blob: dafeac35fc84c8c86bd66fffd60d5f1179409578 [file] [log] [blame]
//===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TDDataStructures class, which represents the
// Top-down Interprocedural closure of the data structure graph over the
// program. This is useful (but not strictly necessary?) for applications
// like pointer analysis.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "td_dsa"
#include "rdsa/DataStructure.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "rdsa/DSGraph.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Timer.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
#if 0
#define TIME_REGION(VARNAME, DESC) \
NamedRegionTimer VARNAME(DESC)
#else
#define TIME_REGION(VARNAME, DESC)
#endif
namespace {
RegisterPass<TDDataStructures> // Register the pass
Y("dsa-td", "Top-down Data Structure Analysis");
RegisterPass<EQTDDataStructures> // Register the pass
Z("dsa-eqtd", "EQ Top-down Data Structure Analysis");
STATISTIC (NumTDInlines, "Number of graphs inlined");
}
char TDDataStructures::ID;
char EQTDDataStructures::ID;
void TDDataStructures::markReachableFunctionsExternallyAccessible(DSNode *N,
hash_set<DSNode*> &Visited) {
if (!N || Visited.count(N)) return;
Visited.insert(N);
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) {
DSNodeHandle &NH = N->getLink(i);
if (DSNode *NN = NH.getNode()) {
std::vector<const Function*> Functions;
NN->addFullFunctionList(Functions);
ArgsRemainIncomplete.insert(Functions.begin(), Functions.end());
markReachableFunctionsExternallyAccessible(NN, Visited);
}
}
}
// run - Calculate the top down data structure graphs for each function in the
// program.
//
bool TDDataStructures::runOnModule(Module &M) {
init(useEQBU ? &getAnalysis<EquivBUDataStructures>()
: &getAnalysis<BUDataStructures>(),
true, true, true, false);
// Figure out which functions must not mark their arguments complete because
// they are accessible outside this compilation unit. Currently, these
// arguments are functions which are reachable by global variables in the
// globals graph.
const DSScalarMap &GGSM = GlobalsGraph->getScalarMap();
hash_set<DSNode*> Visited;
for (DSScalarMap::global_iterator I=GGSM.global_begin(), E=GGSM.global_end();
I != E; ++I) {
DSNode *N = GGSM.find(*I)->second.getNode();
if (N->NodeType.isIncompleteNode())
markReachableFunctionsExternallyAccessible(N, Visited);
}
// Loop over unresolved call nodes. Any functions passed into (but not
// returned!) from unresolvable call nodes may be invoked outside of the
// current module.
for (DSGraph::afc_iterator I = GlobalsGraph->afc_begin(),
E = GlobalsGraph->afc_end(); I != E; ++I)
for (unsigned arg = 0, e = I->getNumPtrArgs(); arg != e; ++arg)
markReachableFunctionsExternallyAccessible(I->getPtrArg(arg).getNode(),
Visited);
Visited.clear();
// Clear Aux of Globals Graph to be refilled in later by post-TD unresolved
// functions
GlobalsGraph->getAuxFunctionCalls().clear();
// Functions without internal linkage also have unknown incoming arguments!
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isDeclaration() && !I->hasInternalLinkage())
ArgsRemainIncomplete.insert(I);
// We want to traverse the call graph in reverse post-order. To do this, we
// calculate a post-order traversal, then reverse it.
hash_set<DSGraph*> VisitedGraph;
std::vector<DSGraph*> PostOrder;
{TIME_REGION(XXX, "td:Compute postorder");
// Calculate top-down from main...
if (Function *F = M.getFunction("main"))
ComputePostOrder(F, VisitedGraph, PostOrder);
// Next calculate the graphs for each unreachable function...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isDeclaration())
ComputePostOrder(I, VisitedGraph, PostOrder);
VisitedGraph.clear(); // Release memory!
}
{TIME_REGION(XXX, "td:Inline stuff");
// Visit each of the graphs in reverse post-order now!
while (!PostOrder.empty()) {
InlineCallersIntoGraph(PostOrder.back());
PostOrder.pop_back();
}
}
// Free the IndCallMap.
while (!IndCallMap.empty()) {
delete IndCallMap.begin()->second;
IndCallMap.erase(IndCallMap.begin());
}
formGlobalECs();
ArgsRemainIncomplete.clear();
GlobalsGraph->removeTriviallyDeadNodes();
return false;
}
void TDDataStructures::ComputePostOrder(const Function* F,
hash_set<DSGraph*> &Visited,
std::vector<DSGraph*> &PostOrder) {
if (F->isDeclaration()) return;
DSGraph* G = getOrFetchDSGraph(F);
if (Visited.count(G)) return;
Visited.insert(G);
// Recursively traverse all of the callee graphs.
