blob: a0c76c069b863cd2e1f65bc13837cf9e3200e322 [file] [log] [blame]
//===--- Decl.h - Classes for representing declarations ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Decl subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECL_H
#define LLVM_CLANG_AST_DECL_H
#include "clang/AST/APValue.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/Type.h"
#include "clang/Basic/Linkage.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/Compiler.h"
namespace clang {
struct ASTTemplateArgumentListInfo;
class CXXTemporary;
class CompoundStmt;
class DependentFunctionTemplateSpecializationInfo;
class Expr;
class FunctionTemplateDecl;
class FunctionTemplateSpecializationInfo;
class LabelStmt;
class MemberSpecializationInfo;
class Module;
class NestedNameSpecifier;
class Stmt;
class StringLiteral;
class TemplateArgumentList;
class TemplateParameterList;
class TypeLoc;
class UnresolvedSetImpl;
/// \brief A container of type source information.
///
/// A client can read the relevant info using TypeLoc wrappers, e.g:
/// @code
/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
/// if (PointerLoc *PL = dyn_cast<PointerLoc>(&TL))
/// PL->getStarLoc().print(OS, SrcMgr);
/// @endcode
///
class TypeSourceInfo {
QualType Ty;
// Contains a memory block after the class, used for type source information,
// allocated by ASTContext.
friend class ASTContext;
TypeSourceInfo(QualType ty) : Ty(ty) { }
public:
/// \brief Return the type wrapped by this type source info.
QualType getType() const { return Ty; }
/// \brief Return the TypeLoc wrapper for the type source info.
TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
};
/// TranslationUnitDecl - The top declaration context.
class TranslationUnitDecl : public Decl, public DeclContext {
virtual void anchor();
ASTContext &Ctx;
/// The (most recently entered) anonymous namespace for this
/// translation unit, if one has been created.
NamespaceDecl *AnonymousNamespace;
explicit TranslationUnitDecl(ASTContext &ctx)
: Decl(TranslationUnit, 0, SourceLocation()),
DeclContext(TranslationUnit),
Ctx(ctx), AnonymousNamespace(0) {}
public:
ASTContext &getASTContext() const { return Ctx; }
NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
static TranslationUnitDecl *Create(ASTContext &C);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == TranslationUnit; }
static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
}
static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
}
};
/// NamedDecl - This represents a decl with a name. Many decls have names such
/// as ObjCMethodDecl, but not \@class, etc.
class NamedDecl : public Decl {
virtual void anchor();
/// Name - The name of this declaration, which is typically a normal
/// identifier but may also be a special kind of name (C++
/// constructor, Objective-C selector, etc.)
DeclarationName Name;
private:
NamedDecl *getUnderlyingDeclImpl();
void verifyLinkage() const;
protected:
NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
: Decl(DK, DC, L), Name(N) { }
public:
/// getIdentifier - Get the identifier that names this declaration,
/// if there is one. This will return NULL if this declaration has
/// no name (e.g., for an unnamed class) or if the name is a special
/// name (C++ constructor, Objective-C selector, etc.).
IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
/// getName - Get the name of identifier for this declaration as a StringRef.
/// This requires that the declaration have a name and that it be a simple
/// identifier.
StringRef getName() const {
assert(Name.isIdentifier() && "Name is not a simple identifier");
return getIdentifier() ? getIdentifier()->getName() : "";
}
/// getNameAsString - Get a human-readable name for the declaration, even if
/// it is one of the special kinds of names (C++ constructor, Objective-C
/// selector, etc). Creating this name requires expensive string
/// manipulation, so it should be called only when performance doesn't matter.
/// For simple declarations, getNameAsCString() should suffice.
//
// FIXME: This function should be renamed to indicate that it is not just an
// alternate form of getName(), and clients should move as appropriate.
//
// FIXME: Deprecated, move clients to getName().
std::string getNameAsString() const { return Name.getAsString(); }
void printName(raw_ostream &os) const { return Name.printName(os); }
/// getDeclName - Get the actual, stored name of the declaration,
/// which may be a special name.
DeclarationName getDeclName() const { return Name; }
/// \brief Set the name of this declaration.
void setDeclName(DeclarationName N) { Name = N; }
/// printQualifiedName - Returns human-readable qualified name for
/// declaration, like A::B::i, for i being member of namespace A::B.
/// If declaration is not member of context which can be named (record,
/// namespace), it will return same result as printName().
/// Creating this name is expensive, so it should be called only when
/// performance doesn't matter.
void printQualifiedName(raw_ostream &OS) const;
void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
// FIXME: Remove string versions.
std::string getQualifiedNameAsString() const;
std::string getQualifiedNameAsString(const PrintingPolicy &Policy) const;
/// getNameForDiagnostic - Appends a human-readable name for this
/// declaration into the given stream.
///
/// This is the method invoked by Sema when displaying a NamedDecl
/// in a diagnostic. It does not necessarily produce the same
/// result as printName(); for example, class template
/// specializations are printed with their template arguments.
virtual void getNameForDiagnostic(raw_ostream &OS,
const PrintingPolicy &Policy,
bool Qualified) const;
/// declarationReplaces - Determine whether this declaration, if
/// known to be well-formed within its context, will replace the
/// declaration OldD if introduced into scope. A declaration will
/// replace another declaration if, for example, it is a
/// redeclaration of the same variable or function, but not if it is
/// a declaration of a different kind (function vs. class) or an
/// overloaded function.
bool declarationReplaces(NamedDecl *OldD) const;
/// \brief Determine whether this declaration has linkage.
bool hasLinkage() const;
using Decl::isModulePrivate;
using Decl::setModulePrivate;
/// \brief Determine whether this declaration is hidden from name lookup.
bool isHidden() const { return Hidden; }
/// \brief Determine whether this declaration is a C++ class member.
bool isCXXClassMember() const {
const DeclContext *DC = getDeclContext();
// C++0x [class.mem]p1:
// The enumerators of an unscoped enumeration defined in
// the class are members of the class.
// FIXME: support C++0x scoped enumerations.
if (isa<EnumDecl>(DC))
DC = DC->getParent();
return DC->isRecord();
}
/// \brief Determine whether the given declaration is an instance member of
/// a C++ class.
bool isCXXInstanceMember() const;
/// \brief Determine what kind of linkage this entity has.
Linkage getLinkage() const;
/// \brief True if this decl has external linkage.
bool hasExternalLinkage() const {
return getLinkage() == ExternalLinkage;
}
/// \brief Determines the visibility of this entity.
Visibility getVisibility() const {
return getLinkageAndVisibility().getVisibility();
}
/// \brief Determines the linkage and visibility of this entity.
LinkageInfo getLinkageAndVisibility() const;
/// Kinds of explicit visibility.
enum ExplicitVisibilityKind {
VisibilityForType,
VisibilityForValue
};
/// \brief If visibility was explicitly specified for this
/// declaration, return that visibility.
Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const;
/// \brief True if the computed linkage is valid. Used for consistency
/// checking. Should always return true.
bool isLinkageValid() const;
/// \brief Looks through UsingDecls and ObjCCompatibleAliasDecls for
/// the underlying named decl.
NamedDecl *getUnderlyingDecl() {
// Fast-path the common case.
if (this->getKind() != UsingShadow &&
this->getKind() != ObjCCompatibleAlias)
return this;
return getUnderlyingDeclImpl();
}
const NamedDecl *getUnderlyingDecl() const {
return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
};
inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
ND.printName(OS);
return OS;
}
/// LabelDecl - Represents the declaration of a label. Labels also have a
/// corresponding LabelStmt, which indicates the position that the label was
/// defined at. For normal labels, the location of the decl is the same as the
/// location of the statement. For GNU local labels (__label__), the decl
/// location is where the __label__ is.
class LabelDecl : public NamedDecl {
virtual void anchor();
LabelStmt *TheStmt;
/// LocStart - For normal labels, this is the same as the main declaration
/// label, i.e., the location of the identifier; for GNU local labels,
/// this is the location of the __label__ keyword.
SourceLocation LocStart;
LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
LabelStmt *S, SourceLocation StartL)
: NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
public:
static LabelDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdentL, IdentifierInfo *II);
static LabelDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdentL, IdentifierInfo *II,
SourceLocation GnuLabelL);
static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
LabelStmt *getStmt() const { return TheStmt; }
void setStmt(LabelStmt *T) { TheStmt = T; }
bool isGnuLocal() const { return LocStart != getLocation(); }
void setLocStart(SourceLocation L) { LocStart = L; }
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(LocStart, getLocation());
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Label; }
};
/// NamespaceDecl - Represent a C++ namespace.
class NamespaceDecl : public NamedDecl, public DeclContext,
public Redeclarable<NamespaceDecl>
{
virtual void anchor();
/// LocStart - The starting location of the source range, pointing
/// to either the namespace or the inline keyword.
SourceLocation LocStart;
/// RBraceLoc - The ending location of the source range.
SourceLocation RBraceLoc;
/// \brief A pointer to either the anonymous namespace that lives just inside
/// this namespace or to the first namespace in the chain (the latter case
/// only when this is not the first in the chain), along with a
/// boolean value indicating whether this is an inline namespace.
llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
NamespaceDecl(DeclContext *DC, bool Inline, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
NamespaceDecl *PrevDecl);
typedef Redeclarable<NamespaceDecl> redeclarable_base;
virtual NamespaceDecl *getNextRedeclaration() {
return RedeclLink.getNext();
}
virtual NamespaceDecl *getPreviousDeclImpl() {
return getPreviousDecl();
}
virtual NamespaceDecl *getMostRecentDeclImpl() {
return getMostRecentDecl();
}
public:
static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
bool Inline, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
NamespaceDecl *PrevDecl);
static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
/// \brief Returns true if this is an anonymous namespace declaration.
///
/// For example:
/// \code
/// namespace {
/// ...
/// };
/// \endcode
/// q.v. C++ [namespace.unnamed]
bool isAnonymousNamespace() const {
return !getIdentifier();
}
/// \brief Returns true if this is an inline namespace declaration.
bool isInline() const {
return AnonOrFirstNamespaceAndInline.getInt();
}
/// \brief Set whether this is an inline namespace declaration.
void setInline(bool Inline) {
AnonOrFirstNamespaceAndInline.setInt(Inline);
}
/// \brief Get the original (first) namespace declaration.
NamespaceDecl *getOriginalNamespace() {
if (isFirstDeclaration())
return this;
return AnonOrFirstNamespaceAndInline.getPointer();
}
/// \brief Get the original (first) namespace declaration.
const NamespaceDecl *getOriginalNamespace() const {
if (isFirstDeclaration())
return this;
return AnonOrFirstNamespaceAndInline.getPointer();
}
/// \brief Return true if this declaration is an original (first) declaration
/// of the namespace. This is false for non-original (subsequent) namespace
/// declarations and anonymous namespaces.
bool isOriginalNamespace() const {
return isFirstDeclaration();
}
/// \brief Retrieve the anonymous namespace nested inside this namespace,
/// if any.
NamespaceDecl *getAnonymousNamespace() const {
return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
}
void setAnonymousNamespace(NamespaceDecl *D) {
getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
}
/// Retrieves the canonical declaration of this namespace.
NamespaceDecl *getCanonicalDecl() {
return getOriginalNamespace();
}
const NamespaceDecl *getCanonicalDecl() const {
return getOriginalNamespace();
}
virtual SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(LocStart, RBraceLoc);
}
SourceLocation getLocStart() const LLVM_READONLY { return LocStart; }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setLocStart(SourceLocation L) { LocStart = L; }
void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Namespace; }
static DeclContext *castToDeclContext(const NamespaceDecl *D) {
return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
}
static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// ValueDecl - Represent the declaration of a variable (in which case it is
/// an lvalue) a function (in which case it is a function designator) or
/// an enum constant.
class ValueDecl : public NamedDecl {
virtual void anchor();
QualType DeclType;
protected:
ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T)
: NamedDecl(DK, DC, L, N), DeclType(T) {}
public:
QualType getType() const { return DeclType; }
void setType(QualType newType) { DeclType = newType; }
/// \brief Determine whether this symbol is weakly-imported,
/// or declared with the weak or weak-ref attr.
bool isWeak() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
};
/// QualifierInfo - A struct with extended info about a syntactic
/// name qualifier, to be used for the case of out-of-line declarations.
struct QualifierInfo {
NestedNameSpecifierLoc QualifierLoc;
/// NumTemplParamLists - The number of "outer" template parameter lists.
