blob: 7983297539f98225392819a3255896cff921f24a [file] [log] [blame]
// <memory> -*- C++ -*-
// Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
* Copyright (c) 1997-1999
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
/** @file
* This is a Standard C++ Library header.
*/
#ifndef _GLIBCXX_MEMORY
#define _GLIBCXX_MEMORY 1
#pragma GCC system_header
#include <bits/stl_algobase.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_iterator_base_types.h> //for iterator_traits
#include <bits/stl_uninitialized.h>
#include <bits/stl_raw_storage_iter.h>
#include <debug/debug.h>
#include <limits>
namespace std
{
/**
* @if maint
* This is a helper function. The unused second parameter exists to
* permit the real get_temporary_buffer to use template parameter deduction.
*
* XXX This should perhaps use the pool.
* @endif
*/
template<typename _Tp>
pair<_Tp*, ptrdiff_t>
__get_temporary_buffer(ptrdiff_t __len, _Tp*)
{
const ptrdiff_t __max = numeric_limits<ptrdiff_t>::max() / sizeof(_Tp);
if (__len > __max)
__len = __max;
while (__len > 0)
{
_Tp* __tmp = static_cast<_Tp*>(::operator new(__len * sizeof(_Tp),
nothrow));
if (__tmp != 0)
return pair<_Tp*, ptrdiff_t>(__tmp, __len);
__len /= 2;
}
return pair<_Tp*, ptrdiff_t>(static_cast<_Tp*>(0), 0);
}
/**
* @brief Allocates a temporary buffer.
* @param len The number of objects of type Tp.
* @return See full description.
*
* Reinventing the wheel, but this time with prettier spokes!
*
* This function tries to obtain storage for @c len adjacent Tp
* objects. The objects themselves are not constructed, of course.
* A pair<> is returned containing "the buffer s address and
* capacity (in the units of sizeof(Tp)), or a pair of 0 values if
* no storage can be obtained." Note that the capacity obtained
* may be less than that requested if the memory is unavailable;
* you should compare len with the .second return value.
*
* Provides the nothrow exception guarantee.
*/
template<typename _Tp>
inline pair<_Tp*, ptrdiff_t>
get_temporary_buffer(ptrdiff_t __len)
{ return std::__get_temporary_buffer(__len, static_cast<_Tp*>(0)); }
/**
* @brief The companion to get_temporary_buffer().
* @param p A buffer previously allocated by get_temporary_buffer.
* @return None.
*
* Frees the memory pointed to by p.
*/
template<typename _Tp>
void
return_temporary_buffer(_Tp* __p)
{ ::operator delete(__p, nothrow); }
/**
* A wrapper class to provide auto_ptr with reference semantics.
* For example, an auto_ptr can be assigned (or constructed from)
* the result of a function which returns an auto_ptr by value.
*
* All the auto_ptr_ref stuff should happen behind the scenes.
*/
template<typename _Tp1>
struct auto_ptr_ref
{
_Tp1* _M_ptr;
explicit
auto_ptr_ref(_Tp1* __p): _M_ptr(__p) { }
};
/**
* @brief A simple smart pointer providing strict ownership semantics.
*
* The Standard says:
* <pre>
* An @c auto_ptr owns the object it holds a pointer to. Copying
* an @c auto_ptr copies the pointer and transfers ownership to the
* destination. If more than one @c auto_ptr owns the same object
* at the same time the behavior of the program is undefined.
*
* The uses of @c auto_ptr include providing temporary
* exception-safety for dynamically allocated memory, passing
* ownership of dynamically allocated memory to a function, and
* returning dynamically allocated memory from a function. @c
* auto_ptr does not meet the CopyConstructible and Assignable
* requirements for Standard Library <a
* href="tables.html#65">container</a> elements and thus
* instantiating a Standard Library container with an @c auto_ptr
* results in undefined behavior.
* </pre>
* Quoted from [20.4.5]/3.
*
* Good examples of what can and cannot be done with auto_ptr can
* be found in the libstdc++ testsuite.
*
* @if maint
* _GLIBCXX_RESOLVE_LIB_DEFECTS
* 127. auto_ptr<> conversion issues
* These resolutions have all been incorporated.
* @endif
*/
template<typename _Tp>
class auto_ptr
{
private:
_Tp* _M_ptr;
public:
/// The pointed-to type.
typedef _Tp element_type;
/**
* @brief An %auto_ptr is usually constructed from a raw pointer.
* @param p A pointer (defaults to NULL).
*
* This object now @e owns the object pointed to by @a p.
*/
explicit
auto_ptr(element_type* __p = 0) throw() : _M_ptr(__p) { }
/**
* @brief An %auto_ptr can be constructed from another %auto_ptr.
* @param a Another %auto_ptr of the same type.
