blob: 452375f374c4379e946242c1d9102b09cf6fc393 [file] [log] [blame]
//===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering.
//
//===----------------------------------------------------------------------===//
#ifndef CLANG_CODEGEN_CODEGENTYPES_H
#define CLANG_CODEGEN_CODEGENTYPES_H
#include "CGCall.h"
#include "clang/AST/GlobalDecl.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/IR/Module.h"
#include <vector>
namespace llvm {
class FunctionType;
class Module;
class DataLayout;
class Type;
class LLVMContext;
class StructType;
}
namespace clang {
class ABIInfo;
class ASTContext;
template <typename> class CanQual;
class CXXConstructorDecl;
class CXXDestructorDecl;
class CXXMethodDecl;
class CodeGenOptions;
class FieldDecl;
class FunctionProtoType;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
class PointerType;
class QualType;
class RecordDecl;
class TagDecl;
class TargetInfo;
class Type;
typedef CanQual<Type> CanQualType;
namespace CodeGen {
class CGCXXABI;
class CGRecordLayout;
class CodeGenModule;
class RequiredArgs;
/// CodeGenTypes - This class organizes the cross-module state that is used
/// while lowering AST types to LLVM types.
class CodeGenTypes {
public:
// Some of this stuff should probably be left on the CGM.
CodeGenModule &CGM;
ASTContext &Context;
llvm::Module &TheModule;
const llvm::DataLayout &TheDataLayout;
const TargetInfo &Target;
CGCXXABI &TheCXXABI;
const CodeGenOptions &CodeGenOpts;
// This should not be moved earlier, since its initialization depends on some
// of the previous reference members being already initialized
const ABIInfo &TheABIInfo;
private:
/// The opaque type map for Objective-C interfaces. All direct
/// manipulation is done by the runtime interfaces, which are
/// responsible for coercing to the appropriate type; these opaque
/// types are never refined.
llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
/// CGRecordLayouts - This maps llvm struct type with corresponding
/// record layout info.
llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts;
/// RecordDeclTypes - This contains the LLVM IR type for any converted
/// RecordDecl.
llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
/// FunctionInfos - Hold memoized CGFunctionInfo results.
llvm::FoldingSet<CGFunctionInfo> FunctionInfos;
/// RecordsBeingLaidOut - This set keeps track of records that we're currently
/// converting to an IR type. For example, when converting:
/// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
/// types will be in this set.
llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
/// SkippedLayout - True if we didn't layout a function due to a being inside
/// a recursive struct conversion, set this to true.
bool SkippedLayout;
SmallVector<const RecordDecl *, 8> DeferredRecords;
private:
/// TypeCache - This map keeps cache of llvm::Types
/// and maps llvm::Types to corresponding clang::Type.
llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
public:
CodeGenTypes(CodeGenModule &cgm);
~CodeGenTypes();
const llvm::DataLayout &getDataLayout() const { return TheDataLayout; }
ASTContext &getContext() const { return Context; }
const ABIInfo &getABIInfo() const { return TheABIInfo; }
const CodeGenOptions &getCodeGenOpts() const { return CodeGenOpts; }
const TargetInfo &getTarget() const { return Target; }
CGCXXABI &getCXXABI() const { return TheCXXABI; }
llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
/// ConvertType - Convert type T into a llvm::Type.
llvm::Type *ConvertType(QualType T);
/// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
/// ConvertType in that it is used to convert to the memory representation for
/// a type. For example, the scalar representation for _Bool is i1, but the
/// memory representation is usually i8 or i32, depending on the target.
llvm::Type *ConvertTypeForMem(QualType T);
/// GetFunctionType - Get the LLVM function type for \arg Info.
llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
llvm::FunctionType *GetFunctionType(GlobalDecl GD);
/// isFuncTypeConvertible - Utility to check whether a function type can
/// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
/// type).
bool isFuncTypeConvertible(const FunctionType *FT);
bool isFuncTypeArgumentConvertible(QualType Ty);
/// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
/// given a CXXMethodDecl. If the method to has an incomplete return type,
/// and/or incomplete argument types, this will return the opaque type.
llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
/// UpdateCompletedType - When we find the full definition for a TagDecl,
/// replace the 'opaque' type we previously made for it if applicable.
void UpdateCompletedType(const TagDecl *TD);
/// getNullaryFunctionInfo - Get the function info for a void()
/// function with standard CC.
const CGFunctionInfo &arrangeNullaryFunction();
// The arrangement methods are split into three families:
// - those meant to drive the signature and prologue/epilogue
// of a function declaration or definition,
// - those meant for the computation of the LLVM type for an abstract
// appearance of a function, and
// - those meant for performing the IR-generation of a call.
// They differ mainly in how they deal with optional (i.e. variadic)
// arguments, as well as unprototyped functions.
//
// Key points:
// - The CGFunctionInfo for emitting a specific call site must include
// entries for the optional arguments.
// - The function type used at the call site must reflect the formal
// signature of the declaration being called, or else the call will
// go awry.
// - For the most part, unprototyped functions are called by casting to
// a formal signature inferred from the specific argument types used
// at the call-site. However, some targets (e.g. x86-64) screw with
// this for compatibility reasons.
const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
const CGFunctionInfo &arrangeFunctionDeclaration(QualType ResTy,
const FunctionArgList &Args,
const FunctionType::ExtInfo &Info,
bool isVariadic);
const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
QualType receiverType);
const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
const CGFunctionInfo &arrangeCXXConstructorDeclaration(
const CXXConstructorDecl *D,
CXXCtorType Type);
const CGFunctionInfo &arrangeCXXDestructor(const CXXDestructorDecl *D,
CXXDtorType Type);
const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
const FunctionType *Ty);
const CGFunctionInfo &arrangeFreeFunctionCall(QualType ResTy,
const CallArgList &args,
FunctionType::ExtInfo info,
RequiredArgs required);
const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
const FunctionType *type);
const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
const FunctionProtoType *type,
RequiredArgs required);
const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty);
const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
const FunctionProtoType *FTP);
/// "Arrange" the LLVM information for a call or type with the given
/// signature. This is largely an internal method; other clients
/// should use one of the above routines, which ultimately defer to
/// this.
///
/// \param argTypes - must all actually be canonical as params
const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
ArrayRef<CanQualType> argTypes,
FunctionType::ExtInfo info,
RequiredArgs args);
/// \brief Compute a new LLVM record layout object for the given record.
CGRecordLayout *ComputeRecordLayout(const RecordDecl *D,
llvm::StructType *Ty);
/// addRecordTypeName - Compute a name from the given record decl with an
/// optional suffix and name the given LLVM type using it.
void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
StringRef suffix);
public: // These are internal details of CGT that shouldn't be used externally.
/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
/// GetExpandedTypes - Expand the type \arg Ty into the LLVM
/// argument types it would be passed as on the provided vector \arg
/// ArgTys. See ABIArgInfo::Expand.
void GetExpandedTypes(QualType type,
SmallVectorImpl<llvm::Type*> &expanded);
/// IsZeroInitializable - Return whether a type can be
/// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
bool isZeroInitializable(QualType T);
/// IsZeroInitializable - Return whether a record type can be
/// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
bool isZeroInitializable(const CXXRecordDecl *RD);
bool isRecordLayoutComplete(const Type *Ty) const;
bool noRecordsBeingLaidOut() const {
return RecordsBeingLaidOut.empty();
}
bool isRecordBeingLaidOut(const Type *Ty) const {
return RecordsBeingLaidOut.count(Ty);
}
};
} // end namespace CodeGen
} // end namespace clang
#endif