/// The count includes all of the template parameter lists that were matched
/// against the template-ids occurring into the NNS and possibly (in the
/// case of an explicit specialization) a final "template <>".
unsigned NumTemplParamLists;
/// TemplParamLists - A new-allocated array of size NumTemplParamLists,
/// containing pointers to the "outer" template parameter lists.
/// It includes all of the template parameter lists that were matched
/// against the template-ids occurring into the NNS and possibly (in the
/// case of an explicit specialization) a final "template <>".
TemplateParameterList** TemplParamLists;
/// Default constructor.
QualifierInfo() : QualifierLoc(), NumTemplParamLists(0), TemplParamLists(0) {}
/// setTemplateParameterListsInfo - Sets info about "outer" template
/// parameter lists.
void setTemplateParameterListsInfo(ASTContext &Context,
unsigned NumTPLists,
TemplateParameterList **TPLists);
private:
// Copy constructor and copy assignment are disabled.
QualifierInfo(const QualifierInfo&) LLVM_DELETED_FUNCTION;
QualifierInfo& operator=(const QualifierInfo&) LLVM_DELETED_FUNCTION;
};
/// \brief Represents a ValueDecl that came out of a declarator.
/// Contains type source information through TypeSourceInfo.
class DeclaratorDecl : public ValueDecl {
// A struct representing both a TInfo and a syntactic qualifier,
// to be used for the (uncommon) case of out-of-line declarations.
struct ExtInfo : public QualifierInfo {
TypeSourceInfo *TInfo;
};
llvm::PointerUnion<TypeSourceInfo*, ExtInfo*> DeclInfo;
/// InnerLocStart - The start of the source range for this declaration,
/// ignoring outer template declarations.
SourceLocation InnerLocStart;
bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
protected:
DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T, TypeSourceInfo *TInfo,
SourceLocation StartL)
: ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {
}
public:
TypeSourceInfo *getTypeSourceInfo() const {
return hasExtInfo()
? getExtInfo()->TInfo
: DeclInfo.get<TypeSourceInfo*>();
}
void setTypeSourceInfo(TypeSourceInfo *TI) {
if (hasExtInfo())
getExtInfo()->TInfo = TI;
else
DeclInfo = TI;
}
/// getInnerLocStart - Return SourceLocation representing start of source
/// range ignoring outer template declarations.
SourceLocation getInnerLocStart() const { return InnerLocStart; }
void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
/// getOuterLocStart - Return SourceLocation representing start of source
/// range taking into account any outer template declarations.
SourceLocation getOuterLocStart() const;
virtual SourceRange getSourceRange() const LLVM_READONLY;
SourceLocation getLocStart() const LLVM_READONLY {
return getOuterLocStart();
}
/// \brief Retrieve the nested-name-specifier that qualifies the name of this
/// declaration, if it was present in the source.
NestedNameSpecifier *getQualifier() const {
return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
: 0;
}
/// \brief Retrieve the nested-name-specifier (with source-location
/// information) that qualifies the name of this declaration, if it was
/// present in the source.
NestedNameSpecifierLoc getQualifierLoc() const {
return hasExtInfo() ? getExtInfo()->QualifierLoc
: NestedNameSpecifierLoc();
}
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
unsigned getNumTemplateParameterLists() const {
return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
}
TemplateParameterList *getTemplateParameterList(unsigned index) const {
assert(index < getNumTemplateParameterLists());
return getExtInfo()->TemplParamLists[index];
}
void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists,
TemplateParameterList **TPLists);
SourceLocation getTypeSpecStartLoc() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstDeclarator && K <= lastDeclarator;
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// \brief Structure used to store a statement, the constant value to
/// which it was evaluated (if any), and whether or not the statement
/// is an integral constant expression (if known).
struct EvaluatedStmt {
EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
CheckingICE(false), IsICE(false) { }
/// \brief Whether this statement was already evaluated.
bool WasEvaluated : 1;
/// \brief Whether this statement is being evaluated.
bool IsEvaluating : 1;
/// \brief Whether we already checked whether this statement was an
/// integral constant expression.
bool CheckedICE : 1;
/// \brief Whether we are checking whether this statement is an
/// integral constant expression.
bool CheckingICE : 1;
/// \brief Whether this statement is an integral constant expression,
/// or in C++11, whether the statement is a constant expression. Only
/// valid if CheckedICE is true.
bool IsICE : 1;
Stmt *Value;
APValue Evaluated;
};
/// VarDecl - An instance of this class is created to represent a variable
/// declaration or definition.
class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
public:
typedef clang::StorageClass StorageClass;
/// getStorageClassSpecifierString - Return the string used to
/// specify the storage class \p SC.
///
/// It is illegal to call this function with SC == None.
static const char *getStorageClassSpecifierString(StorageClass SC);
/// \brief Initialization styles.
enum InitializationStyle {
CInit, ///< C-style initialization with assignment
CallInit, ///< Call-style initialization (C++98)
ListInit ///< Direct list-initialization (C++11)
};
/// \brief Kinds of thread-local storage.
enum TLSKind {
TLS_None, ///< Not a TLS variable.
TLS_Static, ///< TLS with a known-constant initializer.
TLS_Dynamic ///< TLS with a dynamic initializer.
};
protected:
/// \brief Placeholder type used in Init to denote an unparsed C++ default
/// argument.
struct UnparsedDefaultArgument;
/// \brief Placeholder type used in Init to denote an uninstantiated C++
/// default argument.
struct UninstantiatedDefaultArgument;
typedef llvm::PointerUnion4<Stmt *, EvaluatedStmt *,
UnparsedDefaultArgument *,
UninstantiatedDefaultArgument *> InitType;
/// \brief The initializer for this variable or, for a ParmVarDecl, the
/// C++ default argument.
mutable InitType Init;
private:
class VarDeclBitfields {
friend class VarDecl;
friend class ASTDeclReader;
unsigned SClass : 3;
unsigned TSCSpec : 2;
unsigned InitStyle : 2;
/// \brief Whether this variable is the exception variable in a C++ catch
/// or an Objective-C @catch statement.
unsigned ExceptionVar : 1;
/// \brief Whether this local variable could be allocated in the return
/// slot of its function, enabling the named return value optimization
/// (NRVO).
unsigned NRVOVariable : 1;
/// \brief Whether this variable is the for-range-declaration in a C++0x
/// for-range statement.
unsigned CXXForRangeDecl : 1;
/// \brief Whether this variable is an ARC pseudo-__strong
/// variable; see isARCPseudoStrong() for details.
unsigned ARCPseudoStrong : 1;
/// \brief Whether this variable is (C++0x) constexpr.
unsigned IsConstexpr : 1;
};
enum { NumVarDeclBits = 12 };
friend class ASTDeclReader;
friend class StmtIteratorBase;
protected:
enum { NumParameterIndexBits = 8 };
class ParmVarDeclBitfields {
friend class ParmVarDecl;
friend class ASTDeclReader;
unsigned : NumVarDeclBits;
/// Whether this parameter inherits a default argument from a
/// prior declaration.
unsigned HasInheritedDefaultArg : 1;
/// Whether this parameter undergoes K&R argument promotion.
unsigned IsKNRPromoted : 1;
/// Whether this parameter is an ObjC method parameter or not.
unsigned IsObjCMethodParam : 1;
/// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
/// Otherwise, the number of function parameter scopes enclosing
/// the function parameter scope in which this parameter was
/// declared.
unsigned ScopeDepthOrObjCQuals : 7;
/// The number of parameters preceding this parameter in the
/// function parameter scope in which it was declared.
unsigned ParameterIndex : NumParameterIndexBits;
};
union {
unsigned AllBits;
VarDeclBitfields VarDeclBits;
ParmVarDeclBitfields ParmVarDeclBits;
};
VarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo, StorageClass SC)
: DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), Init() {
assert(sizeof(VarDeclBitfields) <= sizeof(unsigned));
assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned));
AllBits = 0;
VarDeclBits.SClass = SC;
// Everything else is implicitly initialized to false.
}
typedef Redeclarable<VarDecl> redeclarable_base;
virtual VarDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
virtual VarDecl *getPreviousDeclImpl() {
return getPreviousDecl();
}
virtual VarDecl *getMostRecentDeclImpl() {
return getMostRecentDecl();
}
public:
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
static VarDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
StorageClass S);
static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
virtual SourceRange getSourceRange() const LLVM_READONLY;
/// \brief Returns the storage class as written in the source. For the
/// computed linkage of symbol, see getLinkage.
StorageClass getStorageClass() const {
return (StorageClass) VarDeclBits.SClass;
}
void setStorageClass(StorageClass SC);
void setTSCSpec(ThreadStorageClassSpecifier TSC) {
VarDeclBits.TSCSpec = TSC;
}
ThreadStorageClassSpecifier getTSCSpec() const {
return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
}
TLSKind getTLSKind() const {
switch (VarDeclBits.TSCSpec) {
case TSCS_unspecified:
return TLS_None;
case TSCS___thread: // Fall through.
case TSCS__Thread_local:
return TLS_Static;
case TSCS_thread_local:
return TLS_Dynamic;
}
llvm_unreachable("Unknown thread storage class specifier!");
}
/// hasLocalStorage - Returns true if a variable with function scope
/// is a non-static local variable.
bool hasLocalStorage() const {
if (getStorageClass() == SC_None)
return !isFileVarDecl();
// Return true for: Auto, Register.
// Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
return getStorageClass() >= SC_Auto;
}
/// isStaticLocal - Returns true if a variable with function scope is a
/// static local variable.
bool isStaticLocal() const {
return getStorageClass() == SC_Static && !isFileVarDecl();
}
/// \brief Returns true if a variable has extern or __private_extern__
/// storage.
bool hasExternalStorage() const {
return getStorageClass() == SC_Extern ||
getStorageClass() == SC_PrivateExtern;
}
/// hasGlobalStorage - Returns true for all variables that do not
/// have local storage. This includs all global variables as well
/// as static variables declared within a function.
bool hasGlobalStorage() const { return !hasLocalStorage(); }
/// Compute the language linkage.
LanguageLinkage getLanguageLinkage() const;
/// \brief Determines whether this variable is a variable with
/// external, C linkage.
bool isExternC() const;
/// \brief Determines whether this variable's context is, or is nested within,
/// a C++ extern "C" linkage spec.
bool isInExternCContext() const;
/// \brief Determines whether this variable's context is, or is nested within,
/// a C++ extern "C++" linkage spec.
bool isInExternCXXContext() const;
/// isLocalVarDecl - Returns true for local variable declarations
/// other than parameters. Note that this includes static variables
/// inside of functions. It also includes variables inside blocks.
///
/// void foo() { int x; static int y; extern int z; }
///
bool isLocalVarDecl() const {
if (getKind() != Decl::Var)
return false;
if (const DeclContext *DC = getDeclContext())
return DC->getRedeclContext()->isFunctionOrMethod();
return false;
}
/// isFunctionOrMethodVarDecl - Similar to isLocalVarDecl, but
/// excludes variables declared in blocks.
bool isFunctionOrMethodVarDecl() const {
if (getKind() != Decl::Var)
return false;
const DeclContext *DC = getDeclContext()->getRedeclContext();
return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
}
/// \brief Determines whether this is a static data member.
///
/// This will only be true in C++, and applies to, e.g., the
/// variable 'x' in:
/// \code
/// struct S {
/// static int x;
/// };
/// \endcode
bool isStaticDataMember() const {
// If it wasn't static, it would be a FieldDecl.
return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
}
virtual VarDecl *getCanonicalDecl();
const VarDecl *getCanonicalDecl() const {
return const_cast<VarDecl*>(this)->getCanonicalDecl();
}
enum DefinitionKind {
DeclarationOnly, ///< This declaration is only a declaration.
TentativeDefinition, ///< This declaration is a tentative definition.
Definition ///< This declaration is definitely a definition.
};
/// \brief Check whether this declaration is a definition. If this could be
/// a tentative definition (in C), don't check whether there's an overriding
/// definition.
DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
DefinitionKind isThisDeclarationADefinition() const {
return isThisDeclarationADefinition(getASTContext());
}
/// \brief Check whether this variable is defined in this
/// translation unit.
DefinitionKind hasDefinition(ASTContext &) const;
DefinitionKind hasDefinition() const {
return hasDefinition(getASTContext());
}
/// \brief Get the tentative definition that acts as the real definition in
/// a TU. Returns null if there is a proper definition available.
