
enum machine_mode hfa_mode = VOIDmode;
/* If all argument slots are used, then it must go on the stack. */
if (cum->words + offset >= MAX_ARGUMENT_SLOTS)
return 0;
/* Check for and handle homogeneous FP aggregates. */
if (type)
hfa_mode = hfa_element_mode (type, 0);
/* Unnamed prototyped hfas are passed as usual. Named prototyped hfas
and unprototyped hfas are passed specially. */
if (hfa_mode != VOIDmode && (! cum->prototype || named))
{
rtx loc[16];
int i = 0;
int fp_regs = cum->fp_regs;
int int_regs = cum->words + offset;
int hfa_size = GET_MODE_SIZE (hfa_mode);
int byte_size;
int args_byte_size;
/* If prototyped, pass it in FR regs then GR regs.
If not prototyped, pass it in both FR and GR regs.
If this is an SFmode aggregate, then it is possible to run out of
FR regs while GR regs are still left. In that case, we pass the
remaining part in the GR regs. */
/* Fill the FP regs. We do this always. We stop if we reach the end
of the argument, the last FP register, or the last argument slot. */
byte_size = ((mode == BLKmode)
? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
args_byte_size = int_regs * UNITS_PER_WORD;
offset = 0;
for (; (offset < byte_size && fp_regs < MAX_ARGUMENT_SLOTS
&& args_byte_size < (MAX_ARGUMENT_SLOTS * UNITS_PER_WORD)); i++)
{
loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (hfa_mode, (FR_ARG_FIRST
+ fp_regs)),
GEN_INT (offset));
offset += hfa_size;
args_byte_size += hfa_size;
fp_regs++;
}
/* If no prototype, then the whole thing must go in GR regs. */
if (! cum->prototype)
offset = 0;
/* If this is an SFmode aggregate, then we might have some left over
that needs to go in GR regs. */
else if (byte_size != offset)
int_regs += offset / UNITS_PER_WORD;
/* Fill in the GR regs. We must use DImode here, not the hfa mode. */
for (; offset < byte_size && int_regs < MAX_ARGUMENT_SLOTS; i++)
{
enum machine_mode gr_mode = DImode;
unsigned int gr_size;
/* If we have an odd 4 byte hunk because we ran out of FR regs,
then this goes in a GR reg left adjusted/little endian, right
adjusted/big endian. */
/* ??? Currently this is handled wrong, because 4-byte hunks are
always right adjusted/little endian. */
if (offset & 0x4)
gr_mode = SImode;
/* If we have an even 4 byte hunk because the aggregate is a
multiple of 4 bytes in size, then this goes in a GR reg right
adjusted/little endian. */
else if (byte_size - offset == 4)
gr_mode = SImode;
loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (gr_mode, (basereg
+ int_regs)),
GEN_INT (offset));
gr_size = GET_MODE_SIZE (gr_mode);
offset += gr_size;
if (gr_size == UNITS_PER_WORD
|| (gr_size < UNITS_PER_WORD && offset % UNITS_PER_WORD == 0))
int_regs++;
else if (gr_size > UNITS_PER_WORD)
int_regs += gr_size / UNITS_PER_WORD;
}
return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc));
}
/* Integral and aggregates go in general registers. If we have run out of
FR registers, then FP values must also go in general registers. This can
happen when we have a SFmode HFA. */
else if (mode == TFmode || mode == TCmode
|| (! FLOAT_MODE_P (mode) || cum->fp_regs == MAX_ARGUMENT_SLOTS))
{
int byte_size = ((mode == BLKmode)
? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
if (BYTES_BIG_ENDIAN
&& (mode == BLKmode || (type && AGGREGATE_TYPE_P (type)))
&& byte_size < UNITS_PER_WORD
&& byte_size > 0)
{
rtx gr_reg = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode,
(basereg + cum->words
+ offset)),
const0_rtx);
return gen_rtx_PARALLEL (mode, gen_rtvec (1, gr_reg));
}
else
return gen_rtx_REG (mode, basereg + cum->words + offset);
}
/* If there is a prototype, then FP values go in a FR register when
named, and in a GR register when unnamed. */
else if (cum->prototype)
{
if (named)
return gen_rtx_REG (mode, FR_ARG_FIRST + cum->fp_regs);
/* In big-endian mode, an anonymous SFmode value must be represented
as (parallel:SF [(expr_list (reg:DI n) (const_int 0))]) to force
the value into the high half of the general register. */
else if (BYTES_BIG_ENDIAN && mode == SFmode)
return gen_rtx_PARALLEL (mode,
gen_rtvec (1,
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode, basereg + cum->words + offset),
const0_rtx)));
else
return gen_rtx_REG (mode, basereg + cum->words + offset);
}
/* If there is no prototype, then FP values go in both FR and GR
registers. */
else
{
/* See comment above. */
enum machine_mode inner_mode =
(BYTES_BIG_ENDIAN && mode == SFmode) ? DImode : mode;
rtx fp_reg = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode, (FR_ARG_FIRST
+ cum->fp_regs)),
const0_rtx);
rtx gr_reg = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (inner_mode,
(basereg + cum->words
+ offset)),
const0_rtx);
return gen_rtx_PARALLEL (mode, gen_rtvec (2, fp_reg, gr_reg));
}
}
/* Return number of bytes, at the beginning of the argument, that must be
put in registers. 0 is the argument is entirely in registers or entirely
in memory. */
static int
ia64_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, bool named ATTRIBUTE_UNUSED)
{
int words = ia64_function_arg_words (type, mode);
int offset = ia64_function_arg_offset (cum, type, words);
/* If all argument slots are used, then it must go on the stack. */
if (cum->words + offset >= MAX_ARGUMENT_SLOTS)
return 0;
/* It doesn't matter whether the argument goes in FR or GR regs. If
it fits within the 8 argument slots, then it goes entirely in
registers. If it extends past the last argument slot, then the rest
goes on the stack. */
if (words + cum->words + offset <= MAX_ARGUMENT_SLOTS)
return 0;
return (MAX_ARGUMENT_SLOTS - cum->words - offset) * UNITS_PER_WORD;
}
/* Update CUM to point after this argument. This is patterned after
ia64_function_arg. */
void
ia64_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named)
{
int words = ia64_function_arg_words (type, mode);
int offset = ia64_function_arg_offset (cum, type, words);
enum machine_mode hfa_mode = VOIDmode;
/* If all arg slots are already full, then there is nothing to do. */
if (cum->words >= MAX_ARGUMENT_SLOTS)
return;
cum->words += words + offset;
/* Check for and handle homogeneous FP aggregates. */
if (type)
hfa_mode = hfa_element_mode (type, 0);
/* Unnamed prototyped hfas are passed as usual. Named prototyped hfas
and unprototyped hfas are passed specially. */
if (hfa_mode != VOIDmode && (! cum->prototype || named))
{
int fp_regs = cum->fp_regs;
/* This is the original value of cum->words + offset. */
int int_regs = cum->words - words;
int hfa_size = GET_MODE_SIZE (hfa_mode);
int byte_size;
int args_byte_size;
/* If prototyped, pass it in FR regs then GR regs.
If not prototyped, pass it in both FR and GR regs.
If this is an SFmode aggregate, then it is possible to run out of
FR regs while GR regs are still left. In that case, we pass the
remaining part in the GR regs. */
/* Fill the FP regs. We do this always. We stop if we reach the end
of the argument, the last FP register, or the last argument slot. */
byte_size = ((mode == BLKmode)
? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
args_byte_size = int_regs * UNITS_PER_WORD;
offset = 0;
for (; (offset < byte_size && fp_regs < MAX_ARGUMENT_SLOTS
&& args_byte_size < (MAX_ARGUMENT_SLOTS * UNITS_PER_WORD));)
{
offset += hfa_size;
args_byte_size += hfa_size;
fp_regs++;
}
cum->fp_regs = fp_regs;
}
/* Integral and aggregates go in general registers. So do TFmode FP values.
If we have run out of FR registers, then other FP values must also go in
general registers. This can happen when we have a SFmode HFA. */
else if (mode == TFmode || mode == TCmode
|| (! FLOAT_MODE_P (mode) || cum->fp_regs == MAX_ARGUMENT_SLOTS))
cum->int_regs = cum->words;
/* If there is a prototype, then FP values go in a FR register when
named, and in a GR register when unnamed. */
else if (cum->prototype)
{
if (! named)
cum->int_regs = cum->words;
else
/* ??? Complex types should not reach here. */
cum->fp_regs += (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT ? 2 : 1);
}
/* If there is no prototype, then FP values go in both FR and GR
registers. */
else
{
/* ??? Complex types should not reach here. */
cum->fp_regs += (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT ? 2 : 1);
cum->int_regs = cum->words;
}
}
/* Arguments with alignment larger than 8 bytes start at the next even
boundary. On ILP32 HPUX, TFmode arguments start on next even boundary
even though their normal alignment is 8 bytes. See ia64_function_arg. */
int
ia64_function_arg_boundary (enum machine_mode mode, tree type)
{
if (mode == TFmode && TARGET_HPUX && TARGET_ILP32)
return PARM_BOUNDARY * 2;
if (type)
{
if (TYPE_ALIGN (type) > PARM_BOUNDARY)
return PARM_BOUNDARY * 2;
else
return PARM_BOUNDARY;
}
if (GET_MODE_BITSIZE (mode) > PARM_BOUNDARY)
return PARM_BOUNDARY * 2;
else
return PARM_BOUNDARY;
}
/* Variable sized types are passed by reference. */
/* ??? At present this is a GCC extension to the IA-64 ABI. */
static bool
ia64_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED,
tree type, bool named ATTRIBUTE_UNUSED)
{
return type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST;
}
/* True if it is OK to do sibling call optimization for the specified
call expression EXP. DECL will be the called function, or NULL if
this is an indirect call. */
static bool
ia64_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
/* We can't perform a sibcall if the current function has the syscall_linkage
attribute. */
if (lookup_attribute ("syscall_linkage",
TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
return false;
/* We must always return with our current GP. This means we can
only sibcall to functions defined in the current module. */
return decl && (*targetm.binds_local_p) (decl);
}
/* Implement va_arg. */
static tree
ia64_gimplify_va_arg (tree valist, tree type, tree *pre_p, tree *post_p)
{
/* Variable sized types are passed by reference. */
if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
{
tree ptrtype = build_pointer_type (type);
tree addr = std_gimplify_va_arg_expr (valist, ptrtype, pre_p, post_p);
return build_va_arg_indirect_ref (addr);
}
/* Aggregate arguments with alignment larger than 8 bytes start at
the next even boundary. Integer and floating point arguments
do so if they are larger than 8 bytes, whether or not they are
also aligned larger than 8 bytes. */
if ((TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == INTEGER_TYPE)
? int_size_in_bytes (type) > 8 : TYPE_ALIGN (type) > 8 * BITS_PER_UNIT)
{
tree t = build (PLUS_EXPR, TREE_TYPE (valist), valist,
build_int_cst (NULL_TREE, 2 * UNITS_PER_WORD - 1));
t = build (BIT_AND_EXPR, TREE_TYPE (t), t,
build_int_cst (NULL_TREE, -2 * UNITS_PER_WORD));
t = build (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
gimplify_and_add (t, pre_p);
}
return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
}
/* Return 1 if function return value returned in memory. Return 0 if it is
in a register. */
static bool
ia64_return_in_memory (tree valtype, tree fntype ATTRIBUTE_UNUSED)
{
enum machine_mode mode;
enum machine_mode hfa_mode;
HOST_WIDE_INT byte_size;
mode = TYPE_MODE (valtype);
byte_size = GET_MODE_SIZE (mode);
if (mode == BLKmode)
{
byte_size = int_size_in_bytes (valtype);
if (byte_size < 0)
return true;
}
/* Hfa's with up to 8 elements are returned in the FP argument registers. */
hfa_mode = hfa_element_mode (valtype, 0);
if (hfa_mode != VOIDmode)
{
int hfa_size = GET_MODE_SIZE (hfa_mode);
if (byte_size / hfa_size > MAX_ARGUMENT_SLOTS)
return true;
else
return false;
}
else if (byte_size > UNITS_PER_WORD * MAX_INT_RETURN_SLOTS)
return true;
else
return false;
}
/* Return rtx for register that holds the function return value. */
rtx
ia64_function_value (tree valtype, tree func ATTRIBUTE_UNUSED)
{
enum machine_mode mode;
enum machine_mode hfa_mode;
mode = TYPE_MODE (valtype);
hfa_mode = hfa_element_mode (valtype, 0);
if (hfa_mode != VOIDmode)
{
rtx loc[8];
int i;
int hfa_size;
int byte_size;
int offset;
hfa_size = GET_MODE_SIZE (hfa_mode);
byte_size = ((mode == BLKmode)
? int_size_in_bytes (valtype) : GET_MODE_SIZE (mode));
offset = 0;
for (i = 0; offset < byte_size; i++)
{
loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (hfa_mode, FR_ARG_FIRST + i),
GEN_INT (offset));
offset += hfa_size;
}
return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc));
}
else if (FLOAT_TYPE_P (valtype) && mode != TFmode && mode != TCmode)
return gen_rtx_REG (mode, FR_ARG_FIRST);
else
{
bool need_parallel = false;
/* In big-endian mode, we need to manage the layout of aggregates
in the registers so that we get the bits properly aligned in
the highpart of the registers. */
if (BYTES_BIG_ENDIAN
&& (mode == BLKmode || (valtype && AGGREGATE_TYPE_P (valtype))))
need_parallel = true;
/* Something like struct S { long double x; char a[0] } is not an
HFA structure, and therefore doesn't go in fp registers. But
the middle-end will give it XFmode anyway, and XFmode values
don't normally fit in integer registers. So we need to smuggle
the value inside a parallel. */
else if (mode == XFmode || mode == XCmode)
need_parallel = true;
if (need_parallel)
{
rtx loc[8];
int offset;
int bytesize;
int i;
offset = 0;
bytesize = int_size_in_bytes (valtype);
/* An empty PARALLEL is invalid here, but the return value
doesn't matter for empty structs. */
if (bytesize == 0)
return gen_rtx_REG (mode, GR_RET_FIRST);
for (i = 0; offset < bytesize; i++)
{
loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode,
GR_RET_FIRST + i),
GEN_INT (offset));
offset += UNITS_PER_WORD;
}
return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc));
}
return gen_rtx_REG (mode, GR_RET_FIRST);
}
}
/* This is called from dwarf2out.c via ASM_OUTPUT_DWARF_DTPREL.
We need to emit DTP-relative relocations. */
void
ia64_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
if (size != 8)
abort ();
fputs ("\tdata8.ua\t@dtprel(", file);
output_addr_const (file, x);
fputs (")", file);
}
/* Print a memory address as an operand to reference that memory location. */
/* ??? Do we need this? It gets used only for 'a' operands. We could perhaps
also call this from ia64_print_operand for memory addresses. */
void
ia64_print_operand_address (FILE * stream ATTRIBUTE_UNUSED,
rtx address ATTRIBUTE_UNUSED)
{
}
/* Print an operand to an assembler instruction.
C Swap and print a comparison operator.
D Print an FP comparison operator.
E Print 32 - constant, for SImode shifts as extract.
e Print 64 - constant, for DImode rotates.
F A floating point constant 0.0 emitted as f0, or 1.0 emitted as f1, or
a floating point register emitted normally.
I Invert a predicate register by adding 1.
J Select the proper predicate register for a condition.
j Select the inverse predicate register for a condition.
O Append .acq for volatile load.
P Postincrement of a MEM.
Q Append .rel for volatile store.
S Shift amount for shladd instruction.
T Print an 8-bit sign extended number (K) as a 32-bit unsigned number
for Intel assembler.
U Print an 8-bit sign extended number (K) as a 64-bit unsigned number
for Intel assembler.
r Print register name, or constant 0 as r0. HP compatibility for
Linux kernel.
v Print vector constant value as an 8-byte integer value. */
void
ia64_print_operand (FILE * file, rtx x, int code)
{
const char *str;
switch (code)
{
case 0:
/* Handled below. */
break;
case 'C':
{
enum rtx_code c = swap_condition (GET_CODE (x));
fputs (GET_RTX_NAME (c), file);
return;
}
case 'D':
switch (GET_CODE (x))
{
case NE:
str = "neq";
break;
case UNORDERED:
str = "unord";
break;
case ORDERED:
str = "ord";
break;
default:
str = GET_RTX_NAME (GET_CODE (x));
break;
}
fputs (str, file);
return;
case 'E':
fprintf (file, HOST_WIDE_INT_PRINT_DEC, 32 - INTVAL (x));
return;
case 'e':
fprintf (file, HOST_WIDE_INT_PRINT_DEC, 64 - INTVAL (x));
return;
case 'F':
if (x == CONST0_RTX (GET_MODE (x)))
str = reg_names [FR_REG (0)];
else if (x == CONST1_RTX (GET_MODE (x)))
str = reg_names [FR_REG (1)];
else if (GET_CODE (x) == REG)
str = reg_names [REGNO (x)];
else
abort ();
fputs (str, file);
return;
case 'I':
fputs (reg_names [REGNO (x) + 1], file);
return;
case 'J':
case 'j':
{
unsigned int regno = REGNO (XEXP (x, 0));
if (GET_CODE (x) == EQ)
regno += 1;
if (code == 'j')
regno ^= 1;
fputs (reg_names [regno], file);
}
return;
case 'O':
if (MEM_VOLATILE_P (x))
fputs(".acq", file);
return;
case 'P':
{
HOST_WIDE_INT value;
switch (GET_CODE (XEXP (x, 0)))
{
default:
return;
case POST_MODIFY:
x = XEXP (XEXP (XEXP (x, 0), 1), 1);
if (GET_CODE (x) == CONST_INT)
value = INTVAL (x);
else if (GET_CODE (x) == REG)
{
fprintf (file, ", %s", reg_names[REGNO (x)]);
return;
}
else
abort ();
break;
case POST_INC:
value = GET_MODE_SIZE (GET_MODE (x));
break;
case POST_DEC:
value = - (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (x));
break;
}
fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC, value);
return;
}
case 'Q':
if (MEM_VOLATILE_P (x))
fputs(".rel", file);
return;
case 'S':
fprintf (file, "%d", exact_log2 (INTVAL (x)));
return;
case 'T':
if (! TARGET_GNU_AS && GET_CODE (x) == CONST_INT)
{
fprintf (file, "0x%x", (int) INTVAL (x) & 0xffffffff);
return;
}
break;
case 'U':
if (! TARGET_GNU_AS && GET_CODE (x) == CONST_INT)
{
const char *prefix = "0x";
if (INTVAL (x) & 0x80000000)
{
fprintf (file, "0xffffffff");
prefix = "";
}
fprintf (file, "%s%x", prefix, (int) INTVAL (x) & 0xffffffff);
return;
}
break;
case 'r':
/* If this operand is the constant zero, write it as register zero.