for (DSGraph::fc_iterator CI = G->fc_begin(), CE = G->fc_end(); CI != CE; ++CI){
Instruction *CallI = CI->getCallSite().getInstruction();
for (calleeTy::iterator I = callee.begin(CallI),
E = callee.end(CallI); I != E; ++I)
ComputePostOrder(*I, Visited, PostOrder);
}
PostOrder.push_back(G);
}
/// InlineCallersIntoGraph - Inline all of the callers of the specified DS graph
/// into it, then recompute completeness of nodes in the resultant graph.
void TDDataStructures::InlineCallersIntoGraph(DSGraph* DSG) {
// Inline caller graphs into this graph. First step, get the list of call
// sites that call into this graph.
std::vector<CallerCallEdge> EdgesFromCaller;
std::map<DSGraph*, std::vector<CallerCallEdge> >::iterator
CEI = CallerEdges.find(DSG);
if (CEI != CallerEdges.end()) {
std::swap(CEI->second, EdgesFromCaller);
CallerEdges.erase(CEI);
}
// Sort the caller sites to provide a by-caller-graph ordering.
std::sort(EdgesFromCaller.begin(), EdgesFromCaller.end());
// Merge information from the globals graph into this graph. FIXME: This is
// stupid. Instead of us cloning information from the GG into this graph,
// then having RemoveDeadNodes clone it back, we should do all of this as a
// post-pass over all of the graphs. We need to take cloning out of
// removeDeadNodes and gut removeDeadNodes at the same time first though. :(
{
DSGraph* GG = DSG->getGlobalsGraph();
ReachabilityCloner RC(DSG, GG,
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
for (DSScalarMap::global_iterator
GI = DSG->getScalarMap().global_begin(),
E = DSG->getScalarMap().global_end(); GI != E; ++GI)
RC.getClonedNH(GG->getNodeForValue(*GI));
}
DEBUG(errs() << "[TD] Inlining callers into '"
<< DSG->getFunctionNames() << "'\n");
// Iteratively inline caller graphs into this graph.
while (!EdgesFromCaller.empty()) {
DSGraph* CallerGraph = EdgesFromCaller.back().CallerGraph;
// Iterate through all of the call sites of this graph, cloning and merging
// any nodes required by the call.
ReachabilityCloner RC(DSG, CallerGraph,
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
// Inline all call sites from this caller graph.
do {
const DSCallSite &CS = *EdgesFromCaller.back().CS;
const Function &CF = *EdgesFromCaller.back().CalledFunction;
DEBUG(errs() << " [TD] Inlining graph into Fn '"
<< CF.getNameStr() << "' from ");
if (CallerGraph->getReturnNodes().empty()) {
DEBUG(errs() << "SYNTHESIZED INDIRECT GRAPH");
} else {
DEBUG(errs() << "Fn '" << CS.getCallSite().getInstruction()->
getParent()->getParent()->getNameStr() << "'");
}
DEBUG(errs() << ": " << CF.getFunctionType()->getNumParams()
<< " args\n");
// Get the formal argument and return nodes for the called function and
// merge them with the cloned subgraph.
DSCallSite T1 = DSG->getCallSiteForArguments(CF);
RC.mergeCallSite(T1, CS);
++NumTDInlines;
EdgesFromCaller.pop_back();
} while (!EdgesFromCaller.empty() &&
EdgesFromCaller.back().CallerGraph == CallerGraph);
}
{
DSGraph* GG = DSG->getGlobalsGraph();
ReachabilityCloner RC(GG, DSG,
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
for (DSScalarMap::global_iterator
GI = DSG->getScalarMap().global_begin(),
E = DSG->getScalarMap().global_end(); GI != E; ++GI)
RC.getClonedNH(DSG->getNodeForValue(*GI));
}
// Next, now that this graph is finalized, we need to recompute the
// incompleteness markers for this graph and remove unreachable nodes.
DSG->maskIncompleteMarkers();
// If any of the functions has incomplete incoming arguments, don't mark any
// of them as complete.
bool HasIncompleteArgs = false;
for (DSGraph::retnodes_iterator I = DSG->retnodes_begin(),
E = DSG->retnodes_end(); I != E; ++I)
if (ArgsRemainIncomplete.count(I->first)) {
HasIncompleteArgs = true;
break;
}
// Recompute the Incomplete markers. Depends on whether args are complete
unsigned Flags
= HasIncompleteArgs ? DSGraph::MarkFormalArgs : DSGraph::IgnoreFormalArgs;
Flags |= DSGraph::IgnoreGlobals | DSGraph::MarkVAStart;
DSG->markIncompleteNodes(Flags);
// Delete dead nodes. Treat globals that are unreachable as dead also.