VarDecl *getActingDefinition();
const VarDecl *getActingDefinition() const {
return const_cast<VarDecl*>(this)->getActingDefinition();
}
/// \brief Determine whether this is a tentative definition of a
/// variable in C.
bool isTentativeDefinitionNow() const;
/// \brief Get the real (not just tentative) definition for this declaration.
VarDecl *getDefinition(ASTContext &);
const VarDecl *getDefinition(ASTContext &C) const {
return const_cast<VarDecl*>(this)->getDefinition(C);
}
VarDecl *getDefinition() {
return getDefinition(getASTContext());
}
const VarDecl *getDefinition() const {
return const_cast<VarDecl*>(this)->getDefinition();
}
/// \brief Determine whether this is or was instantiated from an out-of-line
/// definition of a static data member.
virtual bool isOutOfLine() const;
/// \brief If this is a static data member, find its out-of-line definition.
VarDecl *getOutOfLineDefinition();
/// isFileVarDecl - Returns true for file scoped variable declaration.
bool isFileVarDecl() const {
if (getKind() != Decl::Var)
return false;
if (getDeclContext()->getRedeclContext()->isFileContext())
return true;
if (isStaticDataMember())
return true;
return false;
}
/// getAnyInitializer - Get the initializer for this variable, no matter which
/// declaration it is attached to.
const Expr *getAnyInitializer() const {
const VarDecl *D;
return getAnyInitializer(D);
}
/// getAnyInitializer - Get the initializer for this variable, no matter which
/// declaration it is attached to. Also get that declaration.
const Expr *getAnyInitializer(const VarDecl *&D) const;
bool hasInit() const {
return !Init.isNull() && (Init.is<Stmt *>() || Init.is<EvaluatedStmt *>());
}
const Expr *getInit() const {
if (Init.isNull())
return 0;
const Stmt *S = Init.dyn_cast<Stmt *>();
if (!S) {
if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
S = ES->Value;
}
return (const Expr*) S;
}
Expr *getInit() {
if (Init.isNull())
return 0;
Stmt *S = Init.dyn_cast<Stmt *>();
if (!S) {
if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
S = ES->Value;
}
return (Expr*) S;
}
/// \brief Retrieve the address of the initializer expression.
Stmt **getInitAddress() {
if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
return &ES->Value;
// This union hack tip-toes around strict-aliasing rules.
union {
InitType *InitPtr;
Stmt **StmtPtr;
};
InitPtr = &Init;
return StmtPtr;
}
void setInit(Expr *I);
/// \brief Determine whether this variable is a reference that
/// extends the lifetime of its temporary initializer.
///
/// A reference extends the lifetime of its temporary initializer if
/// it's initializer is an rvalue that would normally go out of scope
/// at the end of the initializer (a full expression). In such cases,
/// the reference itself takes ownership of the temporary, which will
/// be destroyed when the reference goes out of scope. For example:
///
/// \code
/// const int &r = 1.0; // creates a temporary of type 'int'
/// \endcode
bool extendsLifetimeOfTemporary() const;
/// \brief Determine whether this variable's value can be used in a
/// constant expression, according to the relevant language standard.
/// This only checks properties of the declaration, and does not check
/// whether the initializer is in fact a constant expression.
bool isUsableInConstantExpressions(ASTContext &C) const;
EvaluatedStmt *ensureEvaluatedStmt() const;
/// \brief Attempt to evaluate the value of the initializer attached to this
/// declaration, and produce notes explaining why it cannot be evaluated or is
/// not a constant expression. Returns a pointer to the value if evaluation
/// succeeded, 0 otherwise.
APValue *evaluateValue() const;
APValue *evaluateValue(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
/// \brief Return the already-evaluated value of this variable's
/// initializer, or NULL if the value is not yet known. Returns pointer
/// to untyped APValue if the value could not be evaluated.
APValue *getEvaluatedValue() const {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
if (Eval->WasEvaluated)
return &Eval->Evaluated;
return 0;
}
/// \brief Determines whether it is already known whether the
/// initializer is an integral constant expression or not.
bool isInitKnownICE() const {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
return Eval->CheckedICE;
return false;
}
/// \brief Determines whether the initializer is an integral constant
/// expression, or in C++11, whether the initializer is a constant
/// expression.
///
/// \pre isInitKnownICE()
bool isInitICE() const {
assert(isInitKnownICE() &&
"Check whether we already know that the initializer is an ICE");
return Init.get<EvaluatedStmt *>()->IsICE;
}
/// \brief Determine whether the value of the initializer attached to this
/// declaration is an integral constant expression.
bool checkInitIsICE() const;
void setInitStyle(InitializationStyle Style) {
VarDeclBits.InitStyle = Style;
}
/// \brief The style of initialization for this declaration.
///
/// C-style initialization is "int x = 1;". Call-style initialization is
/// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
/// the expression inside the parens or a "ClassType(a,b,c)" class constructor
/// expression for class types. List-style initialization is C++11 syntax,
/// e.g. "int x{1};". Clients can distinguish between different forms of
/// initialization by checking this value. In particular, "int x = {1};" is
/// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
/// Init expression in all three cases is an InitListExpr.
InitializationStyle getInitStyle() const {
return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
}
/// \brief Whether the initializer is a direct-initializer (list or call).
bool isDirectInit() const {
return getInitStyle() != CInit;
}
/// \brief Determine whether this variable is the exception variable in a
/// C++ catch statememt or an Objective-C \@catch statement.
bool isExceptionVariable() const {
return VarDeclBits.ExceptionVar;
}
void setExceptionVariable(bool EV) { VarDeclBits.ExceptionVar = EV; }
/// \brief Determine whether this local variable can be used with the named
/// return value optimization (NRVO).
///
/// The named return value optimization (NRVO) works by marking certain
/// non-volatile local variables of class type as NRVO objects. These
/// locals can be allocated within the return slot of their containing
/// function, in which case there is no need to copy the object to the
/// return slot when returning from the function. Within the function body,
/// each return that returns the NRVO object will have this variable as its
/// NRVO candidate.
bool isNRVOVariable() const { return VarDeclBits.NRVOVariable; }
void setNRVOVariable(bool NRVO) { VarDeclBits.NRVOVariable = NRVO; }
/// \brief Determine whether this variable is the for-range-declaration in
/// a C++0x for-range statement.
bool isCXXForRangeDecl() const { return VarDeclBits.CXXForRangeDecl; }
void setCXXForRangeDecl(bool FRD) { VarDeclBits.CXXForRangeDecl = FRD; }
/// \brief Determine whether this variable is an ARC pseudo-__strong
/// variable. A pseudo-__strong variable has a __strong-qualified
/// type but does not actually retain the object written into it.
/// Generally such variables are also 'const' for safety.
bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
void setARCPseudoStrong(bool ps) { VarDeclBits.ARCPseudoStrong = ps; }
/// Whether this variable is (C++11) constexpr.
bool isConstexpr() const { return VarDeclBits.IsConstexpr; }
void setConstexpr(bool IC) { VarDeclBits.IsConstexpr = IC; }
/// \brief If this variable is an instantiated static data member of a
/// class template specialization, returns the templated static data member
/// from which it was instantiated.
VarDecl *getInstantiatedFromStaticDataMember() const;
/// \brief If this variable is a static data member, determine what kind of
/// template specialization or instantiation this is.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// \brief If this variable is an instantiation of a static data member of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// \brief For a static data member that was instantiated from a static
/// data member of a class template, set the template specialiation kind.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
};
class ImplicitParamDecl : public VarDecl {
virtual void anchor();
public:
static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T);
static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
ImplicitParamDecl(DeclContext *DC, SourceLocation IdLoc,
IdentifierInfo *Id, QualType Type)
: VarDecl(ImplicitParam, DC, IdLoc, IdLoc, Id, Type,
/*tinfo*/ 0, SC_None) {
setImplicit();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ImplicitParam; }
};
/// ParmVarDecl - Represents a parameter to a function.
class ParmVarDecl : public VarDecl {
public:
enum { MaxFunctionScopeDepth = 255 };
enum { MaxFunctionScopeIndex = 255 };
protected:
ParmVarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo,
StorageClass S, Expr *DefArg)
: VarDecl(DK, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
assert(ParmVarDeclBits.IsKNRPromoted == false);
assert(ParmVarDeclBits.IsObjCMethodParam == false);
setDefaultArg(DefArg);
}
public:
static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo,
StorageClass S, Expr *DefArg);
static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
virtual SourceRange getSourceRange() const LLVM_READONLY;
void setObjCMethodScopeInfo(unsigned parameterIndex) {
ParmVarDeclBits.IsObjCMethodParam = true;
setParameterIndex(parameterIndex);
}
void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
assert(!ParmVarDeclBits.IsObjCMethodParam);
ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
&& "truncation!");
setParameterIndex(parameterIndex);
}
bool isObjCMethodParameter() const {
return ParmVarDeclBits.IsObjCMethodParam;
}
unsigned getFunctionScopeDepth() const {
if (ParmVarDeclBits.IsObjCMethodParam) return 0;
return ParmVarDeclBits.ScopeDepthOrObjCQuals;
}
/// Returns the index of this parameter in its prototype or method scope.
unsigned getFunctionScopeIndex() const {
return getParameterIndex();
}
ObjCDeclQualifier getObjCDeclQualifier() const {
if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
}
void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
assert(ParmVarDeclBits.IsObjCMethodParam);
ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
}
/// True if the value passed to this parameter must undergo
/// K&R-style default argument promotion:
///
/// C99 6.5.2.2.
/// If the expression that denotes the called function has a type
/// that does not include a prototype, the integer promotions are
/// performed on each argument, and arguments that have type float
/// are promoted to double.
bool isKNRPromoted() const {
return ParmVarDeclBits.IsKNRPromoted;
}
void setKNRPromoted(bool promoted) {
ParmVarDeclBits.IsKNRPromoted = promoted;
}
Expr *getDefaultArg();
const Expr *getDefaultArg() const {
return const_cast<ParmVarDecl *>(this)->getDefaultArg();
}
void setDefaultArg(Expr *defarg) {
Init = reinterpret_cast<Stmt *>(defarg);
}
/// \brief Retrieve the source range that covers the entire default
/// argument.
SourceRange getDefaultArgRange() const;
void setUninstantiatedDefaultArg(Expr *arg) {
Init = reinterpret_cast<UninstantiatedDefaultArgument *>(arg);
}
Expr *getUninstantiatedDefaultArg() {
return (Expr *)Init.get<UninstantiatedDefaultArgument *>();
}
const Expr *getUninstantiatedDefaultArg() const {
return (const Expr *)Init.get<UninstantiatedDefaultArgument *>();
}
/// hasDefaultArg - Determines whether this parameter has a default argument,
/// either parsed or not.
bool hasDefaultArg() const {
return getInit() || hasUnparsedDefaultArg() ||
hasUninstantiatedDefaultArg();
}
/// hasUnparsedDefaultArg - Determines whether this parameter has a
/// default argument that has not yet been parsed. This will occur
/// during the processing of a C++ class whose member functions have
/// default arguments, e.g.,
/// @code
/// class X {
/// public:
/// void f(int x = 17); // x has an unparsed default argument now
/// }; // x has a regular default argument now
/// @endcode
bool hasUnparsedDefaultArg() const {
return Init.is<UnparsedDefaultArgument*>();
}
bool hasUninstantiatedDefaultArg() const {
return Init.is<UninstantiatedDefaultArgument*>();
}
/// setUnparsedDefaultArg - Specify that this parameter has an
/// unparsed default argument. The argument will be replaced with a
/// real default argument via setDefaultArg when the class
/// definition enclosing the function declaration that owns this
/// default argument is completed.
void setUnparsedDefaultArg() {
Init = (UnparsedDefaultArgument *)0;
}
bool hasInheritedDefaultArg() const {
return ParmVarDeclBits.HasInheritedDefaultArg;
}
void setHasInheritedDefaultArg(bool I = true) {
ParmVarDeclBits.HasInheritedDefaultArg = I;
}
QualType getOriginalType() const {
if (getTypeSourceInfo())
return getTypeSourceInfo()->getType();
return getType();
}
/// \brief Determine whether this parameter is actually a function
/// parameter pack.
bool isParameterPack() const;
/// setOwningFunction - Sets the function declaration that owns this
/// ParmVarDecl. Since ParmVarDecls are often created before the
/// FunctionDecls that own them, this routine is required to update
/// the DeclContext appropriately.
void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ParmVar; }
private:
enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
void setParameterIndex(unsigned parameterIndex) {
if (parameterIndex >= ParameterIndexSentinel) {
setParameterIndexLarge(parameterIndex);
return;
}
ParmVarDeclBits.ParameterIndex = parameterIndex;
assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
}
unsigned getParameterIndex() const {
unsigned d = ParmVarDeclBits.ParameterIndex;
return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
}
void setParameterIndexLarge(unsigned parameterIndex);
unsigned getParameterIndexLarge() const;
};
/// FunctionDecl - An instance of this class is created to represent a
/// function declaration or definition.
