blob: 617b7dd4877c0b32db7327d934690e6fcbdb48c9 [file] [log] [blame]
//===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TDDataStructures class, which represents the
// Top-down Interprocedural closure of the data structure graph over the
// program. This is useful (but not strictly necessary?) for applications
// like pointer analysis.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "td_dsa"
#include "dsa/DataStructure.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/DerivedTypes.h"
#include "dsa/DSGraph.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Timer.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
#define TIME_REGION(VARNAME, DESC)
namespace {
RegisterPass<TDDataStructures> // Register the pass
Y("dsa-td", "Top-down Data Structure Analysis");
RegisterPass<EQTDDataStructures> // Register the pass
Z("dsa-eqtd", "EQ Top-down Data Structure Analysis");
STATISTIC (NumTDInlines, "Number of graphs inlined");
}
char TDDataStructures::ID;
char EQTDDataStructures::ID;
TDDataStructures::~TDDataStructures() {
releaseMemory();
}
EQTDDataStructures::~EQTDDataStructures() {
releaseMemory();
}
void TDDataStructures::markReachableFunctionsExternallyAccessible(DSNode *N,
DenseSet<DSNode*> &Visited) {
if (!N || Visited.count(N)) return;
Visited.insert(N);
// Handle this node
{
N->addFullFunctionSet(ExternallyCallable);
}
for (DSNode::edge_iterator ii = N->edge_begin(),
ee = N->edge_end(); ii != ee; ++ii)
if (!ii->second.isNull()) {
DSNodeHandle &NH = ii->second;
DSNode * NN = NH.getNode();
NN->addFullFunctionSet(ExternallyCallable);
markReachableFunctionsExternallyAccessible(NN, Visited);
}
}
// run - Calculate the top down data structure graphs for each function in the
// program.
//
bool TDDataStructures::runOnModule(Module &M) {
init(useEQBU ? &getAnalysis<EquivBUDataStructures>()
: &getAnalysis<BUDataStructures>(),
true, true, true, false);
// Figure out which functions must not mark their arguments complete because
// they are accessible outside this compilation unit. Currently, these
// arguments are functions which are reachable by incomplete or external
// nodes in the globals graph.
const DSScalarMap &GGSM = GlobalsGraph->getScalarMap();
DenseSet<DSNode*> Visited;
for (DSScalarMap::global_iterator I=GGSM.global_begin(), E=GGSM.global_end();
I != E; ++I) {
DSNode *N = GGSM.find(*I)->second.getNode();
if (N->isIncompleteNode() || N->isExternalNode())
markReachableFunctionsExternallyAccessible(N, Visited);
}
// Loop over unresolved call nodes. Any functions passed into (but not
// returned!) from unresolvable call nodes may be invoked outside of the
// current module.
for (DSGraph::afc_iterator I = GlobalsGraph->afc_begin(),
E = GlobalsGraph->afc_end(); I != E; ++I)
for (unsigned arg = 0, e = I->getNumPtrArgs(); arg != e; ++arg)
markReachableFunctionsExternallyAccessible(I->getPtrArg(arg).getNode(),
Visited);
Visited.clear();
// Clear Aux of Globals Graph to be refilled in later by post-TD unresolved
// functions
GlobalsGraph->getAuxFunctionCalls().clear();
// Functions without internal linkage are definitely externally callable!
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isDeclaration() && !I->hasInternalLinkage() && !I->hasPrivateLinkage())
ExternallyCallable.insert(I);
// Debug code to print the functions that are externally callable
#if 0
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (ExternallyCallable.count(I)) {
errs() << "ExternallyCallable: " << I->getNameStr() << "\n";
}
#endif
// We want to traverse the call graph in reverse post-order. To do this, we
// calculate a post-order traversal, then reverse it.
DenseSet<DSGraph*> VisitedGraph;
std::vector<DSGraph*> PostOrder;
{TIME_REGION(XXX, "td:Compute postorder");
// Calculate top-down from main...
if (Function *F = M.getFunction("main"))
ComputePostOrder(*F, VisitedGraph, PostOrder);
// Next calculate the graphs for each unreachable function...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isDeclaration())
ComputePostOrder(*I, VisitedGraph, PostOrder);
VisitedGraph.clear(); // Release memory!
}
{TIME_REGION(XXX, "td:Inline stuff");
// Visit each of the graphs in reverse post-order now!
while (!PostOrder.empty()) {
InlineCallersIntoGraph(PostOrder.back());
PostOrder.pop_back();
}
}
// Free the IndCallMap.
while (!IndCallMap.empty()) {
delete IndCallMap.begin()->second;
IndCallMap.erase(IndCallMap.begin());
}
formGlobalECs();
ExternallyCallable.clear();
GlobalsGraph->removeTriviallyDeadNodes();
GlobalsGraph->computeExternalFlags(DSGraph::DontMarkFormalsExternal);
GlobalsGraph->computeIntPtrFlags();
// Make sure each graph has updated external information about globals
// in the globals graph.
