blob: 87ee031a6dbd784edaa5505cc0618c4c4e937fff [file] [log] [blame]
//===- Local.cpp - Compute a local data structure graph for a function ----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Compute the local version of the data structure graph for a function. The
// external interface to this file is the DSGraph constructor.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dsa-local"
#include "dsa/DataStructure.h"
#include "dsa/DSGraph.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Use.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/InstVisitor.h"
#include "llvm/Support/Timer.h"
#include <fstream>
// FIXME: This should eventually be a FunctionPass that is automatically
// aggregated into a Pass.
//
#include "llvm/IR/Module.h"
using namespace llvm;
namespace {
STATISTIC(NumDirectCall, "Number of direct calls added");
STATISTIC(NumIndirectCall, "Number of indirect calls added");
STATISTIC(NumAsmCall, "Number of asm calls collapsed/seen");
STATISTIC(NumIntrinsicCall, "Number of intrinsics called");
STATISTIC(NumBoringIntToPtr, "Number of inttoptr used only in cmp");
//STATISTIC(NumSimpleIntToPtr, "Number of inttoptr from ptrtoint");
STATISTIC(NumIgnoredInst, "Number of instructions ignored");
RegisterPass<LocalDataStructures>
X("dsa-local", "Local Data Structure Analysis");
cl::opt<std::string> hasMagicSections("dsa-magic-sections",
cl::desc("File with section to global mapping")); //, cl::ReallyHidden);
}
cl::opt<bool> TypeInferenceOptimize("enable-type-inference-opts",
cl::desc("Enable Type Inference Optimizations added to DSA."),
cl::Hidden,
cl::init(false));
namespace {
//===--------------------------------------------------------------------===//
// GraphBuilder Class
//===--------------------------------------------------------------------===//
//
/// This class is the builder class that constructs the local data structure
/// graph by performing a single pass over the function in question.
///
class GraphBuilder : InstVisitor<GraphBuilder> {
DSGraph &G;
Function* FB;
LocalDataStructures* DS;
const DataLayout& TD;
DSNode *VAArray;
////////////////////////////////////////////////////////////////////////////
// Helper functions used to implement the visitation functions...
void MergeConstantInitIntoNode(DSNodeHandle &NH, Type* Ty, Constant *C);
/// createNode - Create a new DSNode, ensuring that it is properly added to
/// the graph.
///
DSNode *createNode()
{
DSNode* ret = new DSNode(&G);
assert(ret->getParentGraph() && "No parent?");
return ret;
}
/// setDestTo - Set the ScalarMap entry for the specified value to point to
/// the specified destination. If the Value already points to a node, make
/// sure to merge the two destinations together.
///
void setDestTo(Value &V, const DSNodeHandle &NH);
/// getValueDest - Return the DSNode that the actual value points to.
///
DSNodeHandle getValueDest(Value* V);
/// getLink - This method is used to return the specified link in the
/// specified node if one exists. If a link does not already exist (it's
/// null), then we create a new node, link it, then return it.
///
DSNodeHandle &getLink(const DSNodeHandle &Node, unsigned Link = 0);
////////////////////////////////////////////////////////////////////////////
// Visitor functions, used to handle each instruction type we encounter...
friend class InstVisitor<GraphBuilder>;
void visitAllocaInst(AllocaInst &AI)
{ setDestTo(AI, createNode()->setAllocaMarker()); }
//the simple ones
void visitPHINode(PHINode &PN);
void visitSelectInst(SelectInst &SI);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
void visitAtomicRMWInst(AtomicRMWInst &I);
void visitReturnInst(ReturnInst &RI);
void visitVAArgInst(VAArgInst &I);
void visitIntToPtrInst(IntToPtrInst &I);
void visitPtrToIntInst(PtrToIntInst &I);
void visitBitCastInst(BitCastInst &I);
void visitCmpInst(CmpInst &I);
void visitInsertValueInst(InsertValueInst& I);
void visitExtractValueInst(ExtractValueInst& I);
//the nasty ones
void visitGetElementPtrInst(User &GEP);
void visitCallInst(CallInst &CI);
void visitInvokeInst(InvokeInst &II);
void visitInstruction(Instruction &I);
bool visitIntrinsic(CallSite CS, Function* F);
void visitCallSite(CallSite CS);
void visitVAStart(CallSite CS);
void visitVAStartNode(DSNode* N);
public:
GraphBuilder(Function &f, DSGraph &g, LocalDataStructures& DSi)
: G(g), FB(&f), DS(&DSi), TD(g.getDataLayout()), VAArray(0) {