///
/// Since a given function can be declared several times in a program,
/// there may be several FunctionDecls that correspond to that
/// function. Only one of those FunctionDecls will be found when
/// traversing the list of declarations in the context of the
/// FunctionDecl (e.g., the translation unit); this FunctionDecl
/// contains all of the information known about the function. Other,
/// previous declarations of the function are available via the
/// getPreviousDecl() chain.
class FunctionDecl : public DeclaratorDecl, public DeclContext,
public Redeclarable<FunctionDecl> {
public:
typedef clang::StorageClass StorageClass;
/// \brief The kind of templated function a FunctionDecl can be.
enum TemplatedKind {
TK_NonTemplate,
TK_FunctionTemplate,
TK_MemberSpecialization,
TK_FunctionTemplateSpecialization,
TK_DependentFunctionTemplateSpecialization
};
private:
/// ParamInfo - new[]'d array of pointers to VarDecls for the formal
/// parameters of this function. This is null if a prototype or if there are
/// no formals.
ParmVarDecl **ParamInfo;
/// DeclsInPrototypeScope - Array of pointers to NamedDecls for
/// decls defined in the function prototype that are not parameters. E.g.
/// 'enum Y' in 'void f(enum Y {AA} x) {}'.
ArrayRef<NamedDecl *> DeclsInPrototypeScope;
LazyDeclStmtPtr Body;
// FIXME: This can be packed into the bitfields in Decl.
// NOTE: VC++ treats enums as signed, avoid using the StorageClass enum
unsigned SClass : 2;
bool IsInline : 1;
bool IsInlineSpecified : 1;
bool IsVirtualAsWritten : 1;
bool IsPure : 1;
bool HasInheritedPrototype : 1;
bool HasWrittenPrototype : 1;
bool IsDeleted : 1;
bool IsTrivial : 1; // sunk from CXXMethodDecl
bool IsDefaulted : 1; // sunk from CXXMethoDecl
bool IsExplicitlyDefaulted : 1; //sunk from CXXMethodDecl
bool HasImplicitReturnZero : 1;
bool IsLateTemplateParsed : 1;
bool IsConstexpr : 1;
/// \brief Indicates if the function was a definition but its body was
/// skipped.
unsigned HasSkippedBody : 1;
/// \brief End part of this FunctionDecl's source range.
///
/// We could compute the full range in getSourceRange(). However, when we're
/// dealing with a function definition deserialized from a PCH/AST file,
/// we can only compute the full range once the function body has been
/// de-serialized, so it's far better to have the (sometimes-redundant)
/// EndRangeLoc.
SourceLocation EndRangeLoc;
/// \brief The template or declaration that this declaration
/// describes or was instantiated from, respectively.
///
/// For non-templates, this value will be NULL. For function
/// declarations that describe a function template, this will be a
/// pointer to a FunctionTemplateDecl. For member functions
/// of class template specializations, this will be a MemberSpecializationInfo
/// pointer containing information about the specialization.
/// For function template specializations, this will be a
/// FunctionTemplateSpecializationInfo, which contains information about
/// the template being specialized and the template arguments involved in
/// that specialization.
llvm::PointerUnion4<FunctionTemplateDecl *,
MemberSpecializationInfo *,
FunctionTemplateSpecializationInfo *,
DependentFunctionTemplateSpecializationInfo *>
TemplateOrSpecialization;
/// DNLoc - Provides source/type location info for the
/// declaration name embedded in the DeclaratorDecl base class.
DeclarationNameLoc DNLoc;
/// \brief Specify that this function declaration is actually a function
/// template specialization.
///
/// \param C the ASTContext.
///
/// \param Template the function template that this function template
/// specialization specializes.
///
/// \param TemplateArgs the template arguments that produced this
/// function template specialization from the template.
///
/// \param InsertPos If non-NULL, the position in the function template
/// specialization set where the function template specialization data will
/// be inserted.
///
/// \param TSK the kind of template specialization this is.
///
/// \param TemplateArgsAsWritten location info of template arguments.
///
/// \param PointOfInstantiation point at which the function template
/// specialization was first instantiated.
void setFunctionTemplateSpecialization(ASTContext &C,
FunctionTemplateDecl *Template,
const TemplateArgumentList *TemplateArgs,
void *InsertPos,
TemplateSpecializationKind TSK,
const TemplateArgumentListInfo *TemplateArgsAsWritten,
SourceLocation PointOfInstantiation);
/// \brief Specify that this record is an instantiation of the
/// member function FD.
void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
TemplateSpecializationKind TSK);
void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
protected:
FunctionDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
StorageClass S, bool isInlineSpecified,
bool isConstexprSpecified)
: DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
StartLoc),
DeclContext(DK),
ParamInfo(0), Body(),
SClass(S),
IsInline(isInlineSpecified), IsInlineSpecified(isInlineSpecified),
IsVirtualAsWritten(false), IsPure(false), HasInheritedPrototype(false),
HasWrittenPrototype(true), IsDeleted(false), IsTrivial(false),
IsDefaulted(false), IsExplicitlyDefaulted(false),
HasImplicitReturnZero(false), IsLateTemplateParsed(false),
IsConstexpr(isConstexprSpecified), HasSkippedBody(false),
EndRangeLoc(NameInfo.getEndLoc()),
TemplateOrSpecialization(),
DNLoc(NameInfo.getInfo()) {}
typedef Redeclarable<FunctionDecl> redeclarable_base;
virtual FunctionDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
virtual FunctionDecl *getPreviousDeclImpl() {
return getPreviousDecl();
}
virtual FunctionDecl *getMostRecentDeclImpl() {
return getMostRecentDecl();
}
public:
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation NLoc,
DeclarationName N, QualType T,
TypeSourceInfo *TInfo,
StorageClass SC,
bool isInlineSpecified = false,
bool hasWrittenPrototype = true,
bool isConstexprSpecified = false) {
DeclarationNameInfo NameInfo(N, NLoc);
return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo,
SC,
isInlineSpecified, hasWrittenPrototype,
isConstexprSpecified);
}
static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
StorageClass SC,
bool isInlineSpecified,
bool hasWrittenPrototype,
bool isConstexprSpecified = false);
static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
}
virtual void getNameForDiagnostic(raw_ostream &OS,
const PrintingPolicy &Policy,
bool Qualified) const;
void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
virtual SourceRange getSourceRange() const LLVM_READONLY;
/// \brief Returns true if the function has a body (definition). The
/// function body might be in any of the (re-)declarations of this
/// function. The variant that accepts a FunctionDecl pointer will
/// set that function declaration to the actual declaration
/// containing the body (if there is one).
bool hasBody(const FunctionDecl *&Definition) const;
virtual bool hasBody() const {
const FunctionDecl* Definition;
return hasBody(Definition);
}
/// hasTrivialBody - Returns whether the function has a trivial body that does
/// not require any specific codegen.
bool hasTrivialBody() const;
/// isDefined - Returns true if the function is defined at all, including
/// a deleted definition. Except for the behavior when the function is
/// deleted, behaves like hasBody.
bool isDefined(const FunctionDecl *&Definition) const;
virtual bool isDefined() const {
const FunctionDecl* Definition;
return isDefined(Definition);
}
/// getBody - Retrieve the body (definition) of the function. The
/// function body might be in any of the (re-)declarations of this
/// function. The variant that accepts a FunctionDecl pointer will
/// set that function declaration to the actual declaration
/// containing the body (if there is one).
/// NOTE: For checking if there is a body, use hasBody() instead, to avoid
/// unnecessary AST de-serialization of the body.
Stmt *getBody(const FunctionDecl *&Definition) const;
virtual Stmt *getBody() const {
const FunctionDecl* Definition;
return getBody(Definition);
}
/// isThisDeclarationADefinition - Returns whether this specific
/// declaration of the function is also a definition. This does not
/// determine whether the function has been defined (e.g., in a
/// previous definition); for that information, use isDefined. Note
/// that this returns false for a defaulted function unless that function
/// has been implicitly defined (possibly as deleted).
bool isThisDeclarationADefinition() const {
return IsDeleted || Body || IsLateTemplateParsed;
}
/// doesThisDeclarationHaveABody - Returns whether this specific
/// declaration of the function has a body - that is, if it is a non-
/// deleted definition.
bool doesThisDeclarationHaveABody() const {
return Body || IsLateTemplateParsed;
}
void setBody(Stmt *B);
void setLazyBody(uint64_t Offset) { Body = Offset; }
/// Whether this function is variadic.
bool isVariadic() const;
/// Whether this function is marked as virtual explicitly.
bool isVirtualAsWritten() const { return IsVirtualAsWritten; }
void setVirtualAsWritten(bool V) { IsVirtualAsWritten = V; }
/// Whether this virtual function is pure, i.e. makes the containing class
/// abstract.
bool isPure() const { return IsPure; }
void setPure(bool P = true);
/// Whether this templated function will be late parsed.
bool isLateTemplateParsed() const { return IsLateTemplateParsed; }
void setLateTemplateParsed(bool ILT = true) { IsLateTemplateParsed = ILT; }
/// Whether this function is "trivial" in some specialized C++ senses.
/// Can only be true for default constructors, copy constructors,
/// copy assignment operators, and destructors. Not meaningful until
/// the class has been fully built by Sema.
bool isTrivial() const { return IsTrivial; }
void setTrivial(bool IT) { IsTrivial = IT; }
/// Whether this function is defaulted per C++0x. Only valid for
/// special member functions.
bool isDefaulted() const { return IsDefaulted; }
void setDefaulted(bool D = true) { IsDefaulted = D; }
/// Whether this function is explicitly defaulted per C++0x. Only valid
/// for special member functions.
bool isExplicitlyDefaulted() const { return IsExplicitlyDefaulted; }
void setExplicitlyDefaulted(bool ED = true) { IsExplicitlyDefaulted = ED; }
/// Whether falling off this function implicitly returns null/zero.
/// If a more specific implicit return value is required, front-ends
/// should synthesize the appropriate return statements.
bool hasImplicitReturnZero() const { return HasImplicitReturnZero; }
void setHasImplicitReturnZero(bool IRZ) { HasImplicitReturnZero = IRZ; }
/// \brief Whether this function has a prototype, either because one
/// was explicitly written or because it was "inherited" by merging
/// a declaration without a prototype with a declaration that has a
/// prototype.
bool hasPrototype() const {
return HasWrittenPrototype || HasInheritedPrototype;
}
bool hasWrittenPrototype() const { return HasWrittenPrototype; }
/// \brief Whether this function inherited its prototype from a
/// previous declaration.
bool hasInheritedPrototype() const { return HasInheritedPrototype; }
void setHasInheritedPrototype(bool P = true) { HasInheritedPrototype = P; }
/// Whether this is a (C++11) constexpr function or constexpr constructor.
bool isConstexpr() const { return IsConstexpr; }
void setConstexpr(bool IC) { IsConstexpr = IC; }
/// \brief Whether this function has been deleted.
///
/// A function that is "deleted" (via the C++0x "= delete" syntax)
/// acts like a normal function, except that it cannot actually be
/// called or have its address taken. Deleted functions are
/// typically used in C++ overload resolution to attract arguments
/// whose type or lvalue/rvalue-ness would permit the use of a
/// different overload that would behave incorrectly. For example,
/// one might use deleted functions to ban implicit conversion from
/// a floating-point number to an Integer type:
///
/// @code
/// struct Integer {
/// Integer(long); // construct from a long
/// Integer(double) = delete; // no construction from float or double
/// Integer(long double) = delete; // no construction from long double
/// };
/// @endcode
// If a function is deleted, its first declaration must be.
bool isDeleted() const { return getCanonicalDecl()->IsDeleted; }
bool isDeletedAsWritten() const { return IsDeleted && !IsDefaulted; }
void setDeletedAsWritten(bool D = true) { IsDeleted = D; }
/// \brief Determines whether this function is "main", which is the
/// entry point into an executable program.
bool isMain() const;
/// \brief Determines whether this operator new or delete is one
/// of the reserved global placement operators:
/// void *operator new(size_t, void *);
/// void *operator new[](size_t, void *);
/// void operator delete(void *, void *);
/// void operator delete[](void *, void *);
/// These functions have special behavior under [new.delete.placement]:
/// These functions are reserved, a C++ program may not define
/// functions that displace the versions in the Standard C++ library.