Any register, zero, or CONST_INT value is OK here. */
if (GET_CODE (x) == REG)
fputs (reg_names[REGNO (x)], file);
else if (x == CONST0_RTX (GET_MODE (x)))
fputs ("r0", file);
else if (GET_CODE (x) == CONST_INT)
output_addr_const (file, x);
else
output_operand_lossage ("invalid %%r value");
return;
case 'v':
gcc_assert (GET_CODE (x) == CONST_VECTOR);
x = simplify_subreg (DImode, x, GET_MODE (x), 0);
break;
case '+':
{
const char *which;
/* For conditional branches, returns or calls, substitute
sptk, dptk, dpnt, or spnt for %s. */
x = find_reg_note (current_output_insn, REG_BR_PROB, 0);
if (x)
{
int pred_val = INTVAL (XEXP (x, 0));
/* Guess top and bottom 10% statically predicted. */
if (pred_val < REG_BR_PROB_BASE / 50)
which = ".spnt";
else if (pred_val < REG_BR_PROB_BASE / 2)
which = ".dpnt";
else if (pred_val < REG_BR_PROB_BASE / 100 * 98)
which = ".dptk";
else
which = ".sptk";
}
else if (GET_CODE (current_output_insn) == CALL_INSN)
which = ".sptk";
else
which = ".dptk";
fputs (which, file);
return;
}
case ',':
x = current_insn_predicate;
if (x)
{
unsigned int regno = REGNO (XEXP (x, 0));
if (GET_CODE (x) == EQ)
regno += 1;
fprintf (file, "(%s) ", reg_names [regno]);
}
return;
default:
output_operand_lossage ("ia64_print_operand: unknown code");
return;
}
switch (GET_CODE (x))
{
/* This happens for the spill/restore instructions. */
case POST_INC:
case POST_DEC:
case POST_MODIFY:
x = XEXP (x, 0);
/* ... fall through ... */
case REG:
fputs (reg_names [REGNO (x)], file);
break;
case MEM:
{
rtx addr = XEXP (x, 0);
if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
addr = XEXP (addr, 0);
fprintf (file, "[%s]", reg_names [REGNO (addr)]);
break;
}
default:
output_addr_const (file, x);
break;
}
return;
}
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. */
/* ??? This is incomplete. */
static bool
ia64_rtx_costs (rtx x, int code, int outer_code, int *total)
{
switch (code)
{
case CONST_INT:
switch (outer_code)
{
case SET:
*total = CONST_OK_FOR_J (INTVAL (x)) ? 0 : COSTS_N_INSNS (1);
return true;
case PLUS:
if (CONST_OK_FOR_I (INTVAL (x)))
*total = 0;
else if (CONST_OK_FOR_J (INTVAL (x)))
*total = 1;
else
*total = COSTS_N_INSNS (1);
return true;
default:
if (CONST_OK_FOR_K (INTVAL (x)) || CONST_OK_FOR_L (INTVAL (x)))
*total = 0;
else
*total = COSTS_N_INSNS (1);
return true;
}
case CONST_DOUBLE:
*total = COSTS_N_INSNS (1);
return true;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
*total = COSTS_N_INSNS (3);
return true;
case MULT:
/* For multiplies wider than HImode, we have to go to the FPU,
which normally involves copies. Plus there's the latency
of the multiply itself, and the latency of the instructions to
transfer integer regs to FP regs. */
/* ??? Check for FP mode. */
if (GET_MODE_SIZE (GET_MODE (x)) > 2)
*total = COSTS_N_INSNS (10);
else
*total = COSTS_N_INSNS (2);
return true;
case PLUS:
case MINUS:
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
*total = COSTS_N_INSNS (1);
return true;
case DIV:
case UDIV:
case MOD:
case UMOD:
/* We make divide expensive, so that divide-by-constant will be
optimized to a multiply. */
*total = COSTS_N_INSNS (60);
return true;
default:
return false;
}
}
/* Calculate the cost of moving data from a register in class FROM to
one in class TO, using MODE. */
int
ia64_register_move_cost (enum machine_mode mode, enum reg_class from,
enum reg_class to)
{
/* ADDL_REGS is the same as GR_REGS for movement purposes. */
if (to == ADDL_REGS)
to = GR_REGS;
if (from == ADDL_REGS)
from = GR_REGS;
/* All costs are symmetric, so reduce cases by putting the
lower number class as the destination. */
if (from < to)
{
enum reg_class tmp = to;
to = from, from = tmp;
}
/* Moving from FR<->GR in XFmode must be more expensive than 2,
so that we get secondary memory reloads. Between FR_REGS,
we have to make this at least as expensive as MEMORY_MOVE_COST
to avoid spectacularly poor register class preferencing. */
if (mode == XFmode)
{
if (to != GR_REGS || from != GR_REGS)
return MEMORY_MOVE_COST (mode, to, 0);
else
return 3;
}
switch (to)
{
case PR_REGS:
/* Moving between PR registers takes two insns. */
if (from == PR_REGS)
return 3;
/* Moving between PR and anything but GR is impossible. */
if (from != GR_REGS)
return MEMORY_MOVE_COST (mode, to, 0);
break;
case BR_REGS:
/* Moving between BR and anything but GR is impossible. */
if (from != GR_REGS && from != GR_AND_BR_REGS)
return MEMORY_MOVE_COST (mode, to, 0);
break;
case AR_I_REGS:
case AR_M_REGS:
/* Moving between AR and anything but GR is impossible. */
if (from != GR_REGS)
return MEMORY_MOVE_COST (mode, to, 0);
break;
case GR_REGS:
case FR_REGS:
case GR_AND_FR_REGS:
case GR_AND_BR_REGS:
case ALL_REGS:
break;
default:
abort ();
}
return 2;
}
/* Implement PREFERRED_RELOAD_CLASS. Place additional restrictions on CLASS
to use when copying X into that class. */
enum reg_class
ia64_preferred_reload_class (rtx x, enum reg_class class)
{
switch (class)
{
case FR_REGS:
/* Don't allow volatile mem reloads into floating point registers.
This is defined to force reload to choose the r/m case instead
of the f/f case when reloading (set (reg fX) (mem/v)). */
if (MEM_P (x) && MEM_VOLATILE_P (x))
return NO_REGS;
/* Force all unrecognized constants into the constant pool. */
if (CONSTANT_P (x))
return NO_REGS;
break;
case AR_M_REGS:
case AR_I_REGS:
if (!OBJECT_P (x))
return NO_REGS;
break;
default:
break;
}
return class;
}
/* This function returns the register class required for a secondary
register when copying between one of the registers in CLASS, and X,
using MODE. A return value of NO_REGS means that no secondary register
is required. */
enum reg_class
ia64_secondary_reload_class (enum reg_class class,
enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
int regno = -1;
if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
regno = true_regnum (x);
switch (class)
{
case BR_REGS:
case AR_M_REGS:
case AR_I_REGS:
/* ??? BR<->BR register copies can happen due to a bad gcse/cse/global
interaction. We end up with two pseudos with overlapping lifetimes
both of which are equiv to the same constant, and both which need
to be in BR_REGS. This seems to be a cse bug. cse_basic_block_end
changes depending on the path length, which means the qty_first_reg
check in make_regs_eqv can give different answers at different times.
At some point I'll probably need a reload_indi pattern to handle
this.
We can also get GR_AND_FR_REGS to BR_REGS/AR_REGS copies, where we
wound up with a FP register from GR_AND_FR_REGS. Extend that to all
non-general registers for good measure. */
if (regno >= 0 && ! GENERAL_REGNO_P (regno))
return GR_REGS;
/* This is needed if a pseudo used as a call_operand gets spilled to a
stack slot. */
if (GET_CODE (x) == MEM)
return GR_REGS;
break;
case FR_REGS:
/* Need to go through general registers to get to other class regs. */
if (regno >= 0 && ! (FR_REGNO_P (regno) || GENERAL_REGNO_P (regno)))
return GR_REGS;
/* This can happen when a paradoxical subreg is an operand to the
muldi3 pattern. */
/* ??? This shouldn't be necessary after instruction scheduling is
enabled, because paradoxical subregs are not accepted by
register_operand when INSN_SCHEDULING is defined. Or alternatively,
stop the paradoxical subreg stupidity in the *_operand functions
in recog.c. */
if (GET_CODE (x) == MEM
&& (GET_MODE (x) == SImode || GET_MODE (x) == HImode
|| GET_MODE (x) == QImode))
return GR_REGS;
/* This can happen because of the ior/and/etc patterns that accept FP
registers as operands. If the third operand is a constant, then it
needs to be reloaded into a FP register. */
if (GET_CODE (x) == CONST_INT)
return GR_REGS;
/* This can happen because of register elimination in a muldi3 insn.
E.g. `26107 * (unsigned long)&u'. */
if (GET_CODE (x) == PLUS)
return GR_REGS;
break;
case PR_REGS:
/* ??? This happens if we cse/gcse a BImode value across a call,
and the function has a nonlocal goto. This is because global
does not allocate call crossing pseudos to hard registers when
current_function_has_nonlocal_goto is true. This is relatively
common for C++ programs that use exceptions. To reproduce,
return NO_REGS and compile libstdc++. */
if (GET_CODE (x) == MEM)
return GR_REGS;
/* This can happen when we take a BImode subreg of a DImode value,
and that DImode value winds up in some non-GR register. */
if (regno >= 0 && ! GENERAL_REGNO_P (regno) && ! PR_REGNO_P (regno))
return GR_REGS;
break;
default:
break;
}
return NO_REGS;
}
/* Emit text to declare externally defined variables and functions, because
the Intel assembler does not support undefined externals. */
void
ia64_asm_output_external (FILE *file, tree decl, const char *name)
{
int save_referenced;
/* GNU as does not need anything here, but the HP linker does need
something for external functions. */
if (TARGET_GNU_AS
&& (!TARGET_HPUX_LD
|| TREE_CODE (decl) != FUNCTION_DECL
|| strstr (name, "__builtin_") == name))
return;
/* ??? The Intel assembler creates a reference that needs to be satisfied by
the linker when we do this, so we need to be careful not to do this for
builtin functions which have no library equivalent. Unfortunately, we
can't tell here whether or not a function will actually be called by
expand_expr, so we pull in library functions even if we may not need
them later. */
if (! strcmp (name, "__builtin_next_arg")
|| ! strcmp (name, "alloca")
|| ! strcmp (name, "__builtin_constant_p")
|| ! strcmp (name, "__builtin_args_info"))
return;
if (TARGET_HPUX_LD)
ia64_hpux_add_extern_decl (decl);
else
{
/* assemble_name will set TREE_SYMBOL_REFERENCED, so we must save and
restore it. */
save_referenced = TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl));
if (TREE_CODE (decl) == FUNCTION_DECL)
ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
(*targetm.asm_out.globalize_label) (file, name);
TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)) = save_referenced;
}
}
/* Parse the -mfixed-range= option string. */
static void
fix_range (const char *const_str)
{
int i, first, last;
char *str, *dash, *comma;
/* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
REG2 are either register names or register numbers. The effect
of this option is to mark the registers in the range from REG1 to
REG2 as ``fixed'' so they won't be used by the compiler. This is
used, e.g., to ensure that kernel mode code doesn't use f32-f127. */
i = strlen (const_str);
str = (char *) alloca (i + 1);
memcpy (str, const_str, i + 1);
while (1)
{
dash = strchr (str, '-');
if (!dash)
{
warning ("value of -mfixed-range must have form REG1-REG2");
return;
}
*dash = '\0';
comma = strchr (dash + 1, ',');
if (comma)
*comma = '\0';
first = decode_reg_name (str);
if (first < 0)
{
warning ("unknown register name: %s", str);
return;
}
last = decode_reg_name (dash + 1);
if (last < 0)
{
warning ("unknown register name: %s", dash + 1);
return;
}
*dash = '-';
if (first > last)
{
warning ("%s-%s is an empty range", str, dash + 1);
return;
}
for (i = first; i <= last; ++i)
fixed_regs[i] = call_used_regs[i] = 1;
if (!comma)
break;
*comma = ',';
str = comma + 1;
}
}
static struct machine_function *
ia64_init_machine_status (void)
{
return ggc_alloc_cleared (sizeof (struct machine_function));
}
/* Handle TARGET_OPTIONS switches. */
void
ia64_override_options (void)
{
static struct pta
{
const char *const name; /* processor name or nickname. */
const enum processor_type processor;
}
const processor_alias_table[] =
{
{"itanium", PROCESSOR_ITANIUM},
{"itanium1", PROCESSOR_ITANIUM},
{"merced", PROCESSOR_ITANIUM},
{"itanium2", PROCESSOR_ITANIUM2},
{"mckinley", PROCESSOR_ITANIUM2},
};
int const pta_size = ARRAY_SIZE (processor_alias_table);
int i;
if (TARGET_AUTO_PIC)
target_flags |= MASK_CONST_GP;
if (TARGET_INLINE_FLOAT_DIV_LAT && TARGET_INLINE_FLOAT_DIV_THR)
{
if ((target_flags_explicit & MASK_INLINE_FLOAT_DIV_LAT)
&& (target_flags_explicit & MASK_INLINE_FLOAT_DIV_THR))
{
warning ("cannot optimize floating point division for both latency and throughput");
target_flags &= ~MASK_INLINE_FLOAT_DIV_THR;
}
else
{
if (target_flags_explicit & MASK_INLINE_FLOAT_DIV_THR)
target_flags &= ~MASK_INLINE_FLOAT_DIV_LAT;
else
target_flags &= ~MASK_INLINE_FLOAT_DIV_THR;
}
}
if (TARGET_INLINE_INT_DIV_LAT && TARGET_INLINE_INT_DIV_THR)
{
if ((target_flags_explicit & MASK_INLINE_INT_DIV_LAT)
&& (target_flags_explicit & MASK_INLINE_INT_DIV_THR))
{
warning ("cannot optimize integer division for both latency and throughput");
target_flags &= ~MASK_INLINE_INT_DIV_THR;
}
else
{
if (target_flags_explicit & MASK_INLINE_INT_DIV_THR)
target_flags &= ~MASK_INLINE_INT_DIV_LAT;
else
target_flags &= ~MASK_INLINE_INT_DIV_THR;
}
}
if (TARGET_INLINE_SQRT_LAT && TARGET_INLINE_SQRT_THR)
{
if ((target_flags_explicit & MASK_INLINE_SQRT_LAT)
&& (target_flags_explicit & MASK_INLINE_SQRT_THR))
{
warning ("cannot optimize square root for both latency and throughput");
target_flags &= ~MASK_INLINE_SQRT_THR;
}
else
{
if (target_flags_explicit & MASK_INLINE_SQRT_THR)
target_flags &= ~MASK_INLINE_SQRT_LAT;
else
target_flags &= ~MASK_INLINE_SQRT_THR;
}
}
if (TARGET_INLINE_SQRT_LAT)
{
warning ("not yet implemented: latency-optimized inline square root");
target_flags &= ~MASK_INLINE_SQRT_LAT;
}
if (ia64_fixed_range_string)
fix_range (ia64_fixed_range_string);
if (ia64_tls_size_string)
{
char *end;
unsigned long tmp = strtoul (ia64_tls_size_string, &end, 10);
if (*end || (tmp != 14 && tmp != 22 && tmp != 64))
error ("bad value (%s) for -mtls-size= switch", ia64_tls_size_string);
else
ia64_tls_size = tmp;
}
if (!ia64_tune_string)
ia64_tune_string = "itanium2";
for (i = 0; i < pta_size; i++)
if (! strcmp (ia64_tune_string, processor_alias_table[i].name))
{
ia64_tune = processor_alias_table[i].processor;
break;
}
if (i == pta_size)
error ("bad value (%s) for -tune= switch", ia64_tune_string);
ia64_flag_schedule_insns2 = flag_schedule_insns_after_reload;
flag_schedule_insns_after_reload = 0;
ia64_section_threshold = g_switch_set ? g_switch_value : IA64_DEFAULT_GVALUE;
init_machine_status = ia64_init_machine_status;
}
static enum attr_itanium_class ia64_safe_itanium_class (rtx);
static enum attr_type ia64_safe_type (rtx);
static enum attr_itanium_class
ia64_safe_itanium_class (rtx insn)
{
if (recog_memoized (insn) >= 0)
return get_attr_itanium_class (insn);
else
return ITANIUM_CLASS_UNKNOWN;
}
static enum attr_type
ia64_safe_type (rtx insn)
{
if (recog_memoized (insn) >= 0)
return get_attr_type (insn);
else
return TYPE_UNKNOWN;
}
/* The following collection of routines emit instruction group stop bits as
necessary to avoid dependencies. */
/* Need to track some additional registers as far as serialization is
concerned so we can properly handle br.call and br.ret. We could
make these registers visible to gcc, but since these registers are
never explicitly used in gcc generated code, it seems wasteful to
do so (plus it would make the call and return patterns needlessly
complex). */
#define REG_RP (BR_REG (0))
#define REG_AR_CFM (FIRST_PSEUDO_REGISTER + 1)
/* This is used for volatile asms which may require a stop bit immediately
before and after them. */
#define REG_VOLATILE (FIRST_PSEUDO_REGISTER + 2)
#define AR_UNAT_BIT_0 (FIRST_PSEUDO_REGISTER + 3)
#define NUM_REGS (AR_UNAT_BIT_0 + 64)
/* For each register, we keep track of how it has been written in the
current instruction group.
If a register is written unconditionally (no qualifying predicate),
WRITE_COUNT is set to 2 and FIRST_PRED is ignored.
If a register is written if its qualifying predicate P is true, we
set WRITE_COUNT to 1 and FIRST_PRED to P. Later on, the same register
may be written again by the complement of P (P^1) and when this happens,
WRITE_COUNT gets set to 2.
The result of this is that whenever an insn attempts to write a register
whose WRITE_COUNT is two, we need to issue an insn group barrier first.
If a predicate register is written by a floating-point insn, we set
WRITTEN_BY_FP to true.