VisitedGraph.clear();
for (Module::iterator F = M.begin(); F != M.end(); ++F) {
if (!(F->isDeclaration())){
DSGraph *Graph = getOrCreateGraph(F);
if (!VisitedGraph.insert(Graph).second) continue;
cloneGlobalsInto(Graph, DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
Graph->computeExternalFlags(DSGraph::DontMarkFormalsExternal);
Graph->computeIntPtrFlags();
// Clean up uninteresting nodes
Graph->removeDeadNodes(0);
}
}
// CBU contains the correct call graph.
// Restore it, so that subsequent passes and clients can get it.
restoreCorrectCallGraph();
return false;
}
void TDDataStructures::ComputePostOrder(const Function &F,
DenseSet<DSGraph*> &Visited,
std::vector<DSGraph*> &PostOrder) {
if (F.isDeclaration()) return;
DSGraph* G = getOrCreateGraph(&F);
if (!Visited.insert(G).second) return;
// Recursively traverse all of the callee graphs.
svset<const Function*> Callees;
// Go through all of the callsites in this graph and find all callees
// Here we're trying to capture all possible callees so that we can ensure
// each function has all possible callers inlined into it.
for (DSGraph::fc_iterator CI = G->fc_begin(), E = G->fc_end();
CI != E; ++CI) {
// Direct calls are easy, no reason to look at DSCallGraph
// or anything to do with SCC's
if (CI->isDirectCall()) {
ComputePostOrder(*CI->getCalleeFunc(), Visited, PostOrder);
}
else {
// Otherwise, ask the DSCallGraph for the full set of possible
// callees for this callsite.
// This includes all members of the SCC's of those callees,
// and well as others in F's SCC, since we must assume
// any indirect call might be intra-SCC.
callgraph.addFullFunctionSet(CI->getCallSite(), Callees);
}
}
for (svset<const Function*>::iterator I = Callees.begin(),
E = Callees.end(); I != E; ++I)
ComputePostOrder(**I, Visited, PostOrder);
PostOrder.push_back(G);
}
/// InlineCallersIntoGraph - Inline all of the callers of the specified DS graph
/// into it, then recompute completeness of nodes in the resultant graph.
void TDDataStructures::InlineCallersIntoGraph(DSGraph* DSG) {
// Inline caller graphs into this graph. First step, get the list of call
// sites that call into this graph.
std::vector<CallerCallEdge> EdgesFromCaller;
std::map<DSGraph*, std::vector<CallerCallEdge> >::iterator
CEI = CallerEdges.find(DSG);
if (CEI != CallerEdges.end()) {
std::swap(CEI->second, EdgesFromCaller);
CallerEdges.erase(CEI);
}
// Sort the caller sites to provide a by-caller-graph ordering.
std::sort(EdgesFromCaller.begin(), EdgesFromCaller.end());
// Merge information from the globals graph into this graph. FIXME: This is
// stupid. Instead of us cloning information from the GG into this graph,
// then having RemoveDeadNodes clone it back, we should do all of this as a
// post-pass over all of the graphs. We need to take cloning out of
// removeDeadNodes and gut removeDeadNodes at the same time first though. :(
cloneGlobalsInto(DSG, DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
DEBUG(errs() << "[TD] Inlining callers into '"
<< DSG->getFunctionNames() << "'\n");
DSG->maskIncompleteMarkers();
// Iteratively inline caller graphs into this graph.
while (!EdgesFromCaller.empty()) {
DSGraph* CallerGraph = EdgesFromCaller.back().CallerGraph;
// Iterate through all of the call sites of this graph, cloning and merging
// any nodes required by the call.
ReachabilityCloner RC(DSG, CallerGraph,
DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
// Inline all call sites from this caller graph.
do {
const DSCallSite &CS = *EdgesFromCaller.back().CS;
const Function &CF = *EdgesFromCaller.back().CalledFunction;
DEBUG(errs() << " [TD] Inlining graph into Fn '"
<< CF.getName().str() << "' from ");
if (CallerGraph->getReturnNodes().empty()) {
DEBUG(errs() << "SYNTHESIZED INDIRECT GRAPH");
} else {
DEBUG(errs() << "Fn '" << CS.getCallSite().getInstruction()->
getParent()->getParent()->getName().str() << "'");
}
DEBUG(errs() << ": " << CF.getFunctionType()->getNumParams()
<< " args\n");
// Get the formal argument and return nodes for the called function and
// merge them with the cloned subgraph.
DSCallSite T1 = DSG->getCallSiteForArguments(CF);
RC.mergeCallSite(T1, CS);
++NumTDInlines;
EdgesFromCaller.pop_back();
} while (!EdgesFromCaller.empty() &&
EdgesFromCaller.back().CallerGraph == CallerGraph);
}
// Next, now that this graph is finalized, we need to recompute the
// incompleteness markers for this graph and remove unreachable nodes.