/// The provisions of [basic.stc.dynamic] do not apply to these
/// reserved placement forms of operator new and operator delete.
///
/// This function must be an allocation or deallocation function.
bool isReservedGlobalPlacementOperator() const;
/// Compute the language linkage.
LanguageLinkage getLanguageLinkage() const;
/// \brief Determines whether this function is a function with
/// external, C linkage.
bool isExternC() const;
/// \brief Determines whether this function's context is, or is nested within,
/// a C++ extern "C" linkage spec.
bool isInExternCContext() const;
/// \brief Determines whether this function's context is, or is nested within,
/// a C++ extern "C++" linkage spec.
bool isInExternCXXContext() const;
/// \brief Determines whether this is a global function.
bool isGlobal() const;
/// \brief Determines whether this function is known to be 'noreturn', through
/// an attribute on its declaration or its type.
bool isNoReturn() const;
/// \brief True if the function was a definition but its body was skipped.
bool hasSkippedBody() const { return HasSkippedBody; }
void setHasSkippedBody(bool Skipped = true) { HasSkippedBody = Skipped; }
void setPreviousDeclaration(FunctionDecl * PrevDecl);
virtual const FunctionDecl *getCanonicalDecl() const;
virtual FunctionDecl *getCanonicalDecl();
unsigned getBuiltinID() const;
// Iterator access to formal parameters.
unsigned param_size() const { return getNumParams(); }
typedef ParmVarDecl **param_iterator;
typedef ParmVarDecl * const *param_const_iterator;
param_iterator param_begin() { return ParamInfo; }
param_iterator param_end() { return ParamInfo+param_size(); }
param_const_iterator param_begin() const { return ParamInfo; }
param_const_iterator param_end() const { return ParamInfo+param_size(); }
/// getNumParams - Return the number of parameters this function must have
/// based on its FunctionType. This is the length of the ParamInfo array
/// after it has been created.
unsigned getNumParams() const;
const ParmVarDecl *getParamDecl(unsigned i) const {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
ParmVarDecl *getParamDecl(unsigned i) {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
setParams(getASTContext(), NewParamInfo);
}
const ArrayRef<NamedDecl *> &getDeclsInPrototypeScope() const {
return DeclsInPrototypeScope;
}
void setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls);
/// getMinRequiredArguments - Returns the minimum number of arguments
/// needed to call this function. This may be fewer than the number of
/// function parameters, if some of the parameters have default
/// arguments (in C++).
unsigned getMinRequiredArguments() const;
QualType getResultType() const {
return getType()->getAs<FunctionType>()->getResultType();
}
/// \brief Determine the type of an expression that calls this function.
QualType getCallResultType() const {
return getType()->getAs<FunctionType>()->getCallResultType(getASTContext());
}
/// \brief Returns the storage class as written in the source. For the
/// computed linkage of symbol, see getLinkage.
StorageClass getStorageClass() const { return StorageClass(SClass); }
/// \brief Determine whether the "inline" keyword was specified for this
/// function.
bool isInlineSpecified() const { return IsInlineSpecified; }
/// Set whether the "inline" keyword was specified for this function.
void setInlineSpecified(bool I) {
IsInlineSpecified = I;
IsInline = I;
}
/// Flag that this function is implicitly inline.
void setImplicitlyInline() {
IsInline = true;
}
/// \brief Determine whether this function should be inlined, because it is
/// either marked "inline" or "constexpr" or is a member function of a class
/// that was defined in the class body.
bool isInlined() const { return IsInline; }
bool isInlineDefinitionExternallyVisible() const;
bool doesDeclarationForceExternallyVisibleDefinition() const;
/// isOverloadedOperator - Whether this function declaration
/// represents an C++ overloaded operator, e.g., "operator+".
bool isOverloadedOperator() const {
return getOverloadedOperator() != OO_None;
}
OverloadedOperatorKind getOverloadedOperator() const;
const IdentifierInfo *getLiteralIdentifier() const;
/// \brief If this function is an instantiation of a member function
/// of a class template specialization, retrieves the function from
/// which it was instantiated.
///
/// This routine will return non-NULL for (non-templated) member
/// functions of class templates and for instantiations of function
/// templates. For example, given:
///
/// \code
/// template<typename T>
/// struct X {
/// void f(T);
/// };
/// \endcode
///
/// The declaration for X<int>::f is a (non-templated) FunctionDecl
/// whose parent is the class template specialization X<int>. For
/// this declaration, getInstantiatedFromFunction() will return
/// the FunctionDecl X<T>::A. When a complete definition of
/// X<int>::A is required, it will be instantiated from the
/// declaration returned by getInstantiatedFromMemberFunction().
FunctionDecl *getInstantiatedFromMemberFunction() const;
/// \brief What kind of templated function this is.
TemplatedKind getTemplatedKind() const;
/// \brief If this function is an instantiation of a member function of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const {
return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
}
/// \brief Specify that this record is an instantiation of the
/// member function FD.
void setInstantiationOfMemberFunction(FunctionDecl *FD,
TemplateSpecializationKind TSK) {
setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
}
/// \brief Retrieves the function template that is described by this
/// function declaration.
///
/// Every function template is represented as a FunctionTemplateDecl
/// and a FunctionDecl (or something derived from FunctionDecl). The
/// former contains template properties (such as the template
/// parameter lists) while the latter contains the actual
/// description of the template's
/// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
/// FunctionDecl that describes the function template,
/// getDescribedFunctionTemplate() retrieves the
/// FunctionTemplateDecl from a FunctionDecl.
FunctionTemplateDecl *getDescribedFunctionTemplate() const {
return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl*>();
}
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
TemplateOrSpecialization = Template;
}
/// \brief Determine whether this function is a function template
/// specialization.
bool isFunctionTemplateSpecialization() const {
return getPrimaryTemplate() != 0;
}
/// \brief Retrieve the class scope template pattern that this function
/// template specialization is instantiated from.
FunctionDecl *getClassScopeSpecializationPattern() const;
/// \brief If this function is actually a function template specialization,
/// retrieve information about this function template specialization.
/// Otherwise, returns NULL.
FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const {
return TemplateOrSpecialization.
dyn_cast<FunctionTemplateSpecializationInfo*>();
}
/// \brief Determines whether this function is a function template
/// specialization or a member of a class template specialization that can
/// be implicitly instantiated.
bool isImplicitlyInstantiable() const;
/// \brief Determines if the given function was instantiated from a
/// function template.
bool isTemplateInstantiation() const;
/// \brief Retrieve the function declaration from which this function could
/// be instantiated, if it is an instantiation (rather than a non-template
/// or a specialization, for example).
FunctionDecl *getTemplateInstantiationPattern() const;
/// \brief Retrieve the primary template that this function template
/// specialization either specializes or was instantiated from.
///
/// If this function declaration is not a function template specialization,
/// returns NULL.
FunctionTemplateDecl *getPrimaryTemplate() const;
/// \brief Retrieve the template arguments used to produce this function
/// template specialization from the primary template.
///
/// If this function declaration is not a function template specialization,
/// returns NULL.
const TemplateArgumentList *getTemplateSpecializationArgs() const;
/// \brief Retrieve the template argument list as written in the sources,
/// if any.
///
/// If this function declaration is not a function template specialization
/// or if it had no explicit template argument list, returns NULL.
/// Note that it an explicit template argument list may be written empty,
/// e.g., template<> void foo<>(char* s);
const ASTTemplateArgumentListInfo*
getTemplateSpecializationArgsAsWritten() const;
/// \brief Specify that this function declaration is actually a function
/// template specialization.
///
/// \param Template the function template that this function template
/// specialization specializes.
///
/// \param TemplateArgs the template arguments that produced this
/// function template specialization from the template.
///
/// \param InsertPos If non-NULL, the position in the function template
/// specialization set where the function template specialization data will
/// be inserted.
///
/// \param TSK the kind of template specialization this is.
///
/// \param TemplateArgsAsWritten location info of template arguments.
///
/// \param PointOfInstantiation point at which the function template
/// specialization was first instantiated.
void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
const TemplateArgumentList *TemplateArgs,
void *InsertPos,
TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
const TemplateArgumentListInfo *TemplateArgsAsWritten = 0,
SourceLocation PointOfInstantiation = SourceLocation()) {
setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
InsertPos, TSK, TemplateArgsAsWritten,
PointOfInstantiation);
}
/// \brief Specifies that this function declaration is actually a
/// dependent function template specialization.
void setDependentTemplateSpecialization(ASTContext &Context,
const UnresolvedSetImpl &Templates,
const TemplateArgumentListInfo &TemplateArgs);
DependentFunctionTemplateSpecializationInfo *
getDependentSpecializationInfo() const {
return TemplateOrSpecialization.
dyn_cast<DependentFunctionTemplateSpecializationInfo*>();
}
/// \brief Determine what kind of template instantiation this function
/// represents.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// \brief Determine what kind of template instantiation this function
/// represents.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
/// \brief Retrieve the (first) point of instantiation of a function template
/// specialization or a member of a class template specialization.
///
/// \returns the first point of instantiation, if this function was
/// instantiated from a template; otherwise, returns an invalid source
/// location.
SourceLocation getPointOfInstantiation() const;
/// \brief Determine whether this is or was instantiated from an out-of-line
/// definition of a member function.
virtual bool isOutOfLine() const;
/// \brief Identify a memory copying or setting function.
/// If the given function is a memory copy or setting function, returns
/// the corresponding Builtin ID. If the function is not a memory function,
/// returns 0.
unsigned getMemoryFunctionKind() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstFunction && K <= lastFunction;
}
static DeclContext *castToDeclContext(const FunctionDecl *D) {
return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
}
static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// FieldDecl - An instance of this class is created by Sema::ActOnField to
/// represent a member of a struct/union/class.
class FieldDecl : public DeclaratorDecl {
// FIXME: This can be packed into the bitfields in Decl.
bool Mutable : 1;
mutable unsigned CachedFieldIndex : 31;
/// \brief An InClassInitStyle value, and either a bit width expression (if
/// the InClassInitStyle value is ICIS_NoInit), or a pointer to the in-class
/// initializer for this field (otherwise).
///
/// We can safely combine these two because in-class initializers are not
/// permitted for bit-fields.
///
/// If the InClassInitStyle is not ICIS_NoInit and the initializer is null,
/// then this field has an in-class initializer which has not yet been parsed
/// and attached.
llvm::PointerIntPair<Expr *, 2, unsigned> InitializerOrBitWidth;
protected:
FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
InClassInitStyle InitStyle)
: DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
Mutable(Mutable), CachedFieldIndex(0),
InitializerOrBitWidth(BW, InitStyle) {
assert((!BW || InitStyle == ICIS_NoInit) && "got initializer for bitfield");
}
public:
static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
InClassInitStyle InitStyle);
static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// getFieldIndex - Returns the index of this field within its record,
/// as appropriate for passing to ASTRecordLayout::getFieldOffset.
unsigned getFieldIndex() const;
/// isMutable - Determines whether this field is mutable (C++ only).
bool isMutable() const { return Mutable; }
/// isBitfield - Determines whether this field is a bitfield.
bool isBitField() const {
return getInClassInitStyle() == ICIS_NoInit &&
InitializerOrBitWidth.getPointer();
}
/// @brief Determines whether this is an unnamed bitfield.
bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
/// isAnonymousStructOrUnion - Determines whether this field is a
/// representative for an anonymous struct or union. Such fields are
/// unnamed and are implicitly generated by the implementation to
/// store the data for the anonymous union or struct.
bool isAnonymousStructOrUnion() const;
Expr *getBitWidth() const {
return isBitField() ? InitializerOrBitWidth.getPointer() : 0;
}
unsigned getBitWidthValue(const ASTContext &Ctx) const;
/// setBitWidth - Set the bit-field width for this member.
// Note: used by some clients (i.e., do not remove it).
void setBitWidth(Expr *Width);
/// removeBitWidth - Remove the bit-field width from this member.