If a predicate register is written by an AND.ORCM we set WRITTEN_BY_AND
to true; if it was written by an OR.ANDCM we set WRITTEN_BY_OR to true. */
struct reg_write_state
{
unsigned int write_count : 2;
unsigned int first_pred : 16;
unsigned int written_by_fp : 1;
unsigned int written_by_and : 1;
unsigned int written_by_or : 1;
};
/* Cumulative info for the current instruction group. */
struct reg_write_state rws_sum[NUM_REGS];
/* Info for the current instruction. This gets copied to rws_sum after a
stop bit is emitted. */
struct reg_write_state rws_insn[NUM_REGS];
/* Indicates whether this is the first instruction after a stop bit,
in which case we don't need another stop bit. Without this, we hit
the abort in ia64_variable_issue when scheduling an alloc. */
static int first_instruction;
/* Misc flags needed to compute RAW/WAW dependencies while we are traversing
RTL for one instruction. */
struct reg_flags
{
unsigned int is_write : 1; /* Is register being written? */
unsigned int is_fp : 1; /* Is register used as part of an fp op? */
unsigned int is_branch : 1; /* Is register used as part of a branch? */
unsigned int is_and : 1; /* Is register used as part of and.orcm? */
unsigned int is_or : 1; /* Is register used as part of or.andcm? */
unsigned int is_sibcall : 1; /* Is this a sibling or normal call? */
};
static void rws_update (struct reg_write_state *, int, struct reg_flags, int);
static int rws_access_regno (int, struct reg_flags, int);
static int rws_access_reg (rtx, struct reg_flags, int);
static void update_set_flags (rtx, struct reg_flags *, int *, rtx *);
static int set_src_needs_barrier (rtx, struct reg_flags, int, rtx);
static int rtx_needs_barrier (rtx, struct reg_flags, int);
static void init_insn_group_barriers (void);
static int group_barrier_needed_p (rtx);
static int safe_group_barrier_needed_p (rtx);
/* Update *RWS for REGNO, which is being written by the current instruction,
with predicate PRED, and associated register flags in FLAGS. */
static void
rws_update (struct reg_write_state *rws, int regno, struct reg_flags flags, int pred)
{
if (pred)
rws[regno].write_count++;
else
rws[regno].write_count = 2;
rws[regno].written_by_fp |= flags.is_fp;
/* ??? Not tracking and/or across differing predicates. */
rws[regno].written_by_and = flags.is_and;
rws[regno].written_by_or = flags.is_or;
rws[regno].first_pred = pred;
}
/* Handle an access to register REGNO of type FLAGS using predicate register
PRED. Update rws_insn and rws_sum arrays. Return 1 if this access creates
a dependency with an earlier instruction in the same group. */
static int
rws_access_regno (int regno, struct reg_flags flags, int pred)
{
int need_barrier = 0;
if (regno >= NUM_REGS)
abort ();
if (! PR_REGNO_P (regno))
flags.is_and = flags.is_or = 0;
if (flags.is_write)
{
int write_count;
/* One insn writes same reg multiple times? */
if (rws_insn[regno].write_count > 0)
abort ();
/* Update info for current instruction. */
rws_update (rws_insn, regno, flags, pred);
write_count = rws_sum[regno].write_count;
switch (write_count)
{
case 0:
/* The register has not been written yet. */
rws_update (rws_sum, regno, flags, pred);
break;
case 1:
/* The register has been written via a predicate. If this is
not a complementary predicate, then we need a barrier. */
/* ??? This assumes that P and P+1 are always complementary
predicates for P even. */
if (flags.is_and && rws_sum[regno].written_by_and)
;
else if (flags.is_or && rws_sum[regno].written_by_or)
;
else if ((rws_sum[regno].first_pred ^ 1) != pred)
need_barrier = 1;
rws_update (rws_sum, regno, flags, pred);
break;
case 2:
/* The register has been unconditionally written already. We
need a barrier. */
if (flags.is_and && rws_sum[regno].written_by_and)
;
else if (flags.is_or && rws_sum[regno].written_by_or)
;
else
need_barrier = 1;
rws_sum[regno].written_by_and = flags.is_and;
rws_sum[regno].written_by_or = flags.is_or;
break;
default:
abort ();
}
}
else
{
if (flags.is_branch)
{
/* Branches have several RAW exceptions that allow to avoid
barriers. */
if (REGNO_REG_CLASS (regno) == BR_REGS || regno == AR_PFS_REGNUM)
/* RAW dependencies on branch regs are permissible as long
as the writer is a non-branch instruction. Since we
never generate code that uses a branch register written
by a branch instruction, handling this case is
easy. */
return 0;
if (REGNO_REG_CLASS (regno) == PR_REGS
&& ! rws_sum[regno].written_by_fp)
/* The predicates of a branch are available within the
same insn group as long as the predicate was written by
something other than a floating-point instruction. */
return 0;
}
if (flags.is_and && rws_sum[regno].written_by_and)
return 0;
if (flags.is_or && rws_sum[regno].written_by_or)
return 0;
switch (rws_sum[regno].write_count)
{
case 0:
/* The register has not been written yet. */
break;
case 1:
/* The register has been written via a predicate. If this is
not a complementary predicate, then we need a barrier. */
/* ??? This assumes that P and P+1 are always complementary
predicates for P even. */
if ((rws_sum[regno].first_pred ^ 1) != pred)
need_barrier = 1;
break;
case 2:
/* The register has been unconditionally written already. We
need a barrier. */
need_barrier = 1;
break;
default:
abort ();
}
}
return need_barrier;
}
static int
rws_access_reg (rtx reg, struct reg_flags flags, int pred)
{
int regno = REGNO (reg);
int n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
if (n == 1)
return rws_access_regno (regno, flags, pred);
else
{
int need_barrier = 0;
while (--n >= 0)
need_barrier |= rws_access_regno (regno + n, flags, pred);
return need_barrier;
}
}
/* Examine X, which is a SET rtx, and update the flags, the predicate, and
the condition, stored in *PFLAGS, *PPRED and *PCOND. */
static void
update_set_flags (rtx x, struct reg_flags *pflags, int *ppred, rtx *pcond)
{
rtx src = SET_SRC (x);
*pcond = 0;
switch (GET_CODE (src))
{
case CALL:
return;
case IF_THEN_ELSE:
if (SET_DEST (x) == pc_rtx)
/* X is a conditional branch. */
return;
else
{
int is_complemented = 0;
/* X is a conditional move. */
rtx cond = XEXP (src, 0);
if (GET_CODE (cond) == EQ)
is_complemented = 1;
cond = XEXP (cond, 0);
if (GET_CODE (cond) != REG
&& REGNO_REG_CLASS (REGNO (cond)) != PR_REGS)
abort ();
*pcond = cond;
if (XEXP (src, 1) == SET_DEST (x)
|| XEXP (src, 2) == SET_DEST (x))
{
/* X is a conditional move that conditionally writes the
destination. */
/* We need another complement in this case. */
if (XEXP (src, 1) == SET_DEST (x))
is_complemented = ! is_complemented;
*ppred = REGNO (cond);
if (is_complemented)
++*ppred;
}
/* ??? If this is a conditional write to the dest, then this
instruction does not actually read one source. This probably
doesn't matter, because that source is also the dest. */
/* ??? Multiple writes to predicate registers are allowed
if they are all AND type compares, or if they are all OR
type compares. We do not generate such instructions
currently. */
}
/* ... fall through ... */
default:
if (COMPARISON_P (src)
&& GET_MODE_CLASS (GET_MODE (XEXP (src, 0))) == MODE_FLOAT)
/* Set pflags->is_fp to 1 so that we know we're dealing
with a floating point comparison when processing the
destination of the SET. */
pflags->is_fp = 1;
/* Discover if this is a parallel comparison. We only handle
and.orcm and or.andcm at present, since we must retain a
strict inverse on the predicate pair. */
else if (GET_CODE (src) == AND)
pflags->is_and = 1;
else if (GET_CODE (src) == IOR)
pflags->is_or = 1;
break;
}
}
/* Subroutine of rtx_needs_barrier; this function determines whether the
source of a given SET rtx found in X needs a barrier. FLAGS and PRED
are as in rtx_needs_barrier. COND is an rtx that holds the condition
for this insn. */
static int
set_src_needs_barrier (rtx x, struct reg_flags flags, int pred, rtx cond)
{
int need_barrier = 0;
rtx dst;
rtx src = SET_SRC (x);
if (GET_CODE (src) == CALL)
/* We don't need to worry about the result registers that
get written by subroutine call. */
return rtx_needs_barrier (src, flags, pred);
else if (SET_DEST (x) == pc_rtx)
{
/* X is a conditional branch. */
/* ??? This seems redundant, as the caller sets this bit for
all JUMP_INSNs. */
flags.is_branch = 1;
return rtx_needs_barrier (src, flags, pred);
}
need_barrier = rtx_needs_barrier (src, flags, pred);
/* This instruction unconditionally uses a predicate register. */
if (cond)
need_barrier |= rws_access_reg (cond, flags, 0);
dst = SET_DEST (x);
if (GET_CODE (dst) == ZERO_EXTRACT)
{
need_barrier |= rtx_needs_barrier (XEXP (dst, 1), flags, pred);
need_barrier |= rtx_needs_barrier (XEXP (dst, 2), flags, pred);
dst = XEXP (dst, 0);
}
return need_barrier;
}
/* Handle an access to rtx X of type FLAGS using predicate register
PRED. Return 1 if this access creates a dependency with an earlier
instruction in the same group. */
static int
rtx_needs_barrier (rtx x, struct reg_flags flags, int pred)
{
int i, j;
int is_complemented = 0;
int need_barrier = 0;
const char *format_ptr;
struct reg_flags new_flags;
rtx cond = 0;
if (! x)
return 0;
new_flags = flags;
switch (GET_CODE (x))
{
case SET:
update_set_flags (x, &new_flags, &pred, &cond);
need_barrier = set_src_needs_barrier (x, new_flags, pred, cond);
if (GET_CODE (SET_SRC (x)) != CALL)
{
new_flags.is_write = 1;
need_barrier |= rtx_needs_barrier (SET_DEST (x), new_flags, pred);
}
break;
case CALL:
new_flags.is_write = 0;
need_barrier |= rws_access_regno (AR_EC_REGNUM, new_flags, pred);
/* Avoid multiple register writes, in case this is a pattern with
multiple CALL rtx. This avoids an abort in rws_access_reg. */
if (! flags.is_sibcall && ! rws_insn[REG_AR_CFM].write_count)
{
new_flags.is_write = 1;
need_barrier |= rws_access_regno (REG_RP, new_flags, pred);
need_barrier |= rws_access_regno (AR_PFS_REGNUM, new_flags, pred);
need_barrier |= rws_access_regno (REG_AR_CFM, new_flags, pred);
}
break;
case COND_EXEC:
/* X is a predicated instruction. */
cond = COND_EXEC_TEST (x);
if (pred)
abort ();
need_barrier = rtx_needs_barrier (cond, flags, 0);
if (GET_CODE (cond) == EQ)
is_complemented = 1;
cond = XEXP (cond, 0);
if (GET_CODE (cond) != REG
&& REGNO_REG_CLASS (REGNO (cond)) != PR_REGS)
abort ();
pred = REGNO (cond);
if (is_complemented)
++pred;
need_barrier |= rtx_needs_barrier (COND_EXEC_CODE (x), flags, pred);
return need_barrier;
case CLOBBER:
case USE:
/* Clobber & use are for earlier compiler-phases only. */
break;
case ASM_OPERANDS:
case ASM_INPUT:
/* We always emit stop bits for traditional asms. We emit stop bits
for volatile extended asms if TARGET_VOL_ASM_STOP is true. */
if (GET_CODE (x) != ASM_OPERANDS
|| (MEM_VOLATILE_P (x) && TARGET_VOL_ASM_STOP))
{
/* Avoid writing the register multiple times if we have multiple
asm outputs. This avoids an abort in rws_access_reg. */
if (! rws_insn[REG_VOLATILE].write_count)
{
new_flags.is_write = 1;
rws_access_regno (REG_VOLATILE, new_flags, pred);
}
return 1;
}
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
We cannot just fall through here since then we would be confused
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
traditional asms unlike their normal usage. */
for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; --i)
if (rtx_needs_barrier (ASM_OPERANDS_INPUT (x, i), flags, pred))
need_barrier = 1;
break;
case PARALLEL:
for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
{
rtx pat = XVECEXP (x, 0, i);
switch (GET_CODE (pat))
{
case SET:
update_set_flags (pat, &new_flags, &pred, &cond);
need_barrier |= set_src_needs_barrier (pat, new_flags,
pred, cond);
break;
case USE:
case CALL:
case ASM_OPERANDS:
need_barrier |= rtx_needs_barrier (pat, flags, pred);
break;
case CLOBBER:
case RETURN:
break;
default:
gcc_unreachable ();
}
}
for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
{
rtx pat = XVECEXP (x, 0, i);
if (GET_CODE (pat) == SET)
{
if (GET_CODE (SET_SRC (pat)) != CALL)
{
new_flags.is_write = 1;
need_barrier |= rtx_needs_barrier (SET_DEST (pat), new_flags,
pred);
}
}
else if (GET_CODE (pat) == CLOBBER || GET_CODE (pat) == RETURN)
need_barrier |= rtx_needs_barrier (pat, flags, pred);
}
break;
case SUBREG:
need_barrier |= rtx_needs_barrier (SUBREG_REG (x), flags, pred);
break;
case REG:
if (REGNO (x) == AR_UNAT_REGNUM)
{
for (i = 0; i < 64; ++i)
need_barrier |= rws_access_regno (AR_UNAT_BIT_0 + i, flags, pred);
}
else
need_barrier = rws_access_reg (x, flags, pred);
break;
case MEM:
/* Find the regs used in memory address computation. */
new_flags.is_write = 0;
need_barrier = rtx_needs_barrier (XEXP (x, 0), new_flags, pred);
break;
case CONST_INT: case CONST_DOUBLE: case CONST_VECTOR:
case SYMBOL_REF: case LABEL_REF: case CONST:
break;
/* Operators with side-effects. */
case POST_INC: case POST_DEC:
if (GET_CODE (XEXP (x, 0)) != REG)
abort ();
new_flags.is_write = 0;
need_barrier = rws_access_reg (XEXP (x, 0), new_flags, pred);
new_flags.is_write = 1;
need_barrier |= rws_access_reg (XEXP (x, 0), new_flags, pred);
break;
case POST_MODIFY:
if (GET_CODE (XEXP (x, 0)) != REG)
abort ();
new_flags.is_write = 0;
need_barrier = rws_access_reg (XEXP (x, 0), new_flags, pred);
need_barrier |= rtx_needs_barrier (XEXP (x, 1), new_flags, pred);
new_flags.is_write = 1;
need_barrier |= rws_access_reg (XEXP (x, 0), new_flags, pred);
break;
/* Handle common unary and binary ops for efficiency. */
case COMPARE: case PLUS: case MINUS: case MULT: case DIV:
case MOD: case UDIV: case UMOD: case AND: case IOR:
case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT:
case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX:
case NE: case EQ: case GE: case GT: case LE:
case LT: case GEU: case GTU: case LEU: case LTU:
need_barrier = rtx_needs_barrier (XEXP (x, 0), new_flags, pred);
need_barrier |= rtx_needs_barrier (XEXP (x, 1), new_flags, pred);
break;
case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND:
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT:
case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS:
case SQRT: case FFS: case POPCOUNT:
need_barrier = rtx_needs_barrier (XEXP (x, 0), flags, pred);
break;
case VEC_SELECT:
/* VEC_SELECT's second argument is a PARALLEL with integers that
describe the elements selected. On ia64, those integers are
always constants. Avoid walking the PARALLEL so that we don't
get confused with "normal" parallels and abort. */
need_barrier = rtx_needs_barrier (XEXP (x, 0), flags, pred);
break;
case UNSPEC:
switch (XINT (x, 1))
{
case UNSPEC_LTOFF_DTPMOD:
case UNSPEC_LTOFF_DTPREL:
case UNSPEC_DTPREL:
case UNSPEC_LTOFF_TPREL:
case UNSPEC_TPREL:
case UNSPEC_PRED_REL_MUTEX:
case UNSPEC_PIC_CALL:
case UNSPEC_MF:
case UNSPEC_FETCHADD_ACQ:
case UNSPEC_BSP_VALUE:
case UNSPEC_FLUSHRS:
case UNSPEC_BUNDLE_SELECTOR:
break;
case UNSPEC_GR_SPILL:
case UNSPEC_GR_RESTORE:
{
HOST_WIDE_INT offset = INTVAL (XVECEXP (x, 0, 1));
HOST_WIDE_INT bit = (offset >> 3) & 63;
need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred);
new_flags.is_write = (XINT (x, 1) == UNSPEC_GR_SPILL);
need_barrier |= rws_access_regno (AR_UNAT_BIT_0 + bit,
new_flags, pred);
break;
}
case UNSPEC_FR_SPILL:
case UNSPEC_FR_RESTORE:
case UNSPEC_GETF_EXP:
case UNSPEC_SETF_EXP:
case UNSPEC_ADDP4:
case UNSPEC_FR_SQRT_RECIP_APPROX:
need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred);
break;
case UNSPEC_FR_RECIP_APPROX:
case UNSPEC_SHRP:
case UNSPEC_COPYSIGN:
need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred);
need_barrier |= rtx_needs_barrier (XVECEXP (x, 0, 1), flags, pred);
break;
case UNSPEC_CMPXCHG_ACQ:
need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 1), flags, pred);
need_barrier |= rtx_needs_barrier (XVECEXP (x, 0, 2), flags, pred);
break;
default:
abort ();
}
break;
case UNSPEC_VOLATILE:
switch (XINT (x, 1))
{
case UNSPECV_ALLOC:
/* Alloc must always be the first instruction of a group.
We force this by always returning true. */
/* ??? We might get better scheduling if we explicitly check for
input/local/output register dependencies, and modify the
scheduler so that alloc is always reordered to the start of
the current group. We could then eliminate all of the
first_instruction code. */
rws_access_regno (AR_PFS_REGNUM, flags, pred);
new_flags.is_write = 1;
rws_access_regno (REG_AR_CFM, new_flags, pred);
return 1;
case UNSPECV_SET_BSP:
need_barrier = 1;
break;
case UNSPECV_BLOCKAGE:
case UNSPECV_INSN_GROUP_BARRIER:
case UNSPECV_BREAK:
case UNSPECV_PSAC_ALL:
case UNSPECV_PSAC_NORMAL:
return 0;
default:
abort ();
}
break;
case RETURN:
new_flags.is_write = 0;
need_barrier = rws_access_regno (REG_RP, flags, pred);
need_barrier |= rws_access_regno (AR_PFS_REGNUM, flags, pred);
new_flags.is_write = 1;
need_barrier |= rws_access_regno (AR_EC_REGNUM, new_flags, pred);
need_barrier |= rws_access_regno (REG_AR_CFM, new_flags, pred);
break;
default:
format_ptr = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
switch (format_ptr[i])
{
case '0': /* unused field */
case 'i': /* integer */
case 'n': /* note */
case 'w': /* wide integer */
case 's': /* pointer to string */
case 'S': /* optional pointer to string */
break;
case 'e':
if (rtx_needs_barrier (XEXP (x, i), flags, pred))
need_barrier = 1;
break;
case 'E':
for (j = XVECLEN (x, i) - 1; j >= 0; --j)
if (rtx_needs_barrier (XVECEXP (x, i, j), flags, pred))
need_barrier = 1;
break;
default:
abort ();
}
break;
}
return need_barrier;
}
/* Clear out the state for group_barrier_needed_p at the start of a
sequence of insns. */
static void
init_insn_group_barriers (void)
{
memset (rws_sum, 0, sizeof (rws_sum));
first_instruction = 1;
}
/* Given the current state, recorded by previous calls to this function,
determine whether a group barrier (a stop bit) is necessary before INSN.
Return nonzero if so. */
static int
group_barrier_needed_p (rtx insn)
{
rtx pat;
int need_barrier = 0;
struct reg_flags flags;
memset (&flags, 0, sizeof (flags));
switch (GET_CODE (insn))
{
case NOTE:
break;
case BARRIER:
/* A barrier doesn't imply an instruction group boundary. */
break;
case CODE_LABEL:
memset (rws_insn, 0, sizeof (rws_insn));
return 1;
case CALL_INSN:
flags.is_branch = 1;
flags.is_sibcall = SIBLING_CALL_P (insn);
memset (rws_insn, 0, sizeof (rws_insn));
/* Don't bundle a call following another call. */
if ((pat = prev_active_insn (insn))
&& GET_CODE (pat) == CALL_INSN)
{
need_barrier = 1;
break;
}
need_barrier = rtx_needs_barrier (PATTERN (insn), flags, 0);
break;
case JUMP_INSN:
flags.is_branch = 1;
/* Don't bundle a jump following a call. */
if ((pat = prev_active_insn (insn))
&& GET_CODE (pat) == CALL_INSN)
{
need_barrier = 1;
break;
}
/* FALLTHRU */
case INSN:
if (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)
/* Don't care about USE and CLOBBER "insns"---those are used to
indicate to the optimizer that it shouldn't get rid of
certain operations. */
break;
pat = PATTERN (insn);
/* Ug. Hack hacks hacked elsewhere. */
switch (recog_memoized (insn))
{
/* We play dependency tricks with the epilogue in order
to get proper schedules. Undo this for dv analysis. */
case CODE_FOR_epilogue_deallocate_stack:
case CODE_FOR_prologue_allocate_stack:
pat = XVECEXP (pat, 0, 0);
break;
/* The pattern we use for br.cloop confuses the code above.
The second element of the vector is representative. */
case CODE_FOR_doloop_end_internal:
pat = XVECEXP (pat, 0, 1);
break;
/* Doesn't generate code. */
case CODE_FOR_pred_rel_mutex:
case CODE_FOR_prologue_use:
return 0;
default:
break;
}
memset (rws_insn, 0, sizeof (rws_insn));
need_barrier = rtx_needs_barrier (pat, flags, 0);
/* Check to see if the previous instruction was a volatile
asm. */
if (! need_barrier)
need_barrier = rws_access_regno (REG_VOLATILE, flags, 0);
break;
default:
abort ();
}
if (first_instruction && INSN_P (insn)
&& ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER)
{
need_barrier = 0;
first_instruction = 0;
}
return need_barrier;
}
/* Like group_barrier_needed_p, but do not clobber the current state. */
static int
safe_group_barrier_needed_p (rtx insn)
{
struct reg_write_state rws_saved[NUM_REGS];
int saved_first_instruction;
int t;
memcpy (rws_saved, rws_sum, NUM_REGS * sizeof *rws_saved);
saved_first_instruction = first_instruction;
t = group_barrier_needed_p (insn);
memcpy (rws_sum, rws_saved, NUM_REGS * sizeof *rws_saved);
first_instruction = saved_first_instruction;
return t;
}
/* Scan the current function and insert stop bits as necessary to
eliminate dependencies. This function assumes that a final
instruction scheduling pass has been run which has already
inserted most of the necessary stop bits. This function only
inserts new ones at basic block boundaries, since these are
invisible to the scheduler. */
static void
emit_insn_group_barriers (FILE *dump)
{
rtx insn;
rtx last_label = 0;
int insns_since_last_label = 0;
init_insn_group_barriers ();
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == CODE_LABEL)
{
if (insns_since_last_label)
last_label = insn;
insns_since_last_label = 0;
}
else if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK)
{
if (insns_since_last_label)
last_label = insn;
insns_since_last_label = 0;
}
else if (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
&& XINT (PATTERN (insn), 1) == UNSPECV_INSN_GROUP_BARRIER)
{
init_insn_group_barriers ();
last_label = 0;
}
else if (INSN_P (insn))
{
insns_since_last_label = 1;
if (group_barrier_needed_p (insn))
{
if (last_label)
{
if (dump)
fprintf (dump, "Emitting stop before label %d\n",
INSN_UID (last_label));
emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), last_label);
insn = last_label;
init_insn_group_barriers ();
last_label = 0;
}
}
}
}
}
/* Like emit_insn_group_barriers, but run if no final scheduling pass was run.