*
* This object now @e owns the object previously owned by @a a,
* which has given up ownsership.
*/
auto_ptr(auto_ptr& __a) throw() : _M_ptr(__a.release()) { }
/**
* @brief An %auto_ptr can be constructed from another %auto_ptr.
* @param a Another %auto_ptr of a different but related type.
*
* A pointer-to-Tp1 must be convertible to a
* pointer-to-Tp/element_type.
*
* This object now @e owns the object previously owned by @a a,
* which has given up ownsership.
*/
template<typename _Tp1>
auto_ptr(auto_ptr<_Tp1>& __a) throw() : _M_ptr(__a.release()) { }
/**
* @brief %auto_ptr assignment operator.
* @param a Another %auto_ptr of the same type.
*
* This object now @e owns the object previously owned by @a a,
* which has given up ownsership. The object that this one @e
* used to own and track has been deleted.
*/
auto_ptr&
operator=(auto_ptr& __a) throw()
{
reset(__a.release());
return *this;
}
/**
* @brief %auto_ptr assignment operator.
* @param a Another %auto_ptr of a different but related type.
*
* A pointer-to-Tp1 must be convertible to a pointer-to-Tp/element_type.
*
* This object now @e owns the object previously owned by @a a,
* which has given up ownsership. The object that this one @e
* used to own and track has been deleted.
*/
template<typename _Tp1>
auto_ptr&
operator=(auto_ptr<_Tp1>& __a) throw()
{
reset(__a.release());
return *this;
}
/**
* When the %auto_ptr goes out of scope, the object it owns is
* deleted. If it no longer owns anything (i.e., @c get() is
* @c NULL), then this has no effect.
*
* @if maint
* The C++ standard says there is supposed to be an empty throw
* specification here, but omitting it is standard conforming. Its
* presence can be detected only if _Tp::~_Tp() throws, but this is
* prohibited. [17.4.3.6]/2
* @endif
*/
~auto_ptr() { delete _M_ptr; }
/**
* @brief Smart pointer dereferencing.
*
* If this %auto_ptr no longer owns anything, then this
* operation will crash. (For a smart pointer, "no longer owns
* anything" is the same as being a null pointer, and you know
* what happens when you dereference one of those...)
*/
element_type&
operator*() const throw()
{
_GLIBCXX_DEBUG_ASSERT(_M_ptr != 0);
return *_M_ptr;
}
/**
* @brief Smart pointer dereferencing.
*
* This returns the pointer itself, which the language then will
* automatically cause to be dereferenced.
*/
element_type*
operator->() const throw()
{
_GLIBCXX_DEBUG_ASSERT(_M_ptr != 0);
return _M_ptr;
}
/**
* @brief Bypassing the smart pointer.
* @return The raw pointer being managed.
*
* You can get a copy of the pointer that this object owns, for
* situations such as passing to a function which only accepts
* a raw pointer.
*
* @note This %auto_ptr still owns the memory.
*/
element_type*
get() const throw() { return _M_ptr; }
/**
* @brief Bypassing the smart pointer.
* @return The raw pointer being managed.
*
* You can get a copy of the pointer that this object owns, for
* situations such as passing to a function which only accepts
* a raw pointer.
*
* @note This %auto_ptr no longer owns the memory. When this object
* goes out of scope, nothing will happen.
*/
element_type*
release() throw()
{
element_type* __tmp = _M_ptr;
_M_ptr = 0;
return __tmp;
}
/**
* @brief Forcibly deletes the managed object.
* @param p A pointer (defaults to NULL).
*
* This object now @e owns the object pointed to by @a p. The
* previous object has been deleted.
*/
void
reset(element_type* __p = 0) throw()
{
if (__p != _M_ptr)
{
delete _M_ptr;
_M_ptr = __p;
}
}
/**
* @brief Automatic conversions
*
* These operations convert an %auto_ptr into and from an auto_ptr_ref
* automatically as needed. This allows constructs such as
* @code
* auto_ptr<Derived> func_returning_auto_ptr(.....);
* ...
* auto_ptr<Base> ptr = func_returning_auto_ptr(.....);
* @endcode
*/
auto_ptr(auto_ptr_ref<element_type> __ref) throw()
: _M_ptr(__ref._M_ptr) { }
auto_ptr&
operator=(auto_ptr_ref<element_type> __ref) throw()
{
if (__ref._M_ptr != this->get())
{
delete _M_ptr;
_M_ptr = __ref._M_ptr;
}
return *this;
}
template<typename _Tp1>
operator auto_ptr_ref<_Tp1>() throw()
{ return auto_ptr_ref<_Tp1>(this->release()); }
template<typename _Tp1>
operator auto_ptr<_Tp1>() throw()
{ return auto_ptr<_Tp1>(this->release()); }
};
} // namespace std
#endif /* _GLIBCXX_MEMORY */