// Note: used by some clients (i.e., do not remove it).
void removeBitWidth() {
assert(isBitField() && "no bitfield width to remove");
InitializerOrBitWidth.setPointer(0);
}
/// getInClassInitStyle - Get the kind of (C++11) in-class initializer which
/// this field has.
InClassInitStyle getInClassInitStyle() const {
return static_cast<InClassInitStyle>(InitializerOrBitWidth.getInt());
}
/// hasInClassInitializer - Determine whether this member has a C++11 in-class
/// initializer.
bool hasInClassInitializer() const {
return getInClassInitStyle() != ICIS_NoInit;
}
/// getInClassInitializer - Get the C++11 in-class initializer for this
/// member, or null if one has not been set. If a valid declaration has an
/// in-class initializer, but this returns null, then we have not parsed and
/// attached it yet.
Expr *getInClassInitializer() const {
return hasInClassInitializer() ? InitializerOrBitWidth.getPointer() : 0;
}
/// setInClassInitializer - Set the C++11 in-class initializer for this
/// member.
void setInClassInitializer(Expr *Init);
/// removeInClassInitializer - Remove the C++11 in-class initializer from this
/// member.
void removeInClassInitializer() {
assert(hasInClassInitializer() && "no initializer to remove");
InitializerOrBitWidth.setPointer(0);
InitializerOrBitWidth.setInt(ICIS_NoInit);
}
/// getParent - Returns the parent of this field declaration, which
/// is the struct in which this method is defined.
const RecordDecl *getParent() const {
return cast<RecordDecl>(getDeclContext());
}
RecordDecl *getParent() {
return cast<RecordDecl>(getDeclContext());
}
SourceRange getSourceRange() const LLVM_READONLY;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// EnumConstantDecl - An instance of this object exists for each enum constant
/// that is defined. For example, in "enum X {a,b}", each of a/b are
/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
/// TagType for the X EnumDecl.
class EnumConstantDecl : public ValueDecl {
Stmt *Init; // an integer constant expression
llvm::APSInt Val; // The value.
protected:
EnumConstantDecl(DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, Expr *E,
const llvm::APSInt &V)
: ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
public:
static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, Expr *E,
const llvm::APSInt &V);
static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
const Expr *getInitExpr() const { return (const Expr*) Init; }
Expr *getInitExpr() { return (Expr*) Init; }
const llvm::APSInt &getInitVal() const { return Val; }
void setInitExpr(Expr *E) { Init = (Stmt*) E; }
void setInitVal(const llvm::APSInt &V) { Val = V; }
SourceRange getSourceRange() const LLVM_READONLY;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == EnumConstant; }
friend class StmtIteratorBase;
};
/// IndirectFieldDecl - An instance of this class is created to represent a
/// field injected from an anonymous union/struct into the parent scope.
/// IndirectFieldDecl are always implicit.
class IndirectFieldDecl : public ValueDecl {
virtual void anchor();
NamedDecl **Chaining;
unsigned ChainingSize;
IndirectFieldDecl(DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T,
NamedDecl **CH, unsigned CHS)
: ValueDecl(IndirectField, DC, L, N, T), Chaining(CH), ChainingSize(CHS) {}
public:
static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, NamedDecl **CH, unsigned CHS);
static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
typedef NamedDecl * const *chain_iterator;
chain_iterator chain_begin() const { return Chaining; }
chain_iterator chain_end() const { return Chaining+ChainingSize; }
unsigned getChainingSize() const { return ChainingSize; }
FieldDecl *getAnonField() const {
assert(ChainingSize >= 2);
return cast<FieldDecl>(Chaining[ChainingSize - 1]);
}
VarDecl *getVarDecl() const {
assert(ChainingSize >= 2);
return dyn_cast<VarDecl>(*chain_begin());
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == IndirectField; }
friend class ASTDeclReader;
};
/// TypeDecl - Represents a declaration of a type.
///
class TypeDecl : public NamedDecl {
virtual void anchor();
/// TypeForDecl - This indicates the Type object that represents
/// this TypeDecl. It is a cache maintained by
/// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
/// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
mutable const Type *TypeForDecl;
/// LocStart - The start of the source range for this declaration.
SourceLocation LocStart;
friend class ASTContext;
friend class DeclContext;
friend class TagDecl;
friend class TemplateTypeParmDecl;
friend class TagType;
friend class ASTReader;
protected:
TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
SourceLocation StartL = SourceLocation())
: NamedDecl(DK, DC, L, Id), TypeForDecl(0), LocStart(StartL) {}
public:
// Low-level accessor. If you just want the type defined by this node,
// check out ASTContext::getTypeDeclType or one of
// ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
// already know the specific kind of node this is.
const Type *getTypeForDecl() const { return TypeForDecl; }
void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
SourceLocation getLocStart() const LLVM_READONLY { return LocStart; }
void setLocStart(SourceLocation L) { LocStart = L; }
virtual SourceRange getSourceRange() const LLVM_READONLY {
if (LocStart.isValid())
return SourceRange(LocStart, getLocation());
else
return SourceRange(getLocation());
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
};
/// Base class for declarations which introduce a typedef-name.
class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
virtual void anchor();
/// UnderlyingType - This is the type the typedef is set to.
TypeSourceInfo *TInfo;
protected:
TypedefNameDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
TypeSourceInfo *TInfo)
: TypeDecl(DK, DC, IdLoc, Id, StartLoc), TInfo(TInfo) {}
typedef Redeclarable<TypedefNameDecl> redeclarable_base;
virtual TypedefNameDecl *getNextRedeclaration() {
return RedeclLink.getNext();
}
virtual TypedefNameDecl *getPreviousDeclImpl() {
return getPreviousDecl();
}
virtual TypedefNameDecl *getMostRecentDeclImpl() {
return getMostRecentDecl();
}
public:
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
TypeSourceInfo *getTypeSourceInfo() const {
return TInfo;
}
/// Retrieves the canonical declaration of this typedef-name.
TypedefNameDecl *getCanonicalDecl() {
return getFirstDeclaration();
}
const TypedefNameDecl *getCanonicalDecl() const {
return getFirstDeclaration();
}
QualType getUnderlyingType() const {
return TInfo->getType();
}
void setTypeSourceInfo(TypeSourceInfo *newType) {
TInfo = newType;
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstTypedefName && K <= lastTypedefName;
}
};
/// TypedefDecl - Represents the declaration of a typedef-name via the 'typedef'
/// type specifier.
class TypedefDecl : public TypedefNameDecl {
TypedefDecl(DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, TypeSourceInfo *TInfo)
: TypedefNameDecl(Typedef, DC, StartLoc, IdLoc, Id, TInfo) {}
public:
static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, TypeSourceInfo *TInfo);
static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const LLVM_READONLY;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Typedef; }
};
/// TypeAliasDecl - Represents the declaration of a typedef-name via a C++0x
/// alias-declaration.
class TypeAliasDecl : public TypedefNameDecl {
TypeAliasDecl(DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, TypeSourceInfo *TInfo)
: TypedefNameDecl(TypeAlias, DC, StartLoc, IdLoc, Id, TInfo) {}
public:
static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, TypeSourceInfo *TInfo);
static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const LLVM_READONLY;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == TypeAlias; }
};
/// TagDecl - Represents the declaration of a struct/union/class/enum.
class TagDecl
: public TypeDecl, public DeclContext, public Redeclarable<TagDecl> {
public:
// This is really ugly.
typedef TagTypeKind TagKind;
private:
// FIXME: This can be packed into the bitfields in Decl.
/// TagDeclKind - The TagKind enum.
unsigned TagDeclKind : 3;
/// IsCompleteDefinition - True if this is a definition ("struct foo
/// {};"), false if it is a declaration ("struct foo;"). It is not
/// a definition until the definition has been fully processed.
bool IsCompleteDefinition : 1;
protected:
/// IsBeingDefined - True if this is currently being defined.
bool IsBeingDefined : 1;
private:
/// IsEmbeddedInDeclarator - True if this tag declaration is
/// "embedded" (i.e., defined or declared for the very first time)
/// in the syntax of a declarator.
bool IsEmbeddedInDeclarator : 1;
/// \brief True if this tag is free standing, e.g. "struct foo;".
bool IsFreeStanding : 1;
protected:
// These are used by (and only defined for) EnumDecl.
unsigned NumPositiveBits : 8;
unsigned NumNegativeBits : 8;
/// IsScoped - True if this tag declaration is a scoped enumeration. Only
/// possible in C++11 mode.
bool IsScoped : 1;
/// IsScopedUsingClassTag - If this tag declaration is a scoped enum,
/// then this is true if the scoped enum was declared using the class
/// tag, false if it was declared with the struct tag. No meaning is
/// associated if this tag declaration is not a scoped enum.
bool IsScopedUsingClassTag : 1;
/// IsFixed - True if this is an enumeration with fixed underlying type. Only
/// possible in C++11, Microsoft extensions, or Objective C mode.
bool IsFixed : 1;
/// \brief Indicates whether it is possible for declarations of this kind
/// to have an out-of-date definition.
///
/// This option is only enabled when modules are enabled.
bool MayHaveOutOfDateDef : 1;
private:
SourceLocation RBraceLoc;
// A struct representing syntactic qualifier info,
// to be used for the (uncommon) case of out-of-line declarations.
typedef QualifierInfo ExtInfo;
/// TypedefNameDeclOrQualifier - If the (out-of-line) tag declaration name
/// is qualified, it points to the qualifier info (nns and range);
/// otherwise, if the tag declaration is anonymous and it is part of
/// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
/// otherwise, it is a null (TypedefNameDecl) pointer.
llvm::PointerUnion<TypedefNameDecl*, ExtInfo*> TypedefNameDeclOrQualifier;
bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo*>(); }
ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo*>(); }
const ExtInfo *getExtInfo() const {
return TypedefNameDeclOrQualifier.get<ExtInfo*>();
}
protected:
TagDecl(Kind DK, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
TagDecl *PrevDecl, SourceLocation StartL)
: TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK),
TypedefNameDeclOrQualifier((TypedefNameDecl*) 0) {
assert((DK != Enum || TK == TTK_Enum) &&
"EnumDecl not matched with TTK_Enum");
TagDeclKind = TK;
IsCompleteDefinition = false;
IsBeingDefined = false;
IsEmbeddedInDeclarator = false;
IsFreeStanding = false;
setPreviousDeclaration(PrevDecl);
}
typedef Redeclarable<TagDecl> redeclarable_base;
virtual TagDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
virtual TagDecl *getPreviousDeclImpl() {
return getPreviousDecl();
}
virtual TagDecl *getMostRecentDeclImpl() {
return getMostRecentDecl();
}
/// @brief Completes the definition of this tag declaration.
///
/// This is a helper function for derived classes.
void completeDefinition();
public:
typedef redeclarable_base::redecl_iterator redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
/// getInnerLocStart - Return SourceLocation representing start of source
/// range ignoring outer template declarations.
SourceLocation getInnerLocStart() const { return getLocStart(); }
/// getOuterLocStart - Return SourceLocation representing start of source
/// range taking into account any outer template declarations.
SourceLocation getOuterLocStart() const;
virtual SourceRange getSourceRange() const LLVM_READONLY;
virtual TagDecl* getCanonicalDecl();
const TagDecl* getCanonicalDecl() const {
return const_cast<TagDecl*>(this)->getCanonicalDecl();
}
/// isThisDeclarationADefinition() - Return true if this declaration
/// is a completion definintion of the type. Provided for consistency.
bool isThisDeclarationADefinition() const {
return isCompleteDefinition();
}
/// isCompleteDefinition - Return true if this decl has its body
/// fully specified.
bool isCompleteDefinition() const {
return IsCompleteDefinition;
}
/// isBeingDefined - Return true if this decl is currently being defined.
bool isBeingDefined() const {
return IsBeingDefined;
}
bool isEmbeddedInDeclarator() const {
return IsEmbeddedInDeclarator;
}
void setEmbeddedInDeclarator(bool isInDeclarator) {
IsEmbeddedInDeclarator = isInDeclarator;
}
bool isFreeStanding() const { return IsFreeStanding; }
void setFreeStanding(bool isFreeStanding = true) {
IsFreeStanding = isFreeStanding;
}
/// \brief Whether this declaration declares a type that is
/// dependent, i.e., a type that somehow depends on template
/// parameters.
bool isDependentType() const { return isDependentContext(); }
/// @brief Starts the definition of this tag declaration.