This function has to emit all necessary group barriers. */
static void
emit_all_insn_group_barriers (FILE *dump ATTRIBUTE_UNUSED)
{
rtx insn;
init_insn_group_barriers ();
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == BARRIER)
{
rtx last = prev_active_insn (insn);
if (! last)
continue;
if (GET_CODE (last) == JUMP_INSN
&& GET_CODE (PATTERN (last)) == ADDR_DIFF_VEC)
last = prev_active_insn (last);
if (recog_memoized (last) != CODE_FOR_insn_group_barrier)
emit_insn_after (gen_insn_group_barrier (GEN_INT (3)), last);
init_insn_group_barriers ();
}
else if (INSN_P (insn))
{
if (recog_memoized (insn) == CODE_FOR_insn_group_barrier)
init_insn_group_barriers ();
else if (group_barrier_needed_p (insn))
{
emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), insn);
init_insn_group_barriers ();
group_barrier_needed_p (insn);
}
}
}
}
/* Instruction scheduling support. */
#define NR_BUNDLES 10
/* A list of names of all available bundles. */
static const char *bundle_name [NR_BUNDLES] =
{
".mii",
".mmi",
".mfi",
".mmf",
#if NR_BUNDLES == 10
".bbb",
".mbb",
#endif
".mib",
".mmb",
".mfb",
".mlx"
};
/* Nonzero if we should insert stop bits into the schedule. */
int ia64_final_schedule = 0;
/* Codes of the corresponding queried units: */
static int _0mii_, _0mmi_, _0mfi_, _0mmf_;
static int _0bbb_, _0mbb_, _0mib_, _0mmb_, _0mfb_, _0mlx_;
static int _1mii_, _1mmi_, _1mfi_, _1mmf_;
static int _1bbb_, _1mbb_, _1mib_, _1mmb_, _1mfb_, _1mlx_;
static int pos_1, pos_2, pos_3, pos_4, pos_5, pos_6;
/* The following variable value is an insn group barrier. */
static rtx dfa_stop_insn;
/* The following variable value is the last issued insn. */
static rtx last_scheduled_insn;
/* The following variable value is size of the DFA state. */
static size_t dfa_state_size;
/* The following variable value is pointer to a DFA state used as
temporary variable. */
static state_t temp_dfa_state = NULL;
/* The following variable value is DFA state after issuing the last
insn. */
static state_t prev_cycle_state = NULL;
/* The following array element values are TRUE if the corresponding
insn requires to add stop bits before it. */
static char *stops_p;
/* The following variable is used to set up the mentioned above array. */
static int stop_before_p = 0;
/* The following variable value is length of the arrays `clocks' and
`add_cycles'. */
static int clocks_length;
/* The following array element values are cycles on which the
corresponding insn will be issued. The array is used only for
Itanium1. */
static int *clocks;
/* The following array element values are numbers of cycles should be
added to improve insn scheduling for MM_insns for Itanium1. */
static int *add_cycles;
static rtx ia64_single_set (rtx);
static void ia64_emit_insn_before (rtx, rtx);
/* Map a bundle number to its pseudo-op. */
const char *
get_bundle_name (int b)
{
return bundle_name[b];
}
/* Return the maximum number of instructions a cpu can issue. */
static int
ia64_issue_rate (void)
{
return 6;
}
/* Helper function - like single_set, but look inside COND_EXEC. */
static rtx
ia64_single_set (rtx insn)
{
rtx x = PATTERN (insn), ret;
if (GET_CODE (x) == COND_EXEC)
x = COND_EXEC_CODE (x);
if (GET_CODE (x) == SET)
return x;
/* Special case here prologue_allocate_stack and epilogue_deallocate_stack.
Although they are not classical single set, the second set is there just
to protect it from moving past FP-relative stack accesses. */
switch (recog_memoized (insn))
{
case CODE_FOR_prologue_allocate_stack:
case CODE_FOR_epilogue_deallocate_stack:
ret = XVECEXP (x, 0, 0);
break;
default:
ret = single_set_2 (insn, x);
break;
}
return ret;
}
/* Adjust the cost of a scheduling dependency. Return the new cost of
a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
static int
ia64_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
enum attr_itanium_class dep_class;
enum attr_itanium_class insn_class;
if (REG_NOTE_KIND (link) != REG_DEP_OUTPUT)
return cost;
insn_class = ia64_safe_itanium_class (insn);
dep_class = ia64_safe_itanium_class (dep_insn);
if (dep_class == ITANIUM_CLASS_ST || dep_class == ITANIUM_CLASS_STF
|| insn_class == ITANIUM_CLASS_ST || insn_class == ITANIUM_CLASS_STF)
return 0;
return cost;
}
/* Like emit_insn_before, but skip cycle_display notes.
??? When cycle display notes are implemented, update this. */
static void
ia64_emit_insn_before (rtx insn, rtx before)
{
emit_insn_before (insn, before);
}
/* The following function marks insns who produce addresses for load
and store insns. Such insns will be placed into M slots because it
decrease latency time for Itanium1 (see function
`ia64_produce_address_p' and the DFA descriptions). */
static void
ia64_dependencies_evaluation_hook (rtx head, rtx tail)
{
rtx insn, link, next, next_tail;
next_tail = NEXT_INSN (tail);
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
if (INSN_P (insn))
insn->call = 0;
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
if (INSN_P (insn)
&& ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IALU)
{
for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
{
next = XEXP (link, 0);
if ((ia64_safe_itanium_class (next) == ITANIUM_CLASS_ST
|| ia64_safe_itanium_class (next) == ITANIUM_CLASS_STF)
&& ia64_st_address_bypass_p (insn, next))
break;
else if ((ia64_safe_itanium_class (next) == ITANIUM_CLASS_LD
|| ia64_safe_itanium_class (next)
== ITANIUM_CLASS_FLD)
&& ia64_ld_address_bypass_p (insn, next))
break;
}
insn->call = link != 0;
}
}
/* We're beginning a new block. Initialize data structures as necessary. */
static void
ia64_sched_init (FILE *dump ATTRIBUTE_UNUSED,
int sched_verbose ATTRIBUTE_UNUSED,
int max_ready ATTRIBUTE_UNUSED)
{
#ifdef ENABLE_CHECKING
rtx insn;
if (reload_completed)
for (insn = NEXT_INSN (current_sched_info->prev_head);
insn != current_sched_info->next_tail;
insn = NEXT_INSN (insn))
if (SCHED_GROUP_P (insn))
abort ();
#endif
last_scheduled_insn = NULL_RTX;
init_insn_group_barriers ();
}
/* We are about to being issuing insns for this clock cycle.
Override the default sort algorithm to better slot instructions. */
static int
ia64_dfa_sched_reorder (FILE *dump, int sched_verbose, rtx *ready,
int *pn_ready, int clock_var ATTRIBUTE_UNUSED,
int reorder_type)
{
int n_asms;
int n_ready = *pn_ready;
rtx *e_ready = ready + n_ready;
rtx *insnp;
if (sched_verbose)
fprintf (dump, "// ia64_dfa_sched_reorder (type %d):\n", reorder_type);
if (reorder_type == 0)
{
/* First, move all USEs, CLOBBERs and other crud out of the way. */
n_asms = 0;
for (insnp = ready; insnp < e_ready; insnp++)
if (insnp < e_ready)
{
rtx insn = *insnp;
enum attr_type t = ia64_safe_type (insn);
if (t == TYPE_UNKNOWN)
{
if (GET_CODE (PATTERN (insn)) == ASM_INPUT
|| asm_noperands (PATTERN (insn)) >= 0)
{
rtx lowest = ready[n_asms];
ready[n_asms] = insn;
*insnp = lowest;
n_asms++;
}
else
{
rtx highest = ready[n_ready - 1];
ready[n_ready - 1] = insn;
*insnp = highest;
return 1;
}
}
}
if (n_asms < n_ready)
{
/* Some normal insns to process. Skip the asms. */
ready += n_asms;
n_ready -= n_asms;
}
else if (n_ready > 0)
return 1;
}
if (ia64_final_schedule)
{
int deleted = 0;
int nr_need_stop = 0;
for (insnp = ready; insnp < e_ready; insnp++)
if (safe_group_barrier_needed_p (*insnp))
nr_need_stop++;
if (reorder_type == 1 && n_ready == nr_need_stop)
return 0;
if (reorder_type == 0)
return 1;
insnp = e_ready;
/* Move down everything that needs a stop bit, preserving
relative order. */
while (insnp-- > ready + deleted)
while (insnp >= ready + deleted)
{
rtx insn = *insnp;
if (! safe_group_barrier_needed_p (insn))
break;
memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
*ready = insn;
deleted++;
}
n_ready -= deleted;
ready += deleted;
}
return 1;
}
/* We are about to being issuing insns for this clock cycle. Override
the default sort algorithm to better slot instructions. */
static int
ia64_sched_reorder (FILE *dump, int sched_verbose, rtx *ready, int *pn_ready,
int clock_var)
{
return ia64_dfa_sched_reorder (dump, sched_verbose, ready,
pn_ready, clock_var, 0);
}
/* Like ia64_sched_reorder, but called after issuing each insn.
Override the default sort algorithm to better slot instructions. */
static int
ia64_sched_reorder2 (FILE *dump ATTRIBUTE_UNUSED,
int sched_verbose ATTRIBUTE_UNUSED, rtx *ready,
int *pn_ready, int clock_var)
{
if (ia64_tune == PROCESSOR_ITANIUM && reload_completed && last_scheduled_insn)
clocks [INSN_UID (last_scheduled_insn)] = clock_var;
return ia64_dfa_sched_reorder (dump, sched_verbose, ready, pn_ready,
clock_var, 1);
}
/* We are about to issue INSN. Return the number of insns left on the
ready queue that can be issued this cycle. */
static int
ia64_variable_issue (FILE *dump ATTRIBUTE_UNUSED,
int sched_verbose ATTRIBUTE_UNUSED,
rtx insn ATTRIBUTE_UNUSED,
int can_issue_more ATTRIBUTE_UNUSED)
{
last_scheduled_insn = insn;
memcpy (prev_cycle_state, curr_state, dfa_state_size);
if (reload_completed)
{
if (group_barrier_needed_p (insn))
abort ();
if (GET_CODE (insn) == CALL_INSN)
init_insn_group_barriers ();
stops_p [INSN_UID (insn)] = stop_before_p;
stop_before_p = 0;
}
return 1;
}
/* We are choosing insn from the ready queue. Return nonzero if INSN
can be chosen. */
static int
ia64_first_cycle_multipass_dfa_lookahead_guard (rtx insn)
{
if (insn == NULL_RTX || !INSN_P (insn))
abort ();
return (!reload_completed
|| !safe_group_barrier_needed_p (insn));
}
/* The following variable value is pseudo-insn used by the DFA insn
scheduler to change the DFA state when the simulated clock is
increased. */
static rtx dfa_pre_cycle_insn;
/* We are about to being issuing INSN. Return nonzero if we cannot
issue it on given cycle CLOCK and return zero if we should not sort
the ready queue on the next clock start. */
static int
ia64_dfa_new_cycle (FILE *dump, int verbose, rtx insn, int last_clock,
int clock, int *sort_p)
{
int setup_clocks_p = FALSE;
if (insn == NULL_RTX || !INSN_P (insn))
abort ();
if ((reload_completed && safe_group_barrier_needed_p (insn))
|| (last_scheduled_insn
&& (GET_CODE (last_scheduled_insn) == CALL_INSN
|| GET_CODE (PATTERN (last_scheduled_insn)) == ASM_INPUT
|| asm_noperands (PATTERN (last_scheduled_insn)) >= 0)))
{
init_insn_group_barriers ();
if (verbose && dump)
fprintf (dump, "// Stop should be before %d%s\n", INSN_UID (insn),
last_clock == clock ? " + cycle advance" : "");
stop_before_p = 1;
if (last_clock == clock)
{
state_transition (curr_state, dfa_stop_insn);
if (TARGET_EARLY_STOP_BITS)
*sort_p = (last_scheduled_insn == NULL_RTX
|| GET_CODE (last_scheduled_insn) != CALL_INSN);
else
*sort_p = 0;
return 1;
}
else if (reload_completed)
setup_clocks_p = TRUE;
if (GET_CODE (PATTERN (last_scheduled_insn)) == ASM_INPUT
|| asm_noperands (PATTERN (last_scheduled_insn)) >= 0)
state_reset (curr_state);
else
{
memcpy (curr_state, prev_cycle_state, dfa_state_size);
state_transition (curr_state, dfa_stop_insn);
state_transition (curr_state, dfa_pre_cycle_insn);
state_transition (curr_state, NULL);
}
}
else if (reload_completed)
setup_clocks_p = TRUE;
if (setup_clocks_p && ia64_tune == PROCESSOR_ITANIUM
&& GET_CODE (PATTERN (insn)) != ASM_INPUT
&& asm_noperands (PATTERN (insn)) < 0)
{
enum attr_itanium_class c = ia64_safe_itanium_class (insn);
if (c != ITANIUM_CLASS_MMMUL && c != ITANIUM_CLASS_MMSHF)
{
rtx link;
int d = -1;
for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == 0)
{
enum attr_itanium_class dep_class;
rtx dep_insn = XEXP (link, 0);
dep_class = ia64_safe_itanium_class (dep_insn);
if ((dep_class == ITANIUM_CLASS_MMMUL
|| dep_class == ITANIUM_CLASS_MMSHF)
&& last_clock - clocks [INSN_UID (dep_insn)] < 4
&& (d < 0
|| last_clock - clocks [INSN_UID (dep_insn)] < d))
d = last_clock - clocks [INSN_UID (dep_insn)];
}
if (d >= 0)
add_cycles [INSN_UID (insn)] = 3 - d;
}
}
return 0;
}
/* The following page contains abstract data `bundle states' which are
used for bundling insns (inserting nops and template generation). */
/* The following describes state of insn bundling. */
struct bundle_state
{
/* Unique bundle state number to identify them in the debugging
output */
int unique_num;
rtx insn; /* corresponding insn, NULL for the 1st and the last state */
/* number nops before and after the insn */
short before_nops_num, after_nops_num;
int insn_num; /* insn number (0 - for initial state, 1 - for the 1st
insn */
int cost; /* cost of the state in cycles */
int accumulated_insns_num; /* number of all previous insns including
nops. L is considered as 2 insns */
int branch_deviation; /* deviation of previous branches from 3rd slots */
struct bundle_state *next; /* next state with the same insn_num */
struct bundle_state *originator; /* originator (previous insn state) */
/* All bundle states are in the following chain. */
struct bundle_state *allocated_states_chain;
/* The DFA State after issuing the insn and the nops. */
state_t dfa_state;
};
/* The following is map insn number to the corresponding bundle state. */
static struct bundle_state **index_to_bundle_states;
/* The unique number of next bundle state. */
static int bundle_states_num;
/* All allocated bundle states are in the following chain. */
static struct bundle_state *allocated_bundle_states_chain;
/* All allocated but not used bundle states are in the following
chain. */
static struct bundle_state *free_bundle_state_chain;
/* The following function returns a free bundle state. */
static struct bundle_state *
get_free_bundle_state (void)
{
struct bundle_state *result;
if (free_bundle_state_chain != NULL)
{
result = free_bundle_state_chain;
free_bundle_state_chain = result->next;
}
else
{
result = xmalloc (sizeof (struct bundle_state));
result->dfa_state = xmalloc (dfa_state_size);
result->allocated_states_chain = allocated_bundle_states_chain;
allocated_bundle_states_chain = result;
}
result->unique_num = bundle_states_num++;
return result;
}
/* The following function frees given bundle state. */
static void
free_bundle_state (struct bundle_state *state)
{
state->next = free_bundle_state_chain;
free_bundle_state_chain = state;
}
/* Start work with abstract data `bundle states'. */
static void
initiate_bundle_states (void)
{
bundle_states_num = 0;
free_bundle_state_chain = NULL;
allocated_bundle_states_chain = NULL;
}
/* Finish work with abstract data `bundle states'. */
static void
finish_bundle_states (void)
{
struct bundle_state *curr_state, *next_state;
for (curr_state = allocated_bundle_states_chain;
curr_state != NULL;
curr_state = next_state)
{
next_state = curr_state->allocated_states_chain;
free (curr_state->dfa_state);
free (curr_state);
}
}
/* Hash table of the bundle states. The key is dfa_state and insn_num
of the bundle states. */
static htab_t bundle_state_table;
/* The function returns hash of BUNDLE_STATE. */
static unsigned
bundle_state_hash (const void *bundle_state)
{
const struct bundle_state *state = (struct bundle_state *) bundle_state;
unsigned result, i;
for (result = i = 0; i < dfa_state_size; i++)
result += (((unsigned char *) state->dfa_state) [i]
<< ((i % CHAR_BIT) * 3 + CHAR_BIT));
return result + state->insn_num;
}
/* The function returns nonzero if the bundle state keys are equal. */
static int
bundle_state_eq_p (const void *bundle_state_1, const void *bundle_state_2)
{
const struct bundle_state * state1 = (struct bundle_state *) bundle_state_1;
const struct bundle_state * state2 = (struct bundle_state *) bundle_state_2;
return (state1->insn_num == state2->insn_num
&& memcmp (state1->dfa_state, state2->dfa_state,
dfa_state_size) == 0);
}
/* The function inserts the BUNDLE_STATE into the hash table. The
function returns nonzero if the bundle has been inserted into the
table. The table contains the best bundle state with given key. */
static int
insert_bundle_state (struct bundle_state *bundle_state)
{
void **entry_ptr;
entry_ptr = htab_find_slot (bundle_state_table, bundle_state, 1);
if (*entry_ptr == NULL)
{
bundle_state->next = index_to_bundle_states [bundle_state->insn_num];
index_to_bundle_states [bundle_state->insn_num] = bundle_state;
*entry_ptr = (void *) bundle_state;
return TRUE;
}
else if (bundle_state->cost < ((struct bundle_state *) *entry_ptr)->cost
|| (bundle_state->cost == ((struct bundle_state *) *entry_ptr)->cost
&& (((struct bundle_state *)*entry_ptr)->accumulated_insns_num
> bundle_state->accumulated_insns_num
|| (((struct bundle_state *)
*entry_ptr)->accumulated_insns_num
== bundle_state->accumulated_insns_num
&& ((struct bundle_state *)
*entry_ptr)->branch_deviation
> bundle_state->branch_deviation))))
{
struct bundle_state temp;
temp = *(struct bundle_state *) *entry_ptr;
*(struct bundle_state *) *entry_ptr = *bundle_state;
((struct bundle_state *) *entry_ptr)->next = temp.next;
*bundle_state = temp;
}
return FALSE;
}
/* Start work with the hash table. */
static void
initiate_bundle_state_table (void)
{
bundle_state_table = htab_create (50, bundle_state_hash, bundle_state_eq_p,
(htab_del) 0);
}
/* Finish work with the hash table. */
static void
finish_bundle_state_table (void)
{
htab_delete (bundle_state_table);
}
/* The following variable is a insn `nop' used to check bundle states
with different number of inserted nops. */
static rtx ia64_nop;
/* The following function tries to issue NOPS_NUM nops for the current
state without advancing processor cycle. If it failed, the
function returns FALSE and frees the current state. */
static int
try_issue_nops (struct bundle_state *curr_state, int nops_num)
{
int i;
for (i = 0; i < nops_num; i++)
if (state_transition (curr_state->dfa_state, ia64_nop) >= 0)
{
free_bundle_state (curr_state);
return FALSE;
}
return TRUE;
}
/* The following function tries to issue INSN for the current
state without advancing processor cycle. If it failed, the
function returns FALSE and frees the current state. */
static int
try_issue_insn (struct bundle_state *curr_state, rtx insn)
{
if (insn && state_transition (curr_state->dfa_state, insn) >= 0)
{
free_bundle_state (curr_state);
return FALSE;
}
return TRUE;
}
/* The following function tries to issue BEFORE_NOPS_NUM nops and INSN
starting with ORIGINATOR without advancing processor cycle. If
TRY_BUNDLE_END_P is TRUE, the function also/only (if
ONLY_BUNDLE_END_P is TRUE) tries to issue nops to fill all bundle.
