blob: 1f5cfb8b0ceb24dee06c57b604a3db7208b5393f [file] [log] [blame]
//===- Steensgaard.cpp - Context Insensitive Alias Analysis ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass uses the data structure graphs to implement a simple context
// insensitive alias analysis. It does this by computing the local analysis
// graphs for all of the functions, then merging them together into a single big
// graph without cloning.
//
//===----------------------------------------------------------------------===//
#include "rdsa/DataStructure.h"
#include "rdsa/DSGraph.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Module.h"
#include "llvm/Support/Debug.h"
#include <ostream>
using namespace llvm;
namespace {
class Steens : public ModulePass, public AliasAnalysis {
DSGraph * ResultGraph;
public:
static char ID;
Steens() : ModulePass((intptr_t)&ID), ResultGraph(NULL) {}
~Steens() { }
//------------------------------------------------
// Implement the Pass API
//
// run - Build up the result graph, representing the pointer graph for the
// program.
//
bool runOnModule(Module &M);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AliasAnalysis::getAnalysisUsage(AU);
AU.setPreservesAll(); // Does not transform code...
AU.addRequired<SteensgaardDataStructures>(); // Uses steensgaard dsgraph
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size);
virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
};
// Register the pass...
RegisterPass<Steens> X("steens-aa",
"Steensgaard's alias analysis (DSGraph based)");
// Register as an implementation of AliasAnalysis
RegisterAnalysisGroup<AliasAnalysis> Y(X);
}
char Steens::ID;
ModulePass *llvm::createSteensgaardPass() { return new Steens(); }
/// run - Build up the result graph, representing the pointer graph for the
/// program.
///
bool Steens::runOnModule(Module &M) {
InitializeAliasAnalysis(this);
ResultGraph = getAnalysis<SteensgaardDataStructures>().getResultGraph();
return false;
}
AliasAnalysis::AliasResult Steens::alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
assert(ResultGraph && "Result graph has not been computed yet!");
DSGraph::ScalarMapTy &GSM = ResultGraph->getScalarMap();
DSGraph::ScalarMapTy::iterator I = GSM.find(const_cast<Value*>(V1));
DSGraph::ScalarMapTy::iterator J = GSM.find(const_cast<Value*>(V2));
if (I != GSM.end() && !I->second.isNull() &&
J != GSM.end() && !J->second.isNull()) {
DSNodeHandle &V1H = I->second;
DSNodeHandle &V2H = J->second;
// If at least one of the nodes is complete, we can say something about
// this. If one is complete and the other isn't, then they are obviously
// different nodes. If they are both complete, we can't say anything
// useful.
if (I->second.getNode()->NodeType.isCompleteNode() ||
J->second.getNode()->NodeType.isCompleteNode()) {
// If the two pointers point to different data structure graph nodes, they
// cannot alias!
if (V1H.getNode() != V2H.getNode())
return NoAlias;
// See if they point to different offsets... if so, we may be able to
// determine that they do not alias...
unsigned O1 = I->second.getOffset(), O2 = J->second.getOffset();
if (O1 != O2) {
if (O2 < O1) { // Ensure that O1 <= O2
std::swap(V1, V2);
std::swap(O1, O2);
std::swap(V1Size, V2Size);
}
if (O1+V1Size <= O2)
return NoAlias;
}
}
}
// If we cannot determine alias properties based on our graph, fall back on
// some other AA implementation.
//
return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
}
AliasAnalysis::ModRefResult
Steens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
AliasAnalysis::ModRefResult Result = ModRef;
// Find the node in question.
DSGraph::ScalarMapTy &GSM = ResultGraph->getScalarMap();
DSGraph::ScalarMapTy::iterator I = GSM.find(P);
if (I != GSM.end() && !I->second.isNull()) {
DSNode *N = I->second.getNode();
if (N->NodeType.isCompleteNode()) {
// If this is a direct call to an external function, and if the pointer
// points to a complete node, the external function cannot modify or read
// the value (we know it's not passed out of the program!).
if (Function *F = CS.getCalledFunction())
if (F->isDeclaration())
return NoModRef;
// Otherwise, if the node is complete, but it is only M or R, return this.
// This can be useful for globals that should be marked const but are not.
if (!N->NodeType.isModifiedNode())
Result = (ModRefResult)(Result & ~Mod);
if (!N->NodeType.isReadNode())
Result = (ModRefResult)(Result & ~Ref);
}
}
return (ModRefResult)(Result & AliasAnalysis::getModRefInfo(CS, P, Size));
}
AliasAnalysis::ModRefResult
Steens::getModRefInfo(CallSite CS1, CallSite CS2)
{
return AliasAnalysis::getModRefInfo(CS1,CS2);
}