// If any of the functions is externally callable, treat everything in its
// SCC as externally callable.
bool isExternallyCallable = false;
for (DSGraph::retnodes_iterator I = DSG->retnodes_begin(),
E = DSG->retnodes_end(); I != E; ++I)
if (ExternallyCallable.count(I->first)) {
isExternallyCallable = true;
break;
}
// Recompute the Incomplete markers. Depends on whether args are complete
unsigned IncFlags = DSGraph::IgnoreFormalArgs;
IncFlags |= DSGraph::IgnoreGlobals | DSGraph::MarkVAStart;
DSG->markIncompleteNodes(IncFlags);
// If this graph contains functions that are externally callable, now is the time to mark
// their arguments and return values as external. At this point TD is inlining all caller information,
// and that means External callers too.
unsigned ExtFlags
= isExternallyCallable ? DSGraph::MarkFormalsExternal : DSGraph::DontMarkFormalsExternal;
DSG->computeExternalFlags(ExtFlags);
DSG->computeIntPtrFlags();
cloneIntoGlobals(DSG, DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
//
// Delete dead nodes. Treat globals that are unreachable as dead also.
//
// FIXME:
// Do not delete unreachable globals as the comment describes. For its
// alignment checks on the results of load instructions, SAFECode must be
// able to find the DSNode of both the result of the load as well as the
// pointer dereferenced by the load. If we remove unreachable globals, then
// if the dereferenced pointer is a global, its DSNode will not reachable
// from the local graph's scalar map, and chaos ensues.
//
// So, for now, just remove dead nodes but leave the globals alone.
//
DSG->removeDeadNodes(0);
// We are done with computing the current TD Graph! Finally, before we can
// finish processing this function, we figure out which functions it calls and
// records these call graph edges, so that we have them when we process the
// callee graphs.
if (DSG->fc_begin() == DSG->fc_end()) return;
// Loop over all the call sites and all the callees at each call site, and add
// edges to the CallerEdges structure for each callee.
for (DSGraph::fc_iterator CI = DSG->fc_begin(), E = DSG->fc_end();
CI != E; ++CI) {
// Handle direct calls efficiently.
if (CI->isDirectCall()) {
if (!CI->getCalleeFunc()->isDeclaration() &&
!DSG->getReturnNodes().count(CI->getCalleeFunc()))
CallerEdges[getOrCreateGraph(CI->getCalleeFunc())]
.push_back(CallerCallEdge(DSG, &*CI, CI->getCalleeFunc()));
continue;
}
svset<const Function*> AllCallees;
std::vector<const Function*> Callees;
// Get the list of callees
callgraph.addFullFunctionSet(CI->getCallSite(), AllCallees);
// Filter all non-declarations, and calls within this DSGraph
for (svset<const Function*>::iterator I = AllCallees.begin(),
E = AllCallees.end(); I != E; ++I) {
const Function *F = *I;
if (!F->isDeclaration() && getDSGraph(**I) != DSG)
Callees.push_back(F);
}
AllCallees.clear();
// If there is exactly one callee from this call site, remember the edge in
// CallerEdges.
if (Callees.size() == 1) {
const Function * Callee = Callees[0];
CallerEdges[getOrCreateGraph(Callee)]
.push_back(CallerCallEdge(DSG, &*CI, Callee));
}
if (Callees.size() <= 1) continue;
// Otherwise, there are multiple callees from this call site, so it must be
// an indirect call. Chances are that there will be other call sites with
// this set of targets. If so, we don't want to do M*N inlining operations,
// so we build up a new, private, graph that represents the calls of all
// calls to this set of functions.
std::map<std::vector<const Function*>, DSGraph*>::iterator IndCallRecI =
IndCallMap.lower_bound(Callees);
// If we already have this graph, recycle it.
if (IndCallRecI != IndCallMap.end() && IndCallRecI->first == Callees) {
DEBUG(errs() << " [TD] *** Reuse of indcall graph for " << Callees.size()
<< " callees!\n");
DSGraph * IndCallGraph = IndCallRecI->second;
assert(IndCallGraph->getFunctionCalls().size() == 1);
// Merge the call into the CS already in the IndCallGraph
ReachabilityCloner RC(IndCallGraph, DSG, 0);
RC.mergeCallSite(IndCallGraph->getFunctionCalls().front(), *CI);
} else {
// Otherwise, create a new DSGraph to represent this.
DSGraph* IndCallGraph = new DSGraph(DSG->getGlobalECs(),
DSG->getDataLayout(), *TypeSS);
// Clone over the call into the new DSGraph
ReachabilityCloner RC(IndCallGraph, DSG, 0);
DSCallSite ClonedCS = RC.cloneCallSite(*CI);
// Add the cloned CS to the graph, as if it were an original call.
IndCallGraph->getFunctionCalls().push_back(ClonedCS);
// Save this graph for use later, should we need it.
IndCallRecI = IndCallMap.insert(IndCallRecI,
std::make_pair(Callees, IndCallGraph));
// Additionally, make sure that each of the callees inlines this graph
// exactly once.
DSCallSite *NCS = &IndCallGraph->getFunctionCalls().front();
for (unsigned i = 0, e = Callees.size(); i != e; ++i) {
DSGraph* CalleeGraph = getDSGraph(*Callees[i]);
if (CalleeGraph != DSG)
CallerEdges[CalleeGraph].push_back(CallerCallEdge(IndCallGraph, NCS,
Callees[i]));
}
}
}
}