If it was successful, the function creates new bundle state and
insert into the hash table and into `index_to_bundle_states'. */
static void
issue_nops_and_insn (struct bundle_state *originator, int before_nops_num,
rtx insn, int try_bundle_end_p, int only_bundle_end_p)
{
struct bundle_state *curr_state;
curr_state = get_free_bundle_state ();
memcpy (curr_state->dfa_state, originator->dfa_state, dfa_state_size);
curr_state->insn = insn;
curr_state->insn_num = originator->insn_num + 1;
curr_state->cost = originator->cost;
curr_state->originator = originator;
curr_state->before_nops_num = before_nops_num;
curr_state->after_nops_num = 0;
curr_state->accumulated_insns_num
= originator->accumulated_insns_num + before_nops_num;
curr_state->branch_deviation = originator->branch_deviation;
if (insn == NULL_RTX)
abort ();
else if (INSN_CODE (insn) == CODE_FOR_insn_group_barrier)
{
if (GET_MODE (insn) == TImode)
abort ();
if (!try_issue_nops (curr_state, before_nops_num))
return;
if (!try_issue_insn (curr_state, insn))
return;
memcpy (temp_dfa_state, curr_state->dfa_state, dfa_state_size);
if (state_transition (temp_dfa_state, dfa_pre_cycle_insn) >= 0
&& curr_state->accumulated_insns_num % 3 != 0)
{
free_bundle_state (curr_state);
return;
}
}
else if (GET_MODE (insn) != TImode)
{
if (!try_issue_nops (curr_state, before_nops_num))
return;
if (!try_issue_insn (curr_state, insn))
return;
curr_state->accumulated_insns_num++;
if (GET_CODE (PATTERN (insn)) == ASM_INPUT
|| asm_noperands (PATTERN (insn)) >= 0)
abort ();
if (ia64_safe_type (insn) == TYPE_L)
curr_state->accumulated_insns_num++;
}
else
{
/* If this is an insn that must be first in a group, then don't allow
nops to be emitted before it. Currently, alloc is the only such
supported instruction. */
/* ??? The bundling automatons should handle this for us, but they do
not yet have support for the first_insn attribute. */
if (before_nops_num > 0 && get_attr_first_insn (insn) == FIRST_INSN_YES)
{
free_bundle_state (curr_state);
return;
}
state_transition (curr_state->dfa_state, dfa_pre_cycle_insn);
state_transition (curr_state->dfa_state, NULL);
curr_state->cost++;
if (!try_issue_nops (curr_state, before_nops_num))
return;
if (!try_issue_insn (curr_state, insn))
return;
curr_state->accumulated_insns_num++;
if (GET_CODE (PATTERN (insn)) == ASM_INPUT
|| asm_noperands (PATTERN (insn)) >= 0)
{
/* Finish bundle containing asm insn. */
curr_state->after_nops_num
= 3 - curr_state->accumulated_insns_num % 3;
curr_state->accumulated_insns_num
+= 3 - curr_state->accumulated_insns_num % 3;
}
else if (ia64_safe_type (insn) == TYPE_L)
curr_state->accumulated_insns_num++;
}
if (ia64_safe_type (insn) == TYPE_B)
curr_state->branch_deviation
+= 2 - (curr_state->accumulated_insns_num - 1) % 3;
if (try_bundle_end_p && curr_state->accumulated_insns_num % 3 != 0)
{
if (!only_bundle_end_p && insert_bundle_state (curr_state))
{
state_t dfa_state;
struct bundle_state *curr_state1;
struct bundle_state *allocated_states_chain;
curr_state1 = get_free_bundle_state ();
dfa_state = curr_state1->dfa_state;
allocated_states_chain = curr_state1->allocated_states_chain;
*curr_state1 = *curr_state;
curr_state1->dfa_state = dfa_state;
curr_state1->allocated_states_chain = allocated_states_chain;
memcpy (curr_state1->dfa_state, curr_state->dfa_state,
dfa_state_size);
curr_state = curr_state1;
}
if (!try_issue_nops (curr_state,
3 - curr_state->accumulated_insns_num % 3))
return;
curr_state->after_nops_num
= 3 - curr_state->accumulated_insns_num % 3;
curr_state->accumulated_insns_num
+= 3 - curr_state->accumulated_insns_num % 3;
}
if (!insert_bundle_state (curr_state))
free_bundle_state (curr_state);
return;
}
/* The following function returns position in the two window bundle
for given STATE. */
static int
get_max_pos (state_t state)
{
if (cpu_unit_reservation_p (state, pos_6))
return 6;
else if (cpu_unit_reservation_p (state, pos_5))
return 5;
else if (cpu_unit_reservation_p (state, pos_4))
return 4;
else if (cpu_unit_reservation_p (state, pos_3))
return 3;
else if (cpu_unit_reservation_p (state, pos_2))
return 2;
else if (cpu_unit_reservation_p (state, pos_1))
return 1;
else
return 0;
}
/* The function returns code of a possible template for given position
and state. The function should be called only with 2 values of
position equal to 3 or 6. */
static int
get_template (state_t state, int pos)
{
switch (pos)
{
case 3:
if (cpu_unit_reservation_p (state, _0mii_))
return 0;
else if (cpu_unit_reservation_p (state, _0mmi_))
return 1;
else if (cpu_unit_reservation_p (state, _0mfi_))
return 2;
else if (cpu_unit_reservation_p (state, _0mmf_))
return 3;
else if (cpu_unit_reservation_p (state, _0bbb_))
return 4;
else if (cpu_unit_reservation_p (state, _0mbb_))
return 5;
else if (cpu_unit_reservation_p (state, _0mib_))
return 6;
else if (cpu_unit_reservation_p (state, _0mmb_))
return 7;
else if (cpu_unit_reservation_p (state, _0mfb_))
return 8;
else if (cpu_unit_reservation_p (state, _0mlx_))
return 9;
else
abort ();
case 6:
if (cpu_unit_reservation_p (state, _1mii_))
return 0;
else if (cpu_unit_reservation_p (state, _1mmi_))
return 1;
else if (cpu_unit_reservation_p (state, _1mfi_))
return 2;
else if (_1mmf_ >= 0 && cpu_unit_reservation_p (state, _1mmf_))
return 3;
else if (cpu_unit_reservation_p (state, _1bbb_))
return 4;
else if (cpu_unit_reservation_p (state, _1mbb_))
return 5;
else if (cpu_unit_reservation_p (state, _1mib_))
return 6;
else if (cpu_unit_reservation_p (state, _1mmb_))
return 7;
else if (cpu_unit_reservation_p (state, _1mfb_))
return 8;
else if (cpu_unit_reservation_p (state, _1mlx_))
return 9;
else
abort ();
default:
abort ();
}
}
/* The following function returns an insn important for insn bundling
followed by INSN and before TAIL. */
static rtx
get_next_important_insn (rtx insn, rtx tail)
{
for (; insn && insn != tail; insn = NEXT_INSN (insn))
if (INSN_P (insn)
&& ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER)
return insn;
return NULL_RTX;
}
/* The following function does insn bundling. Bundling means
inserting templates and nop insns to fit insn groups into permitted
templates. Instruction scheduling uses NDFA (non-deterministic
finite automata) encoding informations about the templates and the
inserted nops. Nondeterminism of the automata permits follows
all possible insn sequences very fast.
Unfortunately it is not possible to get information about inserting
nop insns and used templates from the automata states. The
automata only says that we can issue an insn possibly inserting
some nops before it and using some template. Therefore insn
bundling in this function is implemented by using DFA
(deterministic finite automata). We follows all possible insn
sequences by inserting 0-2 nops (that is what the NDFA describe for
insn scheduling) before/after each insn being bundled. We know the
start of simulated processor cycle from insn scheduling (insn
starting a new cycle has TImode).
Simple implementation of insn bundling would create enormous
number of possible insn sequences satisfying information about new
cycle ticks taken from the insn scheduling. To make the algorithm
practical we use dynamic programming. Each decision (about
inserting nops and implicitly about previous decisions) is described
by structure bundle_state (see above). If we generate the same
bundle state (key is automaton state after issuing the insns and
nops for it), we reuse already generated one. As consequence we
reject some decisions which cannot improve the solution and
reduce memory for the algorithm.
When we reach the end of EBB (extended basic block), we choose the
best sequence and then, moving back in EBB, insert templates for
the best alternative. The templates are taken from querying
automaton state for each insn in chosen bundle states.
So the algorithm makes two (forward and backward) passes through
EBB. There is an additional forward pass through EBB for Itanium1
processor. This pass inserts more nops to make dependency between
a producer insn and MMMUL/MMSHF at least 4 cycles long. */
static void
bundling (FILE *dump, int verbose, rtx prev_head_insn, rtx tail)
{
struct bundle_state *curr_state, *next_state, *best_state;
rtx insn, next_insn;
int insn_num;
int i, bundle_end_p, only_bundle_end_p, asm_p;
int pos = 0, max_pos, template0, template1;
rtx b;
rtx nop;
enum attr_type type;
insn_num = 0;
/* Count insns in the EBB. */
for (insn = NEXT_INSN (prev_head_insn);
insn && insn != tail;
insn = NEXT_INSN (insn))
if (INSN_P (insn))
insn_num++;
if (insn_num == 0)
return;
bundling_p = 1;
dfa_clean_insn_cache ();
initiate_bundle_state_table ();
index_to_bundle_states = xmalloc ((insn_num + 2)
* sizeof (struct bundle_state *));
/* First (forward) pass -- generation of bundle states. */
curr_state = get_free_bundle_state ();
curr_state->insn = NULL;
curr_state->before_nops_num = 0;
curr_state->after_nops_num = 0;
curr_state->insn_num = 0;
curr_state->cost = 0;
curr_state->accumulated_insns_num = 0;
curr_state->branch_deviation = 0;
curr_state->next = NULL;
curr_state->originator = NULL;
state_reset (curr_state->dfa_state);
index_to_bundle_states [0] = curr_state;
insn_num = 0;
/* Shift cycle mark if it is put on insn which could be ignored. */
for (insn = NEXT_INSN (prev_head_insn);
insn != tail;
insn = NEXT_INSN (insn))
if (INSN_P (insn)
&& (ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IGNORE
|| GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)
&& GET_MODE (insn) == TImode)
{
PUT_MODE (insn, VOIDmode);
for (next_insn = NEXT_INSN (insn);
next_insn != tail;
next_insn = NEXT_INSN (next_insn))
if (INSN_P (next_insn)
&& ia64_safe_itanium_class (next_insn) != ITANIUM_CLASS_IGNORE
&& GET_CODE (PATTERN (next_insn)) != USE
&& GET_CODE (PATTERN (next_insn)) != CLOBBER)
{
PUT_MODE (next_insn, TImode);
break;
}
}
/* Froward pass: generation of bundle states. */
for (insn = get_next_important_insn (NEXT_INSN (prev_head_insn), tail);
insn != NULL_RTX;
insn = next_insn)
{
if (!INSN_P (insn)
|| ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IGNORE
|| GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)
abort ();
type = ia64_safe_type (insn);
next_insn = get_next_important_insn (NEXT_INSN (insn), tail);
insn_num++;
index_to_bundle_states [insn_num] = NULL;
for (curr_state = index_to_bundle_states [insn_num - 1];
curr_state != NULL;
curr_state = next_state)
{
pos = curr_state->accumulated_insns_num % 3;
next_state = curr_state->next;
/* We must fill up the current bundle in order to start a
subsequent asm insn in a new bundle. Asm insn is always
placed in a separate bundle. */
only_bundle_end_p
= (next_insn != NULL_RTX
&& INSN_CODE (insn) == CODE_FOR_insn_group_barrier
&& ia64_safe_type (next_insn) == TYPE_UNKNOWN);
/* We may fill up the current bundle if it is the cycle end
without a group barrier. */
bundle_end_p
= (only_bundle_end_p || next_insn == NULL_RTX
|| (GET_MODE (next_insn) == TImode
&& INSN_CODE (insn) != CODE_FOR_insn_group_barrier));
if (type == TYPE_F || type == TYPE_B || type == TYPE_L
|| type == TYPE_S
/* We need to insert 2 nops for cases like M_MII. To
guarantee issuing all insns on the same cycle for
Itanium 1, we need to issue 2 nops after the first M
insn (MnnMII where n is a nop insn). */
|| ((type == TYPE_M || type == TYPE_A)
&& ia64_tune == PROCESSOR_ITANIUM
&& !bundle_end_p && pos == 1))
issue_nops_and_insn (curr_state, 2, insn, bundle_end_p,
only_bundle_end_p);
issue_nops_and_insn (curr_state, 1, insn, bundle_end_p,
only_bundle_end_p);
issue_nops_and_insn (curr_state, 0, insn, bundle_end_p,
only_bundle_end_p);
}
if (index_to_bundle_states [insn_num] == NULL)
abort ();
for (curr_state = index_to_bundle_states [insn_num];
curr_state != NULL;
curr_state = curr_state->next)
if (verbose >= 2 && dump)
{
/* This structure is taken from generated code of the
pipeline hazard recognizer (see file insn-attrtab.c).
Please don't forget to change the structure if a new
automaton is added to .md file. */
struct DFA_chip
{
unsigned short one_automaton_state;
unsigned short oneb_automaton_state;
unsigned short two_automaton_state;
unsigned short twob_automaton_state;
};
fprintf
(dump,
"// Bundle state %d (orig %d, cost %d, nops %d/%d, insns %d, branch %d, state %d) for %d\n",
curr_state->unique_num,
(curr_state->originator == NULL
? -1 : curr_state->originator->unique_num),
curr_state->cost,
curr_state->before_nops_num, curr_state->after_nops_num,
curr_state->accumulated_insns_num, curr_state->branch_deviation,
(ia64_tune == PROCESSOR_ITANIUM
? ((struct DFA_chip *) curr_state->dfa_state)->oneb_automaton_state
: ((struct DFA_chip *) curr_state->dfa_state)->twob_automaton_state),
INSN_UID (insn));
}
}
if (index_to_bundle_states [insn_num] == NULL)
/* We should find a solution because the 2nd insn scheduling has
found one. */
abort ();
/* Find a state corresponding to the best insn sequence. */
best_state = NULL;
for (curr_state = index_to_bundle_states [insn_num];
curr_state != NULL;
curr_state = curr_state->next)
/* We are just looking at the states with fully filled up last
bundle. The first we prefer insn sequences with minimal cost
then with minimal inserted nops and finally with branch insns
placed in the 3rd slots. */
if (curr_state->accumulated_insns_num % 3 == 0
&& (best_state == NULL || best_state->cost > curr_state->cost
|| (best_state->cost == curr_state->cost
&& (curr_state->accumulated_insns_num
< best_state->accumulated_insns_num
|| (curr_state->accumulated_insns_num
== best_state->accumulated_insns_num
&& curr_state->branch_deviation
< best_state->branch_deviation)))))
best_state = curr_state;
/* Second (backward) pass: adding nops and templates. */
insn_num = best_state->before_nops_num;
template0 = template1 = -1;
for (curr_state = best_state;
curr_state->originator != NULL;
curr_state = curr_state->originator)
{
insn = curr_state->insn;
asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
|| asm_noperands (PATTERN (insn)) >= 0);
insn_num++;
if (verbose >= 2 && dump)
{
struct DFA_chip
{
unsigned short one_automaton_state;
unsigned short oneb_automaton_state;
unsigned short two_automaton_state;
unsigned short twob_automaton_state;
};
fprintf
(dump,
"// Best %d (orig %d, cost %d, nops %d/%d, insns %d, branch %d, state %d) for %d\n",
curr_state->unique_num,
(curr_state->originator == NULL
? -1 : curr_state->originator->unique_num),
curr_state->cost,
curr_state->before_nops_num, curr_state->after_nops_num,
curr_state->accumulated_insns_num, curr_state->branch_deviation,
(ia64_tune == PROCESSOR_ITANIUM
? ((struct DFA_chip *) curr_state->dfa_state)->oneb_automaton_state
: ((struct DFA_chip *) curr_state->dfa_state)->twob_automaton_state),
INSN_UID (insn));
}
/* Find the position in the current bundle window. The window can
contain at most two bundles. Two bundle window means that
the processor will make two bundle rotation. */
max_pos = get_max_pos (curr_state->dfa_state);
if (max_pos == 6
/* The following (negative template number) means that the
processor did one bundle rotation. */
|| (max_pos == 3 && template0 < 0))
{
/* We are at the end of the window -- find template(s) for
its bundle(s). */
pos = max_pos;
if (max_pos == 3)
template0 = get_template (curr_state->dfa_state, 3);
else
{
template1 = get_template (curr_state->dfa_state, 3);
template0 = get_template (curr_state->dfa_state, 6);
}
}
if (max_pos > 3 && template1 < 0)
/* It may happen when we have the stop inside a bundle. */
{
if (pos > 3)
abort ();
template1 = get_template (curr_state->dfa_state, 3);
pos += 3;
}
if (!asm_p)
/* Emit nops after the current insn. */
for (i = 0; i < curr_state->after_nops_num; i++)
{
nop = gen_nop ();
emit_insn_after (nop, insn);
pos--;
if (pos < 0)
abort ();
if (pos % 3 == 0)
{
/* We are at the start of a bundle: emit the template
(it should be defined). */
if (template0 < 0)
abort ();
b = gen_bundle_selector (GEN_INT (template0));
ia64_emit_insn_before (b, nop);
/* If we have two bundle window, we make one bundle
rotation. Otherwise template0 will be undefined
(negative value). */
template0 = template1;
template1 = -1;
}
}
/* Move the position backward in the window. Group barrier has
no slot. Asm insn takes all bundle. */
if (INSN_CODE (insn) != CODE_FOR_insn_group_barrier
&& GET_CODE (PATTERN (insn)) != ASM_INPUT
&& asm_noperands (PATTERN (insn)) < 0)
pos--;
/* Long insn takes 2 slots. */
if (ia64_safe_type (insn) == TYPE_L)
pos--;
if (pos < 0)
abort ();
if (pos % 3 == 0
&& INSN_CODE (insn) != CODE_FOR_insn_group_barrier
&& GET_CODE (PATTERN (insn)) != ASM_INPUT
&& asm_noperands (PATTERN (insn)) < 0)
{
/* The current insn is at the bundle start: emit the
template. */
if (template0 < 0)
abort ();
b = gen_bundle_selector (GEN_INT (template0));
ia64_emit_insn_before (b, insn);
b = PREV_INSN (insn);
insn = b;
/* See comment above in analogous place for emitting nops
after the insn. */
template0 = template1;
template1 = -1;
}
/* Emit nops after the current insn. */
for (i = 0; i < curr_state->before_nops_num; i++)
{
nop = gen_nop ();
ia64_emit_insn_before (nop, insn);
nop = PREV_INSN (insn);
insn = nop;
pos--;
if (pos < 0)
abort ();
if (pos % 3 == 0)
{
/* See comment above in analogous place for emitting nops
after the insn. */
if (template0 < 0)
abort ();
b = gen_bundle_selector (GEN_INT (template0));
ia64_emit_insn_before (b, insn);
b = PREV_INSN (insn);
insn = b;
template0 = template1;
template1 = -1;
}
}
}
if (ia64_tune == PROCESSOR_ITANIUM)
/* Insert additional cycles for MM-insns (MMMUL and MMSHF).