///
/// This method should be invoked at the beginning of the definition
/// of this tag declaration. It will set the tag type into a state
/// where it is in the process of being defined.
void startDefinition();
/// getDefinition - Returns the TagDecl that actually defines this
/// struct/union/class/enum. When determining whether or not a
/// struct/union/class/enum has a definition, one should use this
/// method as opposed to 'isDefinition'. 'isDefinition' indicates
/// whether or not a specific TagDecl is defining declaration, not
/// whether or not the struct/union/class/enum type is defined.
/// This method returns NULL if there is no TagDecl that defines
/// the struct/union/class/enum.
TagDecl *getDefinition() const;
void setCompleteDefinition(bool V) { IsCompleteDefinition = V; }
// FIXME: Return StringRef;
const char *getKindName() const {
return TypeWithKeyword::getTagTypeKindName(getTagKind());
}
TagKind getTagKind() const {
return TagKind(TagDeclKind);
}
void setTagKind(TagKind TK) { TagDeclKind = TK; }
bool isStruct() const { return getTagKind() == TTK_Struct; }
bool isInterface() const { return getTagKind() == TTK_Interface; }
bool isClass() const { return getTagKind() == TTK_Class; }
bool isUnion() const { return getTagKind() == TTK_Union; }
bool isEnum() const { return getTagKind() == TTK_Enum; }
/// Is this tag type named, either directly or via being defined in
/// a typedef of this type?
///
/// C++11 [basic.link]p8:
/// A type is said to have linkage if and only if:
/// - it is a class or enumeration type that is named (or has a
/// name for linkage purposes) and the name has linkage; ...
/// C++11 [dcl.typedef]p9:
/// If the typedef declaration defines an unnamed class (or enum),
/// the first typedef-name declared by the declaration to be that
/// class type (or enum type) is used to denote the class type (or
/// enum type) for linkage purposes only.
///
/// C does not have an analogous rule, but the same concept is
/// nonetheless useful in some places.
bool hasNameForLinkage() const {
return (getDeclName() || getTypedefNameForAnonDecl());
}
TypedefNameDecl *getTypedefNameForAnonDecl() const {
return hasExtInfo() ? 0 :
TypedefNameDeclOrQualifier.get<TypedefNameDecl*>();
}
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
/// \brief Retrieve the nested-name-specifier that qualifies the name of this
/// declaration, if it was present in the source.
NestedNameSpecifier *getQualifier() const {
return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
: 0;
}
/// \brief Retrieve the nested-name-specifier (with source-location
/// information) that qualifies the name of this declaration, if it was
/// present in the source.
NestedNameSpecifierLoc getQualifierLoc() const {
return hasExtInfo() ? getExtInfo()->QualifierLoc
: NestedNameSpecifierLoc();
}
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
unsigned getNumTemplateParameterLists() const {
return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
}
TemplateParameterList *getTemplateParameterList(unsigned i) const {
assert(i < getNumTemplateParameterLists());
return getExtInfo()->TemplParamLists[i];
}
void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists,
TemplateParameterList **TPLists);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
static DeclContext *castToDeclContext(const TagDecl *D) {
return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
}
static TagDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// EnumDecl - Represents an enum. In C++11, enums can be forward-declared
/// with a fixed underlying type, and in C we allow them to be forward-declared
/// with no underlying type as an extension.
class EnumDecl : public TagDecl {
virtual void anchor();
/// IntegerType - This represent the integer type that the enum corresponds
/// to for code generation purposes. Note that the enumerator constants may
/// have a different type than this does.
///
/// If the underlying integer type was explicitly stated in the source
/// code, this is a TypeSourceInfo* for that type. Otherwise this type
/// was automatically deduced somehow, and this is a Type*.
///
/// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
/// some cases it won't.
///
/// The underlying type of an enumeration never has any qualifiers, so
/// we can get away with just storing a raw Type*, and thus save an
/// extra pointer when TypeSourceInfo is needed.
llvm::PointerUnion<const Type*, TypeSourceInfo*> IntegerType;
/// PromotionType - The integer type that values of this type should
/// promote to. In C, enumerators are generally of an integer type
/// directly, but gcc-style large enumerators (and all enumerators
/// in C++) are of the enum type instead.
QualType PromotionType;
/// \brief If this enumeration is an instantiation of a member enumeration
/// of a class template specialization, this is the member specialization
/// information.
MemberSpecializationInfo *SpecializationInfo;
EnumDecl(DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, EnumDecl *PrevDecl,
bool Scoped, bool ScopedUsingClassTag, bool Fixed)
: TagDecl(Enum, TTK_Enum, DC, IdLoc, Id, PrevDecl, StartLoc),
SpecializationInfo(0) {
assert(Scoped || !ScopedUsingClassTag);
IntegerType = (const Type*)0;
NumNegativeBits = 0;
NumPositiveBits = 0;
IsScoped = Scoped;
IsScopedUsingClassTag = ScopedUsingClassTag;
IsFixed = Fixed;
}
void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
TemplateSpecializationKind TSK);
public:
EnumDecl *getCanonicalDecl() {
return cast<EnumDecl>(TagDecl::getCanonicalDecl());
}
const EnumDecl *getCanonicalDecl() const {
return cast<EnumDecl>(TagDecl::getCanonicalDecl());
}
const EnumDecl *getPreviousDecl() const {
return cast_or_null<EnumDecl>(TagDecl::getPreviousDecl());
}
EnumDecl *getPreviousDecl() {
return cast_or_null<EnumDecl>(TagDecl::getPreviousDecl());
}
const EnumDecl *getMostRecentDecl() const {
return cast<EnumDecl>(TagDecl::getMostRecentDecl());
}
EnumDecl *getMostRecentDecl() {
return cast<EnumDecl>(TagDecl::getMostRecentDecl());
}
EnumDecl *getDefinition() const {
return cast_or_null<EnumDecl>(TagDecl::getDefinition());
}
static EnumDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, EnumDecl *PrevDecl,
bool IsScoped, bool IsScopedUsingClassTag,
bool IsFixed);
static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// completeDefinition - When created, the EnumDecl corresponds to a
/// forward-declared enum. This method is used to mark the
/// declaration as being defined; it's enumerators have already been
/// added (via DeclContext::addDecl). NewType is the new underlying
/// type of the enumeration type.
void completeDefinition(QualType NewType,
QualType PromotionType,
unsigned NumPositiveBits,
unsigned NumNegativeBits);
// enumerator_iterator - Iterates through the enumerators of this
// enumeration.
typedef specific_decl_iterator<EnumConstantDecl> enumerator_iterator;
enumerator_iterator enumerator_begin() const {
const EnumDecl *E = getDefinition();
if (!E)
E = this;
return enumerator_iterator(E->decls_begin());
}
enumerator_iterator enumerator_end() const {
const EnumDecl *E = getDefinition();
if (!E)
E = this;
return enumerator_iterator(E->decls_end());
}
/// getPromotionType - Return the integer type that enumerators
/// should promote to.
QualType getPromotionType() const { return PromotionType; }
/// \brief Set the promotion type.
void setPromotionType(QualType T) { PromotionType = T; }
/// getIntegerType - Return the integer type this enum decl corresponds to.
/// This returns a null qualtype for an enum forward definition.
QualType getIntegerType() const {
if (!IntegerType)
return QualType();
if (const Type* T = IntegerType.dyn_cast<const Type*>())
return QualType(T, 0);
return IntegerType.get<TypeSourceInfo*>()->getType();
}
/// \brief Set the underlying integer type.
void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
/// \brief Set the underlying integer type source info.
void setIntegerTypeSourceInfo(TypeSourceInfo* TInfo) { IntegerType = TInfo; }
/// \brief Return the type source info for the underlying integer type,
/// if no type source info exists, return 0.
TypeSourceInfo* getIntegerTypeSourceInfo() const {
return IntegerType.dyn_cast<TypeSourceInfo*>();
}
/// \brief Returns the width in bits required to store all the
/// non-negative enumerators of this enum.
unsigned getNumPositiveBits() const {
return NumPositiveBits;
}
void setNumPositiveBits(unsigned Num) {
NumPositiveBits = Num;
assert(NumPositiveBits == Num && "can't store this bitcount");
}
/// \brief Returns the width in bits required to store all the
/// negative enumerators of this enum. These widths include
/// the rightmost leading 1; that is:
///
/// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS
/// ------------------------ ------- -----------------
/// -1 1111111 1
/// -10 1110110 5
/// -101 1001011 8
unsigned getNumNegativeBits() const {
return NumNegativeBits;
}
void setNumNegativeBits(unsigned Num) {
NumNegativeBits = Num;
}
/// \brief Returns true if this is a C++11 scoped enumeration.
bool isScoped() const {
return IsScoped;
}
/// \brief Returns true if this is a C++11 scoped enumeration.
bool isScopedUsingClassTag() const {
return IsScopedUsingClassTag;
}
/// \brief Returns true if this is an Objective-C, C++11, or
/// Microsoft-style enumeration with a fixed underlying type.
bool isFixed() const {
return IsFixed;
}
/// \brief Returns true if this can be considered a complete type.
bool isComplete() const {
return isCompleteDefinition() || isFixed();
}
/// \brief Returns the enumeration (declared within the template)
/// from which this enumeration type was instantiated, or NULL if
/// this enumeration was not instantiated from any template.
EnumDecl *getInstantiatedFromMemberEnum() const;
/// \brief If this enumeration is a member of a specialization of a
/// templated class, determine what kind of template specialization
/// or instantiation this is.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// \brief For an enumeration member that was instantiated from a member
/// enumeration of a templated class, set the template specialiation kind.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
/// \brief If this enumeration is an instantiation of a member enumeration of
/// a class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const {
return SpecializationInfo;
}
/// \brief Specify that this enumeration is an instantiation of the
/// member enumeration ED.
void setInstantiationOfMemberEnum(EnumDecl *ED,
TemplateSpecializationKind TSK) {
setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Enum; }
friend class ASTDeclReader;
};
/// RecordDecl - Represents a struct/union/class. For example:
/// struct X; // Forward declaration, no "body".
/// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
/// This decl will be marked invalid if *any* members are invalid.
///
class RecordDecl : public TagDecl {
// FIXME: This can be packed into the bitfields in Decl.
/// HasFlexibleArrayMember - This is true if this struct ends with a flexible
/// array member (e.g. int X[]) or if this union contains a struct that does.
/// If so, this cannot be contained in arrays or other structs as a member.
bool HasFlexibleArrayMember : 1;
/// AnonymousStructOrUnion - Whether this is the type of an anonymous struct
/// or union.
bool AnonymousStructOrUnion : 1;
/// HasObjectMember - This is true if this struct has at least one member
/// containing an Objective-C object pointer type.
bool HasObjectMember : 1;
/// HasVolatileMember - This is true if struct has at least one member of
/// 'volatile' type.
bool HasVolatileMember : 1;
/// \brief Whether the field declarations of this record have been loaded
/// from external storage. To avoid unnecessary deserialization of
/// methods/nested types we allow deserialization of just the fields
/// when needed.
mutable bool LoadedFieldsFromExternalStorage : 1;
friend class DeclContext;
protected:
RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, RecordDecl *PrevDecl);
public:
static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, RecordDecl* PrevDecl = 0);
static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
const RecordDecl *getPreviousDecl() const {
return cast_or_null<RecordDecl>(TagDecl::getPreviousDecl());
}
RecordDecl *getPreviousDecl() {
return cast_or_null<RecordDecl>(TagDecl::getPreviousDecl());
}
const RecordDecl *getMostRecentDecl() const {
return cast<RecordDecl>(TagDecl::getMostRecentDecl());
}
RecordDecl *getMostRecentDecl() {
return cast<RecordDecl>(TagDecl::getMostRecentDecl());
}
bool hasFlexibleArrayMember() const { return HasFlexibleArrayMember; }
void setHasFlexibleArrayMember(bool V) { HasFlexibleArrayMember = V; }
/// isAnonymousStructOrUnion - Whether this is an anonymous struct
/// or union. To be an anonymous struct or union, it must have been
/// declared without a name and there must be no objects of this
/// type declared, e.g.,
/// @code
/// union { int i; float f; };
/// @endcode
/// is an anonymous union but neither of the following are:
/// @code
/// union X { int i; float f; };
/// union { int i; float f; } obj;
/// @endcode
bool isAnonymousStructOrUnion() const { return AnonymousStructOrUnion; }
void setAnonymousStructOrUnion(bool Anon) {
AnonymousStructOrUnion = Anon;
}
bool hasObjectMember() const { return HasObjectMember; }
void setHasObjectMember (bool val) { HasObjectMember = val; }
bool hasVolatileMember() const { return HasVolatileMember; }
void setHasVolatileMember (bool val) { HasVolatileMember = val; }
/// \brief Determines whether this declaration represents the
/// injected class name.