DSG->removeDeadNodes(DSGraph::RemoveUnreachableGlobals);
// We are done with computing the current TD Graph! Finally, before we can
// finish processing this function, we figure out which functions it calls and
// records these call graph edges, so that we have them when we process the
// callee graphs.
if (DSG->fc_begin() == DSG->fc_end()) return;
// Loop over all the call sites and all the callees at each call site, and add
// edges to the CallerEdges structure for each callee.
for (DSGraph::fc_iterator CI = DSG->fc_begin(), E = DSG->fc_end();
CI != E; ++CI) {
// Handle direct calls efficiently.
if (CI->isDirectCall()) {
if (!CI->getCalleeFunc()->isDeclaration() &&
!DSG->getReturnNodes().count(CI->getCalleeFunc()))
CallerEdges[getOrFetchDSGraph(CI->getCalleeFunc())]
.push_back(CallerCallEdge(DSG, &*CI, CI->getCalleeFunc()));
continue;
}
Instruction *CallI = CI->getCallSite().getInstruction();
// For each function in the invoked function list at this call site...
calleeTy::iterator IPI =
callee.begin(CallI), IPE = callee.end(CallI);
// Skip over all calls to this graph (SCC calls).
while (IPI != IPE && getDSGraph(*IPI) == DSG)
++IPI;
// All SCC calls?
if (IPI == IPE) continue;
const Function *FirstCallee = *IPI;
++IPI;
// Skip over more SCC calls.
while (IPI != IPE && getDSGraph(*IPI) == DSG)
++IPI;
// If there is exactly one callee from this call site, remember the edge in
// CallerEdges.
if (IPI == IPE) {
if (!FirstCallee->isDeclaration())
CallerEdges[getOrFetchDSGraph(FirstCallee)]
.push_back(CallerCallEdge(DSG, &*CI, FirstCallee));
continue;
}
// Otherwise, there are multiple callees from this call site, so it must be
// an indirect call. Chances are that there will be other call sites with
// this set of targets. If so, we don't want to do M*N inlining operations,
// so we build up a new, private, graph that represents the calls of all
// calls to this set of functions.
std::vector<const Function*> Callees;
for (calleeTy::iterator I = callee.begin(CallI), E = callee.end(CallI);
I != E; ++I)
if (!(*I)->isDeclaration())
Callees.push_back(*I);
std::sort(Callees.begin(), Callees.end());
std::map<std::vector<const Function*>, DSGraph*>::iterator IndCallRecI =
IndCallMap.lower_bound(Callees);
DSGraph *IndCallGraph;
// If we already have this graph, recycle it.
if (IndCallRecI != IndCallMap.end() && IndCallRecI->first == Callees) {
DEBUG(errs() << " [TD] *** Reuse of indcall graph for " << Callees.size()
<< " callees!\n");
IndCallGraph = IndCallRecI->second;
} else {
// Otherwise, create a new DSGraph to represent this.
IndCallGraph = new DSGraph(DSG->getGlobalECs(), DSG->getDataLayout(), GlobalsGraph);
// Make a nullary dummy call site, which will eventually get some content
// merged into it. The actual callee function doesn't matter here, so we
// just pass it something to keep the ctor happy.
std::vector<DSNodeHandle> ArgDummyVec;
DSCallSite DummyCS(CI->getCallSite(), DSNodeHandle(), Callees[0]/*dummy*/,
ArgDummyVec);
IndCallGraph->getFunctionCalls().push_back(DummyCS);
IndCallRecI = IndCallMap.insert(IndCallRecI,
std::make_pair(Callees, IndCallGraph));
// Additionally, make sure that each of the callees inlines this graph
// exactly once.
DSCallSite *NCS = &IndCallGraph->getFunctionCalls().front();
for (unsigned i = 0, e = Callees.size(); i != e; ++i) {
DSGraph* CalleeGraph = getDSGraph(Callees[i]);
if (CalleeGraph != DSG)
CallerEdges[CalleeGraph].push_back(CallerCallEdge(IndCallGraph, NCS,
Callees[i]));
}
}
// Now that we know which graph to use for this, merge the caller
// information into the graph, based on information from the call site.
ReachabilityCloner RC(IndCallGraph, DSG, 0);
RC.mergeCallSite(IndCallGraph->getFunctionCalls().front(), *CI);
}
}