Itanium1 has a strange design, if the distance between an insn
and dependent MM-insn is less 4 then we have a 6 additional
cycles stall. So we make the distance equal to 4 cycles if it
is less. */
for (insn = get_next_important_insn (NEXT_INSN (prev_head_insn), tail);
insn != NULL_RTX;
insn = next_insn)
{
if (!INSN_P (insn)
|| ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IGNORE
|| GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)
abort ();
next_insn = get_next_important_insn (NEXT_INSN (insn), tail);
if (INSN_UID (insn) < clocks_length && add_cycles [INSN_UID (insn)])
/* We found a MM-insn which needs additional cycles. */
{
rtx last;
int i, j, n;
int pred_stop_p;
/* Now we are searching for a template of the bundle in
which the MM-insn is placed and the position of the
insn in the bundle (0, 1, 2). Also we are searching
for that there is a stop before the insn. */
last = prev_active_insn (insn);
pred_stop_p = recog_memoized (last) == CODE_FOR_insn_group_barrier;
if (pred_stop_p)
last = prev_active_insn (last);
n = 0;
for (;; last = prev_active_insn (last))
if (recog_memoized (last) == CODE_FOR_bundle_selector)
{
template0 = XINT (XVECEXP (PATTERN (last), 0, 0), 0);
if (template0 == 9)
/* The insn is in MLX bundle. Change the template
onto MFI because we will add nops before the
insn. It simplifies subsequent code a lot. */
PATTERN (last)
= gen_bundle_selector (const2_rtx); /* -> MFI */
break;
}
else if (recog_memoized (last) != CODE_FOR_insn_group_barrier
&& (ia64_safe_itanium_class (last)
!= ITANIUM_CLASS_IGNORE))
n++;
/* Some check of correctness: the stop is not at the
bundle start, there are no more 3 insns in the bundle,
and the MM-insn is not at the start of bundle with
template MLX. */
if ((pred_stop_p && n == 0) || n > 2
|| (template0 == 9 && n != 0))
abort ();
/* Put nops after the insn in the bundle. */
for (j = 3 - n; j > 0; j --)
ia64_emit_insn_before (gen_nop (), insn);
/* It takes into account that we will add more N nops
before the insn lately -- please see code below. */
add_cycles [INSN_UID (insn)]--;
if (!pred_stop_p || add_cycles [INSN_UID (insn)])
ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
insn);
if (pred_stop_p)
add_cycles [INSN_UID (insn)]--;
for (i = add_cycles [INSN_UID (insn)]; i > 0; i--)
{
/* Insert "MII;" template. */
ia64_emit_insn_before (gen_bundle_selector (const0_rtx),
insn);
ia64_emit_insn_before (gen_nop (), insn);
ia64_emit_insn_before (gen_nop (), insn);
if (i > 1)
{
/* To decrease code size, we use "MI;I;"
template. */
ia64_emit_insn_before
(gen_insn_group_barrier (GEN_INT (3)), insn);
i--;
}
ia64_emit_insn_before (gen_nop (), insn);
ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
insn);
}
/* Put the MM-insn in the same slot of a bundle with the
same template as the original one. */
ia64_emit_insn_before (gen_bundle_selector (GEN_INT (template0)),
insn);
/* To put the insn in the same slot, add necessary number
of nops. */
for (j = n; j > 0; j --)
ia64_emit_insn_before (gen_nop (), insn);
/* Put the stop if the original bundle had it. */
if (pred_stop_p)
ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
insn);
}
}
free (index_to_bundle_states);
finish_bundle_state_table ();
bundling_p = 0;
dfa_clean_insn_cache ();
}
/* The following function is called at the end of scheduling BB or
EBB. After reload, it inserts stop bits and does insn bundling. */
static void
ia64_sched_finish (FILE *dump, int sched_verbose)
{
if (sched_verbose)
fprintf (dump, "// Finishing schedule.\n");
if (!reload_completed)
return;
if (reload_completed)
{
final_emit_insn_group_barriers (dump);
bundling (dump, sched_verbose, current_sched_info->prev_head,
current_sched_info->next_tail);
if (sched_verbose && dump)
fprintf (dump, "// finishing %d-%d\n",
INSN_UID (NEXT_INSN (current_sched_info->prev_head)),
INSN_UID (PREV_INSN (current_sched_info->next_tail)));
return;
}
}
/* The following function inserts stop bits in scheduled BB or EBB. */
static void
final_emit_insn_group_barriers (FILE *dump ATTRIBUTE_UNUSED)
{
rtx insn;
int need_barrier_p = 0;
rtx prev_insn = NULL_RTX;
init_insn_group_barriers ();
for (insn = NEXT_INSN (current_sched_info->prev_head);
insn != current_sched_info->next_tail;
insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == BARRIER)
{
rtx last = prev_active_insn (insn);
if (! last)
continue;
if (GET_CODE (last) == JUMP_INSN
&& GET_CODE (PATTERN (last)) == ADDR_DIFF_VEC)
last = prev_active_insn (last);
if (recog_memoized (last) != CODE_FOR_insn_group_barrier)
emit_insn_after (gen_insn_group_barrier (GEN_INT (3)), last);
init_insn_group_barriers ();
need_barrier_p = 0;
prev_insn = NULL_RTX;
}
else if (INSN_P (insn))
{
if (recog_memoized (insn) == CODE_FOR_insn_group_barrier)
{
init_insn_group_barriers ();
need_barrier_p = 0;
prev_insn = NULL_RTX;
}
else if (need_barrier_p || group_barrier_needed_p (insn))
{
if (TARGET_EARLY_STOP_BITS)
{
rtx last;
for (last = insn;
last != current_sched_info->prev_head;
last = PREV_INSN (last))
if (INSN_P (last) && GET_MODE (last) == TImode
&& stops_p [INSN_UID (last)])
break;
if (last == current_sched_info->prev_head)
last = insn;
last = prev_active_insn (last);
if (last
&& recog_memoized (last) != CODE_FOR_insn_group_barrier)
emit_insn_after (gen_insn_group_barrier (GEN_INT (3)),
last);
init_insn_group_barriers ();
for (last = NEXT_INSN (last);
last != insn;
last = NEXT_INSN (last))
if (INSN_P (last))
group_barrier_needed_p (last);
}
else
{
emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
insn);
init_insn_group_barriers ();
}
group_barrier_needed_p (insn);
prev_insn = NULL_RTX;
}
else if (recog_memoized (insn) >= 0)
prev_insn = insn;
need_barrier_p = (GET_CODE (insn) == CALL_INSN
|| GET_CODE (PATTERN (insn)) == ASM_INPUT
|| asm_noperands (PATTERN (insn)) >= 0);
}
}
}
/* If the following function returns TRUE, we will use the the DFA
insn scheduler. */
static int
ia64_first_cycle_multipass_dfa_lookahead (void)
{
return (reload_completed ? 6 : 4);
}
/* The following function initiates variable `dfa_pre_cycle_insn'. */
static void
ia64_init_dfa_pre_cycle_insn (void)
{
if (temp_dfa_state == NULL)
{
dfa_state_size = state_size ();
temp_dfa_state = xmalloc (dfa_state_size);
prev_cycle_state = xmalloc (dfa_state_size);
}
dfa_pre_cycle_insn = make_insn_raw (gen_pre_cycle ());
PREV_INSN (dfa_pre_cycle_insn) = NEXT_INSN (dfa_pre_cycle_insn) = NULL_RTX;
recog_memoized (dfa_pre_cycle_insn);
dfa_stop_insn = make_insn_raw (gen_insn_group_barrier (GEN_INT (3)));
PREV_INSN (dfa_stop_insn) = NEXT_INSN (dfa_stop_insn) = NULL_RTX;
recog_memoized (dfa_stop_insn);
}
/* The following function returns the pseudo insn DFA_PRE_CYCLE_INSN
used by the DFA insn scheduler. */
static rtx
ia64_dfa_pre_cycle_insn (void)
{
return dfa_pre_cycle_insn;
}
/* The following function returns TRUE if PRODUCER (of type ilog or
ld) produces address for CONSUMER (of type st or stf). */
int
ia64_st_address_bypass_p (rtx producer, rtx consumer)
{
rtx dest, reg, mem;
if (producer == NULL_RTX || consumer == NULL_RTX)
abort ();
dest = ia64_single_set (producer);
if (dest == NULL_RTX || (reg = SET_DEST (dest)) == NULL_RTX
|| (GET_CODE (reg) != REG && GET_CODE (reg) != SUBREG))
abort ();
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
dest = ia64_single_set (consumer);
if (dest == NULL_RTX || (mem = SET_DEST (dest)) == NULL_RTX
|| GET_CODE (mem) != MEM)
abort ();
return reg_mentioned_p (reg, mem);
}
/* The following function returns TRUE if PRODUCER (of type ilog or
ld) produces address for CONSUMER (of type ld or fld). */
int
ia64_ld_address_bypass_p (rtx producer, rtx consumer)
{
rtx dest, src, reg, mem;
if (producer == NULL_RTX || consumer == NULL_RTX)
abort ();
dest = ia64_single_set (producer);
if (dest == NULL_RTX || (reg = SET_DEST (dest)) == NULL_RTX
|| (GET_CODE (reg) != REG && GET_CODE (reg) != SUBREG))
abort ();
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
src = ia64_single_set (consumer);
if (src == NULL_RTX || (mem = SET_SRC (src)) == NULL_RTX)
abort ();
if (GET_CODE (mem) == UNSPEC && XVECLEN (mem, 0) > 0)
mem = XVECEXP (mem, 0, 0);
while (GET_CODE (mem) == SUBREG || GET_CODE (mem) == ZERO_EXTEND)
mem = XEXP (mem, 0);
/* Note that LO_SUM is used for GOT loads. */
if (GET_CODE (mem) != LO_SUM && GET_CODE (mem) != MEM)
abort ();
return reg_mentioned_p (reg, mem);
}
/* The following function returns TRUE if INSN produces address for a
load/store insn. We will place such insns into M slot because it
decreases its latency time. */
int
ia64_produce_address_p (rtx insn)
{
return insn->call;
}
/* Emit pseudo-ops for the assembler to describe predicate relations.
At present this assumes that we only consider predicate pairs to
be mutex, and that the assembler can deduce proper values from
straight-line code. */
static void
emit_predicate_relation_info (void)
{
basic_block bb;
FOR_EACH_BB_REVERSE (bb)
{
int r;
rtx head = BB_HEAD (bb);
/* We only need such notes at code labels. */
if (GET_CODE (head) != CODE_LABEL)
continue;
if (GET_CODE (NEXT_INSN (head)) == NOTE
&& NOTE_LINE_NUMBER (NEXT_INSN (head)) == NOTE_INSN_BASIC_BLOCK)
head = NEXT_INSN (head);
for (r = PR_REG (0); r < PR_REG (64); r += 2)
if (REGNO_REG_SET_P (bb->global_live_at_start, r))
{
rtx p = gen_rtx_REG (BImode, r);
rtx n = emit_insn_after (gen_pred_rel_mutex (p), head);
if (head == BB_END (bb))
BB_END (bb) = n;
head = n;
}
}
/* Look for conditional calls that do not return, and protect predicate
relations around them. Otherwise the assembler will assume the call
returns, and complain about uses of call-clobbered predicates after
the call. */
FOR_EACH_BB_REVERSE (bb)
{
rtx insn = BB_HEAD (bb);
while (1)
{
if (GET_CODE (insn) == CALL_INSN
&& GET_CODE (PATTERN (insn)) == COND_EXEC
&& find_reg_note (insn, REG_NORETURN, NULL_RTX))
{
rtx b = emit_insn_before (gen_safe_across_calls_all (), insn);
rtx a = emit_insn_after (gen_safe_across_calls_normal (), insn);
if (BB_HEAD (bb) == insn)
BB_HEAD (bb) = b;
if (BB_END (bb) == insn)
BB_END (bb) = a;
}
if (insn == BB_END (bb))
break;
insn = NEXT_INSN (insn);
}
}
}
/* Perform machine dependent operations on the rtl chain INSNS. */
static void
ia64_reorg (void)
{
/* We are freeing block_for_insn in the toplev to keep compatibility
with old MDEP_REORGS that are not CFG based. Recompute it now. */
compute_bb_for_insn ();
/* If optimizing, we'll have split before scheduling. */
if (optimize == 0)
split_all_insns (0);
/* ??? update_life_info_in_dirty_blocks fails to terminate during
non-optimizing bootstrap. */
update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
if (ia64_flag_schedule_insns2)
{
timevar_push (TV_SCHED2);
ia64_final_schedule = 1;
initiate_bundle_states ();
ia64_nop = make_insn_raw (gen_nop ());
PREV_INSN (ia64_nop) = NEXT_INSN (ia64_nop) = NULL_RTX;
recog_memoized (ia64_nop);
clocks_length = get_max_uid () + 1;
stops_p = xcalloc (1, clocks_length);
if (ia64_tune == PROCESSOR_ITANIUM)
{
clocks = xcalloc (clocks_length, sizeof (int));
add_cycles = xcalloc (clocks_length, sizeof (int));
}
if (ia64_tune == PROCESSOR_ITANIUM2)
{
pos_1 = get_cpu_unit_code ("2_1");
pos_2 = get_cpu_unit_code ("2_2");
pos_3 = get_cpu_unit_code ("2_3");
pos_4 = get_cpu_unit_code ("2_4");
pos_5 = get_cpu_unit_code ("2_5");
pos_6 = get_cpu_unit_code ("2_6");
_0mii_ = get_cpu_unit_code ("2b_0mii.");
_0mmi_ = get_cpu_unit_code ("2b_0mmi.");
_0mfi_ = get_cpu_unit_code ("2b_0mfi.");
_0mmf_ = get_cpu_unit_code ("2b_0mmf.");
_0bbb_ = get_cpu_unit_code ("2b_0bbb.");
_0mbb_ = get_cpu_unit_code ("2b_0mbb.");
_0mib_ = get_cpu_unit_code ("2b_0mib.");
_0mmb_ = get_cpu_unit_code ("2b_0mmb.");
_0mfb_ = get_cpu_unit_code ("2b_0mfb.");
_0mlx_ = get_cpu_unit_code ("2b_0mlx.");
_1mii_ = get_cpu_unit_code ("2b_1mii.");
_1mmi_ = get_cpu_unit_code ("2b_1mmi.");
_1mfi_ = get_cpu_unit_code ("2b_1mfi.");
_1mmf_ = get_cpu_unit_code ("2b_1mmf.");
_1bbb_ = get_cpu_unit_code ("2b_1bbb.");
_1mbb_ = get_cpu_unit_code ("2b_1mbb.");
_1mib_ = get_cpu_unit_code ("2b_1mib.");
_1mmb_ = get_cpu_unit_code ("2b_1mmb.");
_1mfb_ = get_cpu_unit_code ("2b_1mfb.");
_1mlx_ = get_cpu_unit_code ("2b_1mlx.");
}
else
{
pos_1 = get_cpu_unit_code ("1_1");
pos_2 = get_cpu_unit_code ("1_2");
pos_3 = get_cpu_unit_code ("1_3");
pos_4 = get_cpu_unit_code ("1_4");
pos_5 = get_cpu_unit_code ("1_5");
pos_6 = get_cpu_unit_code ("1_6");
_0mii_ = get_cpu_unit_code ("1b_0mii.");
_0mmi_ = get_cpu_unit_code ("1b_0mmi.");
_0mfi_ = get_cpu_unit_code ("1b_0mfi.");
_0mmf_ = get_cpu_unit_code ("1b_0mmf.");
_0bbb_ = get_cpu_unit_code ("1b_0bbb.");
_0mbb_ = get_cpu_unit_code ("1b_0mbb.");
_0mib_ = get_cpu_unit_code ("1b_0mib.");
_0mmb_ = get_cpu_unit_code ("1b_0mmb.");
_0mfb_ = get_cpu_unit_code ("1b_0mfb.");
_0mlx_ = get_cpu_unit_code ("1b_0mlx.");
_1mii_ = get_cpu_unit_code ("1b_1mii.");
_1mmi_ = get_cpu_unit_code ("1b_1mmi.");
_1mfi_ = get_cpu_unit_code ("1b_1mfi.");
_1mmf_ = get_cpu_unit_code ("1b_1mmf.");
_1bbb_ = get_cpu_unit_code ("1b_1bbb.");
_1mbb_ = get_cpu_unit_code ("1b_1mbb.");
_1mib_ = get_cpu_unit_code ("1b_1mib.");
_1mmb_ = get_cpu_unit_code ("1b_1mmb.");
_1mfb_ = get_cpu_unit_code ("1b_1mfb.");
_1mlx_ = get_cpu_unit_code ("1b_1mlx.");
}
schedule_ebbs (dump_file);
finish_bundle_states ();
if (ia64_tune == PROCESSOR_ITANIUM)
{
free (add_cycles);
free (clocks);
}
free (stops_p);
emit_insn_group_barriers (dump_file);
ia64_final_schedule = 0;
timevar_pop (TV_SCHED2);
}
else
emit_all_insn_group_barriers (dump_file);
/* A call must not be the last instruction in a function, so that the
return address is still within the function, so that unwinding works
properly. Note that IA-64 differs from dwarf2 on this point. */
if (flag_unwind_tables || (flag_exceptions && !USING_SJLJ_EXCEPTIONS))
{
rtx insn;
int saw_stop = 0;
insn = get_last_insn ();
if (! INSN_P (insn))
insn = prev_active_insn (insn);
/* Skip over insns that expand to nothing. */
while (GET_CODE (insn) == INSN && get_attr_empty (insn) == EMPTY_YES)
{
if (GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
&& XINT (PATTERN (insn), 1) == UNSPECV_INSN_GROUP_BARRIER)
saw_stop = 1;
insn = prev_active_insn (insn);
}
if (GET_CODE (insn) == CALL_INSN)
{
if (! saw_stop)
emit_insn (gen_insn_group_barrier (GEN_INT (3)));
emit_insn (gen_break_f ());
emit_insn (gen_insn_group_barrier (GEN_INT (3)));
}
}
emit_predicate_relation_info ();
if (ia64_flag_var_tracking)
{
timevar_push (TV_VAR_TRACKING);
variable_tracking_main ();
timevar_pop (TV_VAR_TRACKING);
}
}
/* Return true if REGNO is used by the epilogue. */
int
ia64_epilogue_uses (int regno)
{
switch (regno)
{
case R_GR (1):
/* With a call to a function in another module, we will write a new
value to "gp". After returning from such a call, we need to make
sure the function restores the original gp-value, even if the
function itself does not use the gp anymore. */
return !(TARGET_AUTO_PIC || TARGET_NO_PIC);
case IN_REG (0): case IN_REG (1): case IN_REG (2): case IN_REG (3):
case IN_REG (4): case IN_REG (5): case IN_REG (6): case IN_REG (7):
/* For functions defined with the syscall_linkage attribute, all
input registers are marked as live at all function exits. This
prevents the register allocator from using the input registers,
which in turn makes it possible to restart a system call after
an interrupt without having to save/restore the input registers.