///
/// The injected class name in C++ is the name of the class that
/// appears inside the class itself. For example:
///
/// \code
/// struct C {
/// // C is implicitly declared here as a synonym for the class name.
/// };
///
/// C::C c; // same as "C c;"
/// \endcode
bool isInjectedClassName() const;
/// getDefinition - Returns the RecordDecl that actually defines
/// this struct/union/class. When determining whether or not a
/// struct/union/class is completely defined, one should use this
/// method as opposed to 'isCompleteDefinition'.
/// 'isCompleteDefinition' indicates whether or not a specific
/// RecordDecl is a completed definition, not whether or not the
/// record type is defined. This method returns NULL if there is
/// no RecordDecl that defines the struct/union/tag.
RecordDecl *getDefinition() const {
return cast_or_null<RecordDecl>(TagDecl::getDefinition());
}
// Iterator access to field members. The field iterator only visits
// the non-static data members of this class, ignoring any static
// data members, functions, constructors, destructors, etc.
typedef specific_decl_iterator<FieldDecl> field_iterator;
field_iterator field_begin() const;
field_iterator field_end() const {
return field_iterator(decl_iterator());
}
// field_empty - Whether there are any fields (non-static data
// members) in this record.
bool field_empty() const {
return field_begin() == field_end();
}
/// completeDefinition - Notes that the definition of this type is
/// now complete.
virtual void completeDefinition();
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstRecord && K <= lastRecord;
}
/// isMsStrust - Get whether or not this is an ms_struct which can
/// be turned on with an attribute, pragma, or -mms-bitfields
/// commandline option.
bool isMsStruct(const ASTContext &C) const;
private:
/// \brief Deserialize just the fields.
void LoadFieldsFromExternalStorage() const;
};
class FileScopeAsmDecl : public Decl {
virtual void anchor();
StringLiteral *AsmString;
SourceLocation RParenLoc;
FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
SourceLocation StartL, SourceLocation EndL)
: Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
public:
static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
StringLiteral *Str, SourceLocation AsmLoc,
SourceLocation RParenLoc);
static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceLocation getAsmLoc() const { return getLocation(); }
SourceLocation getRParenLoc() const { return RParenLoc; }
void setRParenLoc(SourceLocation L) { RParenLoc = L; }
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(getAsmLoc(), getRParenLoc());
}
const StringLiteral *getAsmString() const { return AsmString; }
StringLiteral *getAsmString() { return AsmString; }
void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == FileScopeAsm; }
};
/// BlockDecl - This represents a block literal declaration, which is like an
/// unnamed FunctionDecl. For example:
/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
///
class BlockDecl : public Decl, public DeclContext {
public:
/// A class which contains all the information about a particular
/// captured value.
class Capture {
enum {
flag_isByRef = 0x1,
flag_isNested = 0x2
};
/// The variable being captured.
llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
/// The copy expression, expressed in terms of a DeclRef (or
/// BlockDeclRef) to the captured variable. Only required if the
/// variable has a C++ class type.
Expr *CopyExpr;
public:
Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
: VariableAndFlags(variable,
(byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
CopyExpr(copy) {}
/// The variable being captured.
VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
/// Whether this is a "by ref" capture, i.e. a capture of a __block
/// variable.
bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
/// Whether this is a nested capture, i.e. the variable captured
/// is not from outside the immediately enclosing function/block.
bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
bool hasCopyExpr() const { return CopyExpr != 0; }
Expr *getCopyExpr() const { return CopyExpr; }
void setCopyExpr(Expr *e) { CopyExpr = e; }
};
private:
// FIXME: This can be packed into the bitfields in Decl.
bool IsVariadic : 1;
bool CapturesCXXThis : 1;
bool BlockMissingReturnType : 1;
bool IsConversionFromLambda : 1;
/// ParamInfo - new[]'d array of pointers to ParmVarDecls for the formal
/// parameters of this function. This is null if a prototype or if there are
/// no formals.
ParmVarDecl **ParamInfo;
unsigned NumParams;
Stmt *Body;
TypeSourceInfo *SignatureAsWritten;
Capture *Captures;
unsigned NumCaptures;
protected:
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
: Decl(Block, DC, CaretLoc), DeclContext(Block),
IsVariadic(false), CapturesCXXThis(false),
BlockMissingReturnType(true), IsConversionFromLambda(false),
ParamInfo(0), NumParams(0), Body(0),
SignatureAsWritten(0), Captures(0), NumCaptures(0) {}
public:
static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceLocation getCaretLocation() const { return getLocation(); }
bool isVariadic() const { return IsVariadic; }
void setIsVariadic(bool value) { IsVariadic = value; }
CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
Stmt *getBody() const { return (Stmt*) Body; }
void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
// Iterator access to formal parameters.
unsigned param_size() const { return getNumParams(); }
typedef ParmVarDecl **param_iterator;
typedef ParmVarDecl * const *param_const_iterator;
bool param_empty() const { return NumParams == 0; }
param_iterator param_begin() { return ParamInfo; }
param_iterator param_end() { return ParamInfo+param_size(); }
param_const_iterator param_begin() const { return ParamInfo; }
param_const_iterator param_end() const { return ParamInfo+param_size(); }
unsigned getNumParams() const { return NumParams; }
const ParmVarDecl *getParamDecl(unsigned i) const {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
ParmVarDecl *getParamDecl(unsigned i) {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
/// hasCaptures - True if this block (or its nested blocks) captures
/// anything of local storage from its enclosing scopes.
bool hasCaptures() const { return NumCaptures != 0 || CapturesCXXThis; }
/// getNumCaptures - Returns the number of captured variables.
/// Does not include an entry for 'this'.
unsigned getNumCaptures() const { return NumCaptures; }
typedef const Capture *capture_iterator;
typedef const Capture *capture_const_iterator;
capture_iterator capture_begin() { return Captures; }
capture_iterator capture_end() { return Captures + NumCaptures; }
capture_const_iterator capture_begin() const { return Captures; }
capture_const_iterator capture_end() const { return Captures + NumCaptures; }
bool capturesCXXThis() const { return CapturesCXXThis; }
bool blockMissingReturnType() const { return BlockMissingReturnType; }
void setBlockMissingReturnType(bool val) { BlockMissingReturnType = val; }
bool isConversionFromLambda() const { return IsConversionFromLambda; }
void setIsConversionFromLambda(bool val) { IsConversionFromLambda = val; }
bool capturesVariable(const VarDecl *var) const;
void setCaptures(ASTContext &Context,
const Capture *begin,
const Capture *end,
bool capturesCXXThis);
virtual SourceRange getSourceRange() const LLVM_READONLY;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Block; }
static DeclContext *castToDeclContext(const BlockDecl *D) {
return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
}
static BlockDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
}
};
/// \brief This represents the body of a CapturedStmt, and serves as its
/// DeclContext.
class CapturedDecl : public Decl, public DeclContext {
private:
/// \brief The number of parameters to the outlined function.
unsigned NumParams;
/// \brief The body of the outlined function.
Stmt *Body;
explicit CapturedDecl(DeclContext *DC, unsigned NumParams)
: Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
NumParams(NumParams), Body(0) { }
ImplicitParamDecl **getParams() const {
return reinterpret_cast<ImplicitParamDecl **>(
const_cast<CapturedDecl *>(this) + 1);
}
public:
static CapturedDecl *Create(ASTContext &C, DeclContext *DC, unsigned NumParams);
static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumParams);
Stmt *getBody() const { return Body; }
void setBody(Stmt *B) { Body = B; }
unsigned getNumParams() const { return NumParams; }
ImplicitParamDecl *getParam(unsigned i) const {
assert(i < NumParams);
return getParams()[i];
}
void setParam(unsigned i, ImplicitParamDecl *P) {
assert(i < NumParams);
getParams()[i] = P;
}
/// \brief Retrieve the parameter containing captured variables.
ImplicitParamDecl *getContextParam() const { return getParam(0); }
void setContextParam(ImplicitParamDecl *P) { setParam(0, P); }
typedef ImplicitParamDecl **param_iterator;
/// \brief Retrieve an iterator pointing to the first parameter decl.
param_iterator param_begin() const { return getParams(); }
/// \brief Retrieve an iterator one past the last parameter decl.
param_iterator param_end() const { return getParams() + NumParams; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Captured; }
static DeclContext *castToDeclContext(const CapturedDecl *D) {
return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
}
static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
}
friend class ASTDeclReader;
friend class ASTDeclWriter;
};
/// \brief Describes a module import declaration, which makes the contents
/// of the named module visible in the current translation unit.
///
/// An import declaration imports the named module (or submodule). For example:
/// \code
/// @import std.vector;
/// \endcode
///
/// Import declarations can also be implicitly generated from
/// \#include/\#import directives.
class ImportDecl : public Decl {
/// \brief The imported module, along with a bit that indicates whether
/// we have source-location information for each identifier in the module
/// name.
///
/// When the bit is false, we only have a single source location for the
/// end of the import declaration.
llvm::PointerIntPair<Module *, 1, bool> ImportedAndComplete;
/// \brief The next import in the list of imports local to the translation
/// unit being parsed (not loaded from an AST file).
ImportDecl *NextLocalImport;
friend class ASTReader;
friend class ASTDeclReader;
friend class ASTContext;
ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
ArrayRef<SourceLocation> IdentifierLocs);
ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
SourceLocation EndLoc);
ImportDecl(EmptyShell Empty) : Decl(Import, Empty), NextLocalImport() { }
public:
/// \brief Create a new module import declaration.
static ImportDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, Module *Imported,
ArrayRef<SourceLocation> IdentifierLocs);
/// \brief Create a new module import declaration for an implicitly-generated
/// import.
static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, Module *Imported,
SourceLocation EndLoc);
/// \brief Create a new, deserialized module import declaration.
static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumLocations);
/// \brief Retrieve the module that was imported by the import declaration.
Module *getImportedModule() const { return ImportedAndComplete.getPointer(); }
/// \brief Retrieves the locations of each of the identifiers that make up
/// the complete module name in the import declaration.
///
/// This will return an empty array if the locations of the individual
/// identifiers aren't available.
ArrayRef<SourceLocation> getIdentifierLocs() const;
virtual SourceRange getSourceRange() const LLVM_READONLY;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Import; }
};
/// \brief Represents an empty-declaration.
class EmptyDecl : public Decl {
virtual void anchor();
EmptyDecl(DeclContext *DC, SourceLocation L)
: Decl(Empty, DC, L) { }
public:
static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L);
static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Empty; }
};
/// Insertion operator for diagnostics. This allows sending NamedDecl's
/// into a diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
const NamedDecl* ND) {
DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
DiagnosticsEngine::ak_nameddecl);
return DB;
}
inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
const NamedDecl* ND) {
PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
DiagnosticsEngine::ak_nameddecl);
return PD;
}
template<typename decl_type>
void Redeclarable<decl_type>::setPreviousDeclaration(decl_type *PrevDecl) {
// Note: This routine is implemented here because we need both NamedDecl
// and Redeclarable to be defined.
decl_type *First;
if (PrevDecl) {
// Point to previous. Make sure that this is actually the most recent
// redeclaration, or we can build invalid chains. If the most recent
// redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
First = PrevDecl->getFirstDeclaration();
assert(First->RedeclLink.NextIsLatest() && "Expected first");
decl_type *MostRecent = First->RedeclLink.getNext();
RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
} else {
// Make this first.
First = static_cast<decl_type*>(this);
}
// First one will point to this one as latest.
First->RedeclLink = LatestDeclLink(static_cast<decl_type*>(this));
assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
}
// Inline function definitions.
/// \brief Check if the given decl is complete.
///
/// We use this function to break a cycle between the inline definitions in
/// Type.h and Decl.h.
inline bool IsEnumDeclComplete(EnumDecl *ED) {
return ED->isComplete();
}
/// \brief Check if the given decl is scoped.
///
/// We use this function to break a cycle between the inline definitions in
/// Type.h and Decl.h.
inline bool IsEnumDeclScoped(EnumDecl *ED) {
return ED->isScoped();
}
} // end namespace clang
#endif