This also prevents kernel data from leaking to application code. */
return lookup_attribute ("syscall_linkage",
TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))) != NULL;
case R_BR (0):
/* Conditional return patterns can't represent the use of `b0' as
the return address, so we force the value live this way. */
return 1;
case AR_PFS_REGNUM:
/* Likewise for ar.pfs, which is used by br.ret. */
return 1;
default:
return 0;
}
}
/* Return true if REGNO is used by the frame unwinder. */
int
ia64_eh_uses (int regno)
{
if (! reload_completed)
return 0;
if (current_frame_info.reg_save_b0
&& regno == current_frame_info.reg_save_b0)
return 1;
if (current_frame_info.reg_save_pr
&& regno == current_frame_info.reg_save_pr)
return 1;
if (current_frame_info.reg_save_ar_pfs
&& regno == current_frame_info.reg_save_ar_pfs)
return 1;
if (current_frame_info.reg_save_ar_unat
&& regno == current_frame_info.reg_save_ar_unat)
return 1;
if (current_frame_info.reg_save_ar_lc
&& regno == current_frame_info.reg_save_ar_lc)
return 1;
return 0;
}
/* Return true if this goes in small data/bss. */
/* ??? We could also support own long data here. Generating movl/add/ld8
instead of addl,ld8/ld8. This makes the code bigger, but should make the
code faster because there is one less load. This also includes incomplete
types which can't go in sdata/sbss. */
static bool
ia64_in_small_data_p (tree exp)
{
if (TARGET_NO_SDATA)
return false;
/* We want to merge strings, so we never consider them small data. */
if (TREE_CODE (exp) == STRING_CST)
return false;
/* Functions are never small data. */
if (TREE_CODE (exp) == FUNCTION_DECL)
return false;
if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
{
const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));
if (strcmp (section, ".sdata") == 0
|| strncmp (section, ".sdata.", 7) == 0
|| strncmp (section, ".gnu.linkonce.s.", 16) == 0
|| strcmp (section, ".sbss") == 0
|| strncmp (section, ".sbss.", 6) == 0
|| strncmp (section, ".gnu.linkonce.sb.", 17) == 0)
return true;
}
else
{
HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
/* If this is an incomplete type with size 0, then we can't put it
in sdata because it might be too big when completed. */
if (size > 0 && size <= ia64_section_threshold)
return true;
}
return false;
}
/* Output assembly directives for prologue regions. */
/* The current basic block number. */
static bool last_block;
/* True if we need a copy_state command at the start of the next block. */
static bool need_copy_state;
/* The function emits unwind directives for the start of an epilogue. */
static void
process_epilogue (void)
{
/* If this isn't the last block of the function, then we need to label the
current state, and copy it back in at the start of the next block. */
if (!last_block)
{
fprintf (asm_out_file, "\t.label_state %d\n",
++cfun->machine->state_num);
need_copy_state = true;
}
fprintf (asm_out_file, "\t.restore sp\n");
}
/* This function processes a SET pattern looking for specific patterns
which result in emitting an assembly directive required for unwinding. */
static int
process_set (FILE *asm_out_file, rtx pat)
{
rtx src = SET_SRC (pat);
rtx dest = SET_DEST (pat);
int src_regno, dest_regno;
/* Look for the ALLOC insn. */
if (GET_CODE (src) == UNSPEC_VOLATILE
&& XINT (src, 1) == UNSPECV_ALLOC
&& GET_CODE (dest) == REG)
{
dest_regno = REGNO (dest);
/* If this is the final destination for ar.pfs, then this must
be the alloc in the prologue. */
if (dest_regno == current_frame_info.reg_save_ar_pfs)
fprintf (asm_out_file, "\t.save ar.pfs, r%d\n",
ia64_dbx_register_number (dest_regno));
else
{
/* This must be an alloc before a sibcall. We must drop the
old frame info. The easiest way to drop the old frame
info is to ensure we had a ".restore sp" directive
followed by a new prologue. If the procedure doesn't
have a memory-stack frame, we'll issue a dummy ".restore
sp" now. */
if (current_frame_info.total_size == 0 && !frame_pointer_needed)
/* if haven't done process_epilogue() yet, do it now */
process_epilogue ();
fprintf (asm_out_file, "\t.prologue\n");
}
return 1;
}
/* Look for SP = .... */
if (GET_CODE (dest) == REG && REGNO (dest) == STACK_POINTER_REGNUM)
{
if (GET_CODE (src) == PLUS)
{
rtx op0 = XEXP (src, 0);
rtx op1 = XEXP (src, 1);
if (op0 == dest && GET_CODE (op1) == CONST_INT)
{
if (INTVAL (op1) < 0)
fprintf (asm_out_file, "\t.fframe "HOST_WIDE_INT_PRINT_DEC"\n",
-INTVAL (op1));
else
process_epilogue ();
}
else
abort ();
}
else if (GET_CODE (src) == REG
&& REGNO (src) == HARD_FRAME_POINTER_REGNUM)
process_epilogue ();
else
abort ();
return 1;
}
/* Register move we need to look at. */
if (GET_CODE (dest) == REG && GET_CODE (src) == REG)
{
src_regno = REGNO (src);
dest_regno = REGNO (dest);
switch (src_regno)
{
case BR_REG (0):
/* Saving return address pointer. */
if (dest_regno != current_frame_info.reg_save_b0)
abort ();
fprintf (asm_out_file, "\t.save rp, r%d\n",
ia64_dbx_register_number (dest_regno));
return 1;
case PR_REG (0):
if (dest_regno != current_frame_info.reg_save_pr)
abort ();
fprintf (asm_out_file, "\t.save pr, r%d\n",
ia64_dbx_register_number (dest_regno));
return 1;
case AR_UNAT_REGNUM:
if (dest_regno != current_frame_info.reg_save_ar_unat)
abort ();
fprintf (asm_out_file, "\t.save ar.unat, r%d\n",
ia64_dbx_register_number (dest_regno));
return 1;
case AR_LC_REGNUM:
if (dest_regno != current_frame_info.reg_save_ar_lc)
abort ();
fprintf (asm_out_file, "\t.save ar.lc, r%d\n",
ia64_dbx_register_number (dest_regno));
return 1;
case STACK_POINTER_REGNUM:
if (dest_regno != HARD_FRAME_POINTER_REGNUM
|| ! frame_pointer_needed)
abort ();
fprintf (asm_out_file, "\t.vframe r%d\n",
ia64_dbx_register_number (dest_regno));
return 1;
default:
/* Everything else should indicate being stored to memory. */
abort ();
}
}
/* Memory store we need to look at. */
if (GET_CODE (dest) == MEM && GET_CODE (src) == REG)
{
long off;
rtx base;
const char *saveop;
if (GET_CODE (XEXP (dest, 0)) == REG)
{
base = XEXP (dest, 0);
off = 0;
}
else if (GET_CODE (XEXP (dest, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT)
{
base = XEXP (XEXP (dest, 0), 0);
off = INTVAL (XEXP (XEXP (dest, 0), 1));
}
else
abort ();
if (base == hard_frame_pointer_rtx)
{
saveop = ".savepsp";
off = - off;
}
else if (base == stack_pointer_rtx)
saveop = ".savesp";
else
abort ();
src_regno = REGNO (src);
switch (src_regno)
{
case BR_REG (0):
if (current_frame_info.reg_save_b0 != 0)
abort ();
fprintf (asm_out_file, "\t%s rp, %ld\n", saveop, off);
return 1;
case PR_REG (0):
if (current_frame_info.reg_save_pr != 0)
abort ();
fprintf (asm_out_file, "\t%s pr, %ld\n", saveop, off);
return 1;
case AR_LC_REGNUM:
if (current_frame_info.reg_save_ar_lc != 0)
abort ();
fprintf (asm_out_file, "\t%s ar.lc, %ld\n", saveop, off);
return 1;
case AR_PFS_REGNUM:
if (current_frame_info.reg_save_ar_pfs != 0)
abort ();
fprintf (asm_out_file, "\t%s ar.pfs, %ld\n", saveop, off);
return 1;
case AR_UNAT_REGNUM:
if (current_frame_info.reg_save_ar_unat != 0)
abort ();
fprintf (asm_out_file, "\t%s ar.unat, %ld\n", saveop, off);
return 1;
case GR_REG (4):
case GR_REG (5):
case GR_REG (6):
case GR_REG (7):
fprintf (asm_out_file, "\t.save.g 0x%x\n",
1 << (src_regno - GR_REG (4)));
return 1;
case BR_REG (1):
case BR_REG (2):
case BR_REG (3):
case BR_REG (4):
case BR_REG (5):
fprintf (asm_out_file, "\t.save.b 0x%x\n",
1 << (src_regno - BR_REG (1)));
return 1;
case FR_REG (2):
case FR_REG (3):
case FR_REG (4):
case FR_REG (5):
fprintf (asm_out_file, "\t.save.f 0x%x\n",
1 << (src_regno - FR_REG (2)));
return 1;
case FR_REG (16): case FR_REG (17): case FR_REG (18): case FR_REG (19):
case FR_REG (20): case FR_REG (21): case FR_REG (22): case FR_REG (23):
case FR_REG (24): case FR_REG (25): case FR_REG (26): case FR_REG (27):
case FR_REG (28): case FR_REG (29): case FR_REG (30): case FR_REG (31):
fprintf (asm_out_file, "\t.save.gf 0x0, 0x%x\n",
1 << (src_regno - FR_REG (12)));
return 1;
default:
return 0;
}
}
return 0;
}
/* This function looks at a single insn and emits any directives
required to unwind this insn. */
void
process_for_unwind_directive (FILE *asm_out_file, rtx insn)
{
if (flag_unwind_tables
|| (flag_exceptions && !USING_SJLJ_EXCEPTIONS))
{
rtx pat;
if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK)
{
last_block = NOTE_BASIC_BLOCK (insn)->next_bb == EXIT_BLOCK_PTR;
/* Restore unwind state from immediately before the epilogue. */
if (need_copy_state)
{
fprintf (asm_out_file, "\t.body\n");
fprintf (asm_out_file, "\t.copy_state %d\n",
cfun->machine->state_num);
need_copy_state = false;
}
}
if (GET_CODE (insn) == NOTE || ! RTX_FRAME_RELATED_P (insn))
return;
pat = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
if (pat)
pat = XEXP (pat, 0);
else
pat = PATTERN (insn);
switch (GET_CODE (pat))
{
case SET:
process_set (asm_out_file, pat);
break;
case PARALLEL:
{
int par_index;
int limit = XVECLEN (pat, 0);
for (par_index = 0; par_index < limit; par_index++)
{
rtx x = XVECEXP (pat, 0, par_index);
if (GET_CODE (x) == SET)
process_set (asm_out_file, x);
}
break;
}
default:
abort ();
}
}
}
void
ia64_init_builtins (void)
{
tree psi_type_node = build_pointer_type (integer_type_node);
tree pdi_type_node = build_pointer_type (long_integer_type_node);
/* __sync_val_compare_and_swap_si, __sync_bool_compare_and_swap_si */
tree si_ftype_psi_si_si
= build_function_type_list (integer_type_node,
psi_type_node, integer_type_node,
integer_type_node, NULL_TREE);
/* __sync_val_compare_and_swap_di */
tree di_ftype_pdi_di_di
= build_function_type_list (long_integer_type_node,
pdi_type_node, long_integer_type_node,
long_integer_type_node, NULL_TREE);
/* __sync_bool_compare_and_swap_di */
tree si_ftype_pdi_di_di
= build_function_type_list (integer_type_node,
pdi_type_node, long_integer_type_node,
long_integer_type_node, NULL_TREE);
/* __sync_synchronize */
tree void_ftype_void
= build_function_type (void_type_node, void_list_node);
/* __sync_lock_test_and_set_si */
tree si_ftype_psi_si
= build_function_type_list (integer_type_node,
psi_type_node, integer_type_node, NULL_TREE);
/* __sync_lock_test_and_set_di */
tree di_ftype_pdi_di
= build_function_type_list (long_integer_type_node,
pdi_type_node, long_integer_type_node,
NULL_TREE);
/* __sync_lock_release_si */
tree void_ftype_psi
= build_function_type_list (void_type_node, psi_type_node, NULL_TREE);
/* __sync_lock_release_di */
tree void_ftype_pdi
= build_function_type_list (void_type_node, pdi_type_node, NULL_TREE);
tree fpreg_type;
tree float80_type;
/* The __fpreg type. */
fpreg_type = make_node (REAL_TYPE);
/* ??? The back end should know to load/save __fpreg variables using
the ldf.fill and stf.spill instructions. */
TYPE_PRECISION (fpreg_type) = 80;
layout_type (fpreg_type);
(*lang_hooks.types.register_builtin_type) (fpreg_type, "__fpreg");
/* The __float80 type. */
float80_type = make_node (REAL_TYPE);
TYPE_PRECISION (float80_type) = 80;
layout_type (float80_type);
(*lang_hooks.types.register_builtin_type) (float80_type, "__float80");
/* The __float128 type. */
if (!TARGET_HPUX)
{
tree float128_type = make_node (REAL_TYPE);
TYPE_PRECISION (float128_type) = 128;
layout_type (float128_type);
(*lang_hooks.types.register_builtin_type) (float128_type, "__float128");
}
else
/* Under HPUX, this is a synonym for "long double". */
(*lang_hooks.types.register_builtin_type) (long_double_type_node,
"__float128");
#define def_builtin(name, type, code) \
lang_hooks.builtin_function ((name), (type), (code), BUILT_IN_MD, \
NULL, NULL_TREE)
def_builtin ("__sync_val_compare_and_swap_si", si_ftype_psi_si_si,
IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI);
def_builtin ("__sync_val_compare_and_swap_di", di_ftype_pdi_di_di,
IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI);
def_builtin ("__sync_bool_compare_and_swap_si", si_ftype_psi_si_si,
IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI);
def_builtin ("__sync_bool_compare_and_swap_di", si_ftype_pdi_di_di,
IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI);
def_builtin ("__sync_synchronize", void_ftype_void,
IA64_BUILTIN_SYNCHRONIZE);
def_builtin ("__sync_lock_test_and_set_si", si_ftype_psi_si,
IA64_BUILTIN_LOCK_TEST_AND_SET_SI);
def_builtin ("__sync_lock_test_and_set_di", di_ftype_pdi_di,
IA64_BUILTIN_LOCK_TEST_AND_SET_DI);
def_builtin ("__sync_lock_release_si", void_ftype_psi,
IA64_BUILTIN_LOCK_RELEASE_SI);
def_builtin ("__sync_lock_release_di", void_ftype_pdi,
IA64_BUILTIN_LOCK_RELEASE_DI);
def_builtin ("__builtin_ia64_bsp",
build_function_type (ptr_type_node, void_list_node),
IA64_BUILTIN_BSP);
def_builtin ("__builtin_ia64_flushrs",
build_function_type (void_type_node, void_list_node),
IA64_BUILTIN_FLUSHRS);
def_builtin ("__sync_fetch_and_add_si", si_ftype_psi_si,
IA64_BUILTIN_FETCH_AND_ADD_SI);
def_builtin ("__sync_fetch_and_sub_si", si_ftype_psi_si,
IA64_BUILTIN_FETCH_AND_SUB_SI);
def_builtin ("__sync_fetch_and_or_si", si_ftype_psi_si,
IA64_BUILTIN_FETCH_AND_OR_SI);
def_builtin ("__sync_fetch_and_and_si", si_ftype_psi_si,
IA64_BUILTIN_FETCH_AND_AND_SI);
def_builtin ("__sync_fetch_and_xor_si", si_ftype_psi_si,
IA64_BUILTIN_FETCH_AND_XOR_SI);
def_builtin ("__sync_fetch_and_nand_si", si_ftype_psi_si,
IA64_BUILTIN_FETCH_AND_NAND_SI);
def_builtin ("__sync_add_and_fetch_si", si_ftype_psi_si,
IA64_BUILTIN_ADD_AND_FETCH_SI);
def_builtin ("__sync_sub_and_fetch_si", si_ftype_psi_si,
IA64_BUILTIN_SUB_AND_FETCH_SI);
def_builtin ("__sync_or_and_fetch_si", si_ftype_psi_si,
IA64_BUILTIN_OR_AND_FETCH_SI);
def_builtin ("__sync_and_and_fetch_si", si_ftype_psi_si,
IA64_BUILTIN_AND_AND_FETCH_SI);
def_builtin ("__sync_xor_and_fetch_si", si_ftype_psi_si,
IA64_BUILTIN_XOR_AND_FETCH_SI);
def_builtin ("__sync_nand_and_fetch_si", si_ftype_psi_si,
IA64_BUILTIN_NAND_AND_FETCH_SI);
def_builtin ("__sync_fetch_and_add_di", di_ftype_pdi_di,
IA64_BUILTIN_FETCH_AND_ADD_DI);
def_builtin ("__sync_fetch_and_sub_di", di_ftype_pdi_di,
IA64_BUILTIN_FETCH_AND_SUB_DI);
def_builtin ("__sync_fetch_and_or_di", di_ftype_pdi_di,
IA64_BUILTIN_FETCH_AND_OR_DI);
def_builtin ("__sync_fetch_and_and_di", di_ftype_pdi_di,
IA64_BUILTIN_FETCH_AND_AND_DI);
def_builtin ("__sync_fetch_and_xor_di", di_ftype_pdi_di,
IA64_BUILTIN_FETCH_AND_XOR_DI);
def_builtin ("__sync_fetch_and_nand_di", di_ftype_pdi_di,
IA64_BUILTIN_FETCH_AND_NAND_DI);
def_builtin ("__sync_add_and_fetch_di", di_ftype_pdi_di,
IA64_BUILTIN_ADD_AND_FETCH_DI);
def_builtin ("__sync_sub_and_fetch_di", di_ftype_pdi_di,
IA64_BUILTIN_SUB_AND_FETCH_DI);
def_builtin ("__sync_or_and_fetch_di", di_ftype_pdi_di,
IA64_BUILTIN_OR_AND_FETCH_DI);
def_builtin ("__sync_and_and_fetch_di", di_ftype_pdi_di,
IA64_BUILTIN_AND_AND_FETCH_DI);
def_builtin ("__sync_xor_and_fetch_di", di_ftype_pdi_di,
IA64_BUILTIN_XOR_AND_FETCH_DI);
def_builtin ("__sync_nand_and_fetch_di", di_ftype_pdi_di,
IA64_BUILTIN_NAND_AND_FETCH_DI);
#undef def_builtin
}
/* Expand fetch_and_op intrinsics. The basic code sequence is:
mf
tmp = [ptr];
do {
ret = tmp;
ar.ccv = tmp;
tmp <op>= value;
cmpxchgsz.acq tmp = [ptr], tmp
} while (tmp != ret)
*/
static rtx
ia64_expand_fetch_and_op (optab binoptab, enum machine_mode mode,
tree arglist, rtx target)
{
rtx ret, label, tmp, ccv, insn, mem, value;
tree arg0, arg1;
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
mem = expand_expr (arg0, NULL_RTX, Pmode, 0);
#ifdef POINTERS_EXTEND_UNSIGNED
if (GET_MODE(mem) != Pmode)
mem = convert_memory_address (Pmode, mem);
#endif
value = expand_expr (arg1, NULL_RTX, mode, 0);
mem = gen_rtx_MEM (mode, force_reg (Pmode, mem));
MEM_VOLATILE_P (mem) = 1;
if (target && register_operand (target, mode))
ret = target;
else
ret = gen_reg_rtx (mode);
emit_insn (gen_mf ());
/* Special case for fetchadd instructions. */
if (binoptab == add_optab && fetchadd_operand (value, VOIDmode))
{
if (mode == SImode)
insn = gen_fetchadd_acq_si (ret, mem, value);
else
insn = gen_fetchadd_acq_di (ret, mem, value);
emit_insn (insn);
return ret;
}
tmp = gen_reg_rtx (mode);
/* ar.ccv must always be loaded with a zero-extended DImode value. */
ccv = gen_rtx_REG (DImode, AR_CCV_REGNUM);
emit_move_insn (tmp, mem);
label = gen_label_rtx ();
emit_label (label);
emit_move_insn (ret, tmp);
convert_move (ccv, tmp, /*unsignedp=*/1);
/* Perform the specific operation. Special case NAND by noticing
one_cmpl_optab instead. */
if (binoptab == one_cmpl_optab)
{
tmp = expand_unop (mode, binoptab, tmp, NULL, OPTAB_WIDEN);
binoptab = and_optab;
}
tmp = expand_binop (mode, binoptab, tmp, value, tmp, 1, OPTAB_WIDEN);
if (mode == SImode)
insn = gen_cmpxchg_acq_si (tmp, mem, tmp, ccv);
else
insn = gen_cmpxchg_acq_di (tmp, mem, tmp, ccv);
emit_insn (insn);
emit_cmp_and_jump_insns (tmp, ret, NE, 0, mode, 1, label);
return ret;
}
/* Expand op_and_fetch intrinsics. The basic code sequence is:
mf
tmp = [ptr];
do {
old = tmp;
ar.ccv = tmp;
ret = tmp <op> value;
cmpxchgsz.acq tmp = [ptr], ret
} while (tmp != old)
*/
static rtx
ia64_expand_op_and_fetch (optab binoptab, enum machine_mode mode,
tree arglist, rtx target)
{
rtx old, label, tmp, ret, ccv, insn, mem, value;
tree arg0, arg1;
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
mem = expand_expr (arg0, NULL_RTX, Pmode, 0);
#ifdef POINTERS_EXTEND_UNSIGNED
if (GET_MODE(mem) != Pmode)
mem = convert_memory_address (Pmode, mem);
#endif
value = expand_expr (arg1, NULL_RTX, mode, 0);
mem = gen_rtx_MEM (mode, force_reg (Pmode, mem));
MEM_VOLATILE_P (mem) = 1;
if (target && ! register_operand (target, mode))
target = NULL_RTX;
emit_insn (gen_mf ());
tmp = gen_reg_rtx (mode);
old = gen_reg_rtx (mode);
/* ar.ccv must always be loaded with a zero-extended DImode value. */
ccv = gen_rtx_REG (DImode, AR_CCV_REGNUM);
emit_move_insn (tmp, mem);
label = gen_label_rtx ();
emit_label (label);
emit_move_insn (old, tmp);
convert_move (ccv, tmp, /*unsignedp=*/1);
/* Perform the specific operation. Special case NAND by noticing
one_cmpl_optab instead. */
if (binoptab == one_cmpl_optab)
{
tmp = expand_unop (mode, binoptab, tmp, NULL, OPTAB_WIDEN);
binoptab = and_optab;
}
ret = expand_binop (mode, binoptab, tmp, value, target, 1, OPTAB_WIDEN);
if (mode == SImode)
insn = gen_cmpxchg_acq_si (tmp, mem, ret, ccv);
else
insn = gen_cmpxchg_acq_di (tmp, mem, ret, ccv);
emit_insn (insn);
emit_cmp_and_jump_insns (tmp, old, NE, 0, mode, 1, label);
return ret;
}
/* Expand val_ and bool_compare_and_swap. For val_ we want:
ar.ccv = oldval
mf
cmpxchgsz.acq ret = [ptr], newval, ar.ccv
return ret
For bool_ it's the same except return ret == oldval.
*/
static rtx
ia64_expand_compare_and_swap (enum machine_mode rmode, enum machine_mode mode,
int boolp, tree arglist, rtx target)
{
tree arg0, arg1, arg2;
rtx mem, old, new, ccv, tmp, insn;
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
mem = expand_expr (arg0, NULL_RTX, ptr_mode, 0);
old = expand_expr (arg1, NULL_RTX, mode, 0);
new = expand_expr (arg2, NULL_RTX, mode, 0);
mem = gen_rtx_MEM (mode, force_reg (ptr_mode, mem));
MEM_VOLATILE_P (mem) = 1;
if (GET_MODE (old) != mode)
old = convert_to_mode (mode, old, /*unsignedp=*/1);
if (GET_MODE (new) != mode)
new = convert_to_mode (mode, new, /*unsignedp=*/1);
if (! register_operand (old, mode))
old = copy_to_mode_reg (mode, old);
if (! register_operand (new, mode))
new = copy_to_mode_reg (mode, new);
if (! boolp && target && register_operand (target, mode))
tmp = target;
else
tmp = gen_reg_rtx (mode);
ccv = gen_rtx_REG (DImode, AR_CCV_REGNUM);
convert_move (ccv, old, /*unsignedp=*/1);
emit_insn (gen_mf ());
if (mode == SImode)
insn = gen_cmpxchg_acq_si (tmp, mem, new, ccv);
else
insn = gen_cmpxchg_acq_di (tmp, mem, new, ccv);
emit_insn (insn);
if (boolp)
{
if (! target)
target = gen_reg_rtx (rmode);
return emit_store_flag_force (target, EQ, tmp, old, mode, 1, 1);
}
else
return tmp;
}
/* Expand lock_test_and_set. I.e. `xchgsz ret = [ptr], new'. */
static rtx
ia64_expand_lock_test_and_set (enum machine_mode mode, tree arglist,
rtx target)
{
tree arg0, arg1;
rtx mem, new, ret, insn;
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
mem = expand_expr (arg0, NULL_RTX, ptr_mode, 0);
new = expand_expr (arg1, NULL_RTX, mode, 0);
mem = gen_rtx_MEM (mode, force_reg (ptr_mode, mem));
MEM_VOLATILE_P (mem) = 1;
if (! register_operand (new, mode))
new = copy_to_mode_reg (mode, new);
if (target && register_operand (target, mode))
ret = target;
else
ret = gen_reg_rtx (mode);
if (mode == SImode)
insn = gen_xchgsi (ret, mem, new);
else
insn = gen_xchgdi (ret, mem, new);
emit_insn (insn);
return ret;
}
/* Expand lock_release. I.e. `stsz.rel [ptr] = r0'. */
static rtx
ia64_expand_lock_release (enum machine_mode mode, tree arglist,
rtx target ATTRIBUTE_UNUSED)
{
tree arg0;
rtx mem;
arg0 = TREE_VALUE (arglist);
mem = expand_expr (arg0, NULL_RTX, ptr_mode, 0);
mem = gen_rtx_MEM (mode, force_reg (ptr_mode, mem));
MEM_VOLATILE_P (mem) = 1;
emit_move_insn (mem, const0_rtx);
return const0_rtx;
}
rtx
ia64_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED,
int ignore ATTRIBUTE_UNUSED)
{
tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
tree arglist = TREE_OPERAND (exp, 1);
enum machine_mode rmode = VOIDmode;
switch (fcode)
{
case IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI:
case IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI:
mode = SImode;
rmode = SImode;
break;
case IA64_BUILTIN_LOCK_TEST_AND_SET_SI:
case IA64_BUILTIN_LOCK_RELEASE_SI:
case IA64_BUILTIN_FETCH_AND_ADD_SI:
case IA64_BUILTIN_FETCH_AND_SUB_SI:
case IA64_BUILTIN_FETCH_AND_OR_SI:
case IA64_BUILTIN_FETCH_AND_AND_SI:
case IA64_BUILTIN_FETCH_AND_XOR_SI:
case IA64_BUILTIN_FETCH_AND_NAND_SI:
case IA64_BUILTIN_ADD_AND_FETCH_SI:
case IA64_BUILTIN_SUB_AND_FETCH_SI:
case IA64_BUILTIN_OR_AND_FETCH_SI:
case IA64_BUILTIN_AND_AND_FETCH_SI:
case IA64_BUILTIN_XOR_AND_FETCH_SI:
case IA64_BUILTIN_NAND_AND_FETCH_SI:
mode = SImode;
break;
case IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI:
mode = DImode;
rmode = SImode;
break;
case IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI:
mode = DImode;
rmode = DImode;
break;
case IA64_BUILTIN_LOCK_TEST_AND_SET_DI:
case IA64_BUILTIN_LOCK_RELEASE_DI:
case IA64_BUILTIN_FETCH_AND_ADD_DI:
case IA64_BUILTIN_FETCH_AND_SUB_DI:
case IA64_BUILTIN_FETCH_AND_OR_DI:
case IA64_BUILTIN_FETCH_AND_AND_DI:
case IA64_BUILTIN_FETCH_AND_XOR_DI:
case IA64_BUILTIN_FETCH_AND_NAND_DI:
case IA64_BUILTIN_ADD_AND_FETCH_DI:
case IA64_BUILTIN_SUB_AND_FETCH_DI:
case IA64_BUILTIN_OR_AND_FETCH_DI:
case IA64_BUILTIN_AND_AND_FETCH_DI:
case IA64_BUILTIN_XOR_AND_FETCH_DI:
case IA64_BUILTIN_NAND_AND_FETCH_DI:
mode = DImode;
break;
default:
break;
}
switch (fcode)
{
case IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI:
case IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI:
return ia64_expand_compare_and_swap (rmode, mode, 1, arglist,
target);
case IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI:
case IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI:
return ia64_expand_compare_and_swap (rmode, mode, 0, arglist,
target);
case IA64_BUILTIN_SYNCHRONIZE:
emit_insn (gen_mf ());
return const0_rtx;
case IA64_BUILTIN_LOCK_TEST_AND_SET_SI:
case IA64_BUILTIN_LOCK_TEST_AND_SET_DI:
return ia64_expand_lock_test_and_set (mode, arglist, target);
case IA64_BUILTIN_LOCK_RELEASE_SI:
case IA64_BUILTIN_LOCK_RELEASE_DI:
return ia64_expand_lock_release (mode, arglist, target);
case IA64_BUILTIN_BSP:
if (! target || ! register_operand (target, DImode))
target = gen_reg_rtx (DImode);
emit_insn (gen_bsp_value (target));
#ifdef POINTERS_EXTEND_UNSIGNED
target = convert_memory_address (ptr_mode, target);
#endif
return target;
case IA64_BUILTIN_FLUSHRS:
emit_insn (gen_flushrs ());
return const0_rtx;
case IA64_BUILTIN_FETCH_AND_ADD_SI:
case IA64_BUILTIN_FETCH_AND_ADD_DI:
return ia64_expand_fetch_and_op (add_optab, mode, arglist, target);
case IA64_BUILTIN_FETCH_AND_SUB_SI:
case IA64_BUILTIN_FETCH_AND_SUB_DI:
return ia64_expand_fetch_and_op (sub_optab, mode, arglist, target);
case IA64_BUILTIN_FETCH_AND_OR_SI:
case IA64_BUILTIN_FETCH_AND_OR_DI:
return ia64_expand_fetch_and_op (ior_optab, mode, arglist, target);
case IA64_BUILTIN_FETCH_AND_AND_SI:
case IA64_BUILTIN_FETCH_AND_AND_DI:
return ia64_expand_fetch_and_op (and_optab, mode, arglist, target);
case IA64_BUILTIN_FETCH_AND_XOR_SI:
case IA64_BUILTIN_FETCH_AND_XOR_DI:
return ia64_expand_fetch_and_op (xor_optab, mode, arglist, target);
case IA64_BUILTIN_FETCH_AND_NAND_SI:
case IA64_BUILTIN_FETCH_AND_NAND_DI:
return ia64_expand_fetch_and_op (one_cmpl_optab, mode, arglist, target);
case IA64_BUILTIN_ADD_AND_FETCH_SI:
case IA64_BUILTIN_ADD_AND_FETCH_DI:
return ia64_expand_op_and_fetch (add_optab, mode, arglist, target);
case IA64_BUILTIN_SUB_AND_FETCH_SI:
case IA64_BUILTIN_SUB_AND_FETCH_DI:
return ia64_expand_op_and_fetch (sub_optab, mode, arglist, target);
case IA64_BUILTIN_OR_AND_FETCH_SI:
case IA64_BUILTIN_OR_AND_FETCH_DI:
return ia64_expand_op_and_fetch (ior_optab, mode, arglist, target);
case IA64_BUILTIN_AND_AND_FETCH_SI:
case IA64_BUILTIN_AND_AND_FETCH_DI:
return ia64_expand_op_and_fetch (and_optab, mode, arglist, target);
case IA64_BUILTIN_XOR_AND_FETCH_SI:
case IA64_BUILTIN_XOR_AND_FETCH_DI:
return ia64_expand_op_and_fetch (xor_optab, mode, arglist, target);
case IA64_BUILTIN_NAND_AND_FETCH_SI:
case IA64_BUILTIN_NAND_AND_FETCH_DI:
return ia64_expand_op_and_fetch (one_cmpl_optab, mode, arglist, target);
default:
break;
}
return NULL_RTX;
}
/* For the HP-UX IA64 aggregate parameters are passed stored in the
most significant bits of the stack slot. */
enum direction
ia64_hpux_function_arg_padding (enum machine_mode mode, tree type)
{
/* Exception to normal case for structures/unions/etc. */
if (type && AGGREGATE_TYPE_P (type)
&& int_size_in_bytes (type) < UNITS_PER_WORD)
return upward;
/* Fall back to the default. */
return DEFAULT_FUNCTION_ARG_PADDING (mode, type);
}
/* Linked list of all external functions that are to be emitted by GCC.
We output the name if and only if TREE_SYMBOL_REFERENCED is set in
order to avoid putting out names that are never really used. */
struct extern_func_list GTY(())
{
struct extern_func_list *next;
tree decl;
};
static GTY(()) struct extern_func_list *extern_func_head;
static void
ia64_hpux_add_extern_decl (tree decl)
{
struct extern_func_list *p = ggc_alloc (sizeof (struct extern_func_list));
p->decl = decl;
p->next = extern_func_head;
extern_func_head = p;
}
/* Print out the list of used global functions. */
static void
ia64_hpux_file_end (void)
{
struct extern_func_list *p;
for (p = extern_func_head; p; p = p->next)
{
tree decl = p->decl;
tree id = DECL_ASSEMBLER_NAME (decl);
if (!id)
abort ();
if (!TREE_ASM_WRITTEN (decl) && TREE_SYMBOL_REFERENCED (id))
{
const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
TREE_ASM_WRITTEN (decl) = 1;
(*targetm.asm_out.globalize_label) (asm_out_file, name);
fputs (TYPE_ASM_OP, asm_out_file);
assemble_name (asm_out_file, name);
fprintf (asm_out_file, "," TYPE_OPERAND_FMT "\n", "function");
}
}
extern_func_head = 0;
}
/* Set SImode div/mod functions, init_integral_libfuncs only initializes
modes of word_mode and larger. Rename the TFmode libfuncs using the
HPUX conventions. __divtf3 is used for XFmode. We need to keep it for
backward compatibility. */
static void
ia64_init_libfuncs (void)
{
set_optab_libfunc (sdiv_optab, SImode, "__divsi3");
set_optab_libfunc (udiv_optab, SImode, "__udivsi3");
set_optab_libfunc (smod_optab, SImode, "__modsi3");
set_optab_libfunc (umod_optab, SImode, "__umodsi3");
set_optab_libfunc (add_optab, TFmode, "_U_Qfadd");
set_optab_libfunc (sub_optab, TFmode, "_U_Qfsub");
set_optab_libfunc (smul_optab, TFmode, "_U_Qfmpy");
set_optab_libfunc (sdiv_optab, TFmode, "_U_Qfdiv");
set_optab_libfunc (neg_optab, TFmode, "_U_Qfneg");
set_conv_libfunc (sext_optab, TFmode, SFmode, "_U_Qfcnvff_sgl_to_quad");
set_conv_libfunc (sext_optab, TFmode, DFmode, "_U_Qfcnvff_dbl_to_quad");
set_conv_libfunc (sext_optab, TFmode, XFmode, "_U_Qfcnvff_f80_to_quad");
set_conv_libfunc (trunc_optab, SFmode, TFmode, "_U_Qfcnvff_quad_to_sgl");
set_conv_libfunc (trunc_optab, DFmode, TFmode, "_U_Qfcnvff_quad_to_dbl");
set_conv_libfunc (trunc_optab, XFmode, TFmode, "_U_Qfcnvff_quad_to_f80");
set_conv_libfunc (sfix_optab, SImode, TFmode, "_U_Qfcnvfxt_quad_to_sgl");
set_conv_libfunc (sfix_optab, DImode, TFmode, "_U_Qfcnvfxt_quad_to_dbl");
set_conv_libfunc (ufix_optab, SImode, TFmode, "_U_Qfcnvfxut_quad_to_sgl");
set_conv_libfunc (ufix_optab, DImode, TFmode, "_U_Qfcnvfxut_quad_to_dbl");
set_conv_libfunc (sfloat_optab, TFmode, SImode, "_U_Qfcnvxf_sgl_to_quad");
set_conv_libfunc (sfloat_optab, TFmode, DImode, "_U_Qfcnvxf_dbl_to_quad");
}
/* Rename all the TFmode libfuncs using the HPUX conventions. */
static void
ia64_hpux_init_libfuncs (void)
{
ia64_init_libfuncs ();
set_optab_libfunc (smin_optab, TFmode, "_U_Qfmin");
set_optab_libfunc (smax_optab, TFmode, "_U_Qfmax");
set_optab_libfunc (abs_optab, TFmode, "_U_Qfabs");
/* ia64_expand_compare uses this. */
cmptf_libfunc = init_one_libfunc ("_U_Qfcmp");
/* These should never be used. */
set_optab_libfunc (eq_optab, TFmode, 0);
set_optab_libfunc (ne_optab, TFmode, 0);
set_optab_libfunc (gt_optab, TFmode, 0);
set_optab_libfunc (ge_optab, TFmode, 0);
set_optab_libfunc (lt_optab, TFmode, 0);
set_optab_libfunc (le_optab, TFmode, 0);
}
/* Rename the division and modulus functions in VMS. */
static void
ia64_vms_init_libfuncs (void)
{
set_optab_libfunc (sdiv_optab, SImode, "OTS$DIV_I");
set_optab_libfunc (sdiv_optab, DImode, "OTS$DIV_L");
set_optab_libfunc (udiv_optab, SImode, "OTS$DIV_UI");
set_optab_libfunc (udiv_optab, DImode, "OTS$DIV_UL");
set_optab_libfunc (smod_optab, SImode, "OTS$REM_I");
set_optab_libfunc (smod_optab, DImode, "OTS$REM_L");
set_optab_libfunc (umod_optab, SImode, "OTS$REM_UI");
set_optab_libfunc (umod_optab, DImode, "OTS$REM_UL");
}
/* Rename the TFmode libfuncs available from soft-fp in glibc using
the HPUX conventions. */
static void
ia64_sysv4_init_libfuncs (void)
{
ia64_init_libfuncs ();
/* These functions are not part of the HPUX TFmode interface. We
use them instead of _U_Qfcmp, which doesn't work the way we
expect. */
set_optab_libfunc (eq_optab, TFmode, "_U_Qfeq");
set_optab_libfunc (ne_optab, TFmode, "_U_Qfne");
set_optab_libfunc (gt_optab, TFmode, "_U_Qfgt");
set_optab_libfunc (ge_optab, TFmode, "_U_Qfge");
set_optab_libfunc (lt_optab, TFmode, "_U_Qflt");
set_optab_libfunc (le_optab, TFmode, "_U_Qfle");
/* We leave out _U_Qfmin, _U_Qfmax and _U_Qfabs since soft-fp in
glibc doesn't have them. */
}
/* Switch to the section to which we should output X. The only thing
special we do here is to honor small data. */
static void
ia64_select_rtx_section (enum machine_mode mode, rtx x,
unsigned HOST_WIDE_INT align)
{
if (GET_MODE_SIZE (mode) > 0
&& GET_MODE_SIZE (mode) <= ia64_section_threshold)
sdata_section ();
else
default_elf_select_rtx_section (mode, x, align);
}
/* It is illegal to have relocations in shared segments on AIX and HPUX.
Pretend flag_pic is always set. */
static void
ia64_rwreloc_select_section (tree exp, int reloc, unsigned HOST_WIDE_INT align)
{
default_elf_select_section_1 (exp, reloc, align, true);
}
static void
ia64_rwreloc_unique_section (tree decl, int reloc)
{
default_unique_section_1 (decl, reloc, true);
}
static void
ia64_rwreloc_select_rtx_section (enum machine_mode mode, rtx x,
unsigned HOST_WIDE_INT align)
{
int save_pic = flag_pic;
flag_pic = 1;
ia64_select_rtx_section (mode, x, align);
flag_pic = save_pic;
}
#ifndef TARGET_RWRELOC
#define TARGET_RWRELOC flag_pic
#endif
static unsigned int
ia64_section_type_flags (tree decl, const char *name, int reloc)
{
unsigned int flags = 0;
if (strcmp (name, ".sdata") == 0
|| strncmp (name, ".sdata.", 7) == 0
|| strncmp (name, ".gnu.linkonce.s.", 16) == 0
|| strncmp (name, ".sdata2.", 8) == 0
|| strncmp (name, ".gnu.linkonce.s2.", 17) == 0
|| strcmp (name, ".sbss") == 0
|| strncmp (name, ".sbss.", 6) == 0
|| strncmp (name, ".gnu.linkonce.sb.", 17) == 0)
flags = SECTION_SMALL;
flags |= default_section_type_flags_1 (decl, name, reloc, TARGET_RWRELOC);
return flags;
}
/* Returns true if FNTYPE (a FUNCTION_TYPE or a METHOD_TYPE) returns a
structure type and that the address of that type should be passed
in out0, rather than in r8. */
static bool
ia64_struct_retval_addr_is_first_parm_p (tree fntype)
{
tree ret_type = TREE_TYPE (fntype);
/* The Itanium C++ ABI requires that out0, rather than r8, be used
as the structure return address parameter, if the return value
type has a non-trivial copy constructor or destructor. It is not
clear if this same convention should be used for other
programming languages. Until G++ 3.4, we incorrectly used r8 for
these return values. */
return (abi_version_at_least (2)
&& ret_type
&& TYPE_MODE (ret_type) == BLKmode
&& TREE_ADDRESSABLE (ret_type)
&& strcmp (lang_hooks.name, "GNU C++") == 0);
}
/* Output the assembler code for a thunk function. THUNK_DECL is the
declaration for the thunk function itself, FUNCTION is the decl for
the target function. DELTA is an immediate constant offset to be
added to THIS. If VCALL_OFFSET is nonzero, the word at
*(*this + vcall_offset) should be added to THIS. */
static void
ia64_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
tree function)
{
rtx this, insn, funexp;
unsigned int this_parmno;
unsigned int this_regno;
reload_completed = 1;
epilogue_completed = 1;
no_new_pseudos = 1;
reset_block_changes ();
/* Set things up as ia64_expand_prologue might. */
last_scratch_gr_reg = 15;
memset (&current_frame_info, 0, sizeof (current_frame_info));
current_frame_info.spill_cfa_off = -16;
current_frame_info.n_input_regs = 1;
current_frame_info.need_regstk = (TARGET_REG_NAMES != 0);
/* Mark the end of the (empty) prologue. */
emit_note (NOTE_INSN_PROLOGUE_END);
/* Figure out whether "this" will be the first parameter (the
typical case) or the second parameter (as happens when the
virtual function returns certain class objects). */
this_parmno
= (ia64_struct_retval_addr_is_first_parm_p (TREE_TYPE (thunk))
? 1 : 0);
this_regno = IN_REG (this_parmno);
if (!TARGET_REG_NAMES)
reg_names[this_regno] = ia64_reg_numbers[this_parmno];
this = gen_rtx_REG (Pmode, this_regno);
if (TARGET_ILP32)
{
rtx tmp = gen_rtx_REG (ptr_mode, this_regno);
REG_POINTER (tmp) = 1;
if (delta && CONST_OK_FOR_I (delta))
{
emit_insn (gen_ptr_extend_plus_imm (this, tmp, GEN_INT (delta)));
delta = 0;
}
else
emit_insn (gen_ptr_extend (this, tmp));
}
/* Apply the constant offset, if required. */
if (delta)
{
rtx delta_rtx = GEN_INT (delta);
if (!CONST_OK_FOR_I (delta))
{
rtx tmp = gen_rtx_REG (Pmode, 2);
emit_move_insn (tmp, delta_rtx);
delta_rtx = tmp;
}
emit_insn (gen_adddi3 (this, this, delta_rtx));
}
/* Apply the offset from the vtable, if required. */
if (vcall_offset)
{
rtx vcall_offset_rtx = GEN_INT (vcall_offset);
rtx tmp = gen_rtx_REG (Pmode, 2);
if (TARGET_ILP32)
{
rtx t = gen_rtx_REG (ptr_mode, 2);
REG_POINTER (t) = 1;
emit_move_insn (t, gen_rtx_MEM (ptr_mode, this));
if (CONST_OK_FOR_I (vcall_offset))
{
emit_insn (gen_ptr_extend_plus_imm (tmp, t,
vcall_offset_rtx));
vcall_offset = 0;
}
else
emit_insn (gen_ptr_extend (tmp, t));
}
else
emit_move_insn (tmp, gen_rtx_MEM (Pmode, this));
if (vcall_offset)
{
if (!CONST_OK_FOR_J (vcall_offset))
{
rtx tmp2 = gen_rtx_REG (Pmode, next_scratch_gr_reg ());
emit_move_insn (tmp2, vcall_offset_rtx);
vcall_offset_rtx = tmp2;
}
emit_insn (gen_adddi3 (tmp, tmp, vcall_offset_rtx));
}
if (TARGET_ILP32)
emit_move_insn (gen_rtx_REG (ptr_mode, 2),
gen_rtx_MEM (ptr_mode, tmp));
else
emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
emit_insn (gen_adddi3 (this, this, tmp));
}
/* Generate a tail call to the target function. */
if (! TREE_USED (function))
{
assemble_external (function);
TREE_USED (function) = 1;
}
funexp = XEXP (DECL_RTL (function), 0);
funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
ia64_expand_call (NULL_RTX, funexp, NULL_RTX, 1);
insn = get_last_insn ();
SIBLING_CALL_P (insn) = 1;
/* Code generation for calls relies on splitting. */
reload_completed = 1;
epilogue_completed = 1;
try_split (PATTERN (insn), insn, 0);
emit_barrier ();
/* Run just enough of rest_of_compilation to get the insns emitted.
There's not really enough bulk here to make other passes such as
instruction scheduling worth while. Note that use_thunk calls
assemble_start_function and assemble_end_function. */
insn_locators_initialize ();
emit_all_insn_group_barriers (NULL);
insn = get_insns ();
shorten_branches (insn);
final_start_function (insn, file, 1);
final (insn, file, 1, 0);
final_end_function ();
reload_completed = 0;
epilogue_completed = 0;
no_new_pseudos = 0;
}
/* Worker function for TARGET_STRUCT_VALUE_RTX. */
static rtx
ia64_struct_value_rtx (tree fntype,
int incoming ATTRIBUTE_UNUSED)
{
if (fntype && ia64_struct_retval_addr_is_first_parm_p (fntype))
return NULL_RTX;
return gen_rtx_REG (Pmode, GR_REG (8));
}
static bool
ia64_scalar_mode_supported_p (enum machine_mode mode)
{
switch (mode)
{
case QImode:
case HImode:
case SImode:
case DImode:
case TImode:
return true;
case SFmode:
case DFmode:
case XFmode:
return true;
case TFmode:
return TARGET_HPUX;
default:
return false;
}
}
static bool
ia64_vector_mode_supported_p (enum machine_mode mode)
{
switch (mode)
{
case V8QImode:
case V4HImode:
case V2SImode:
return true;
case V2SFmode:
return true;
default:
return false;
}
}
#include "gt-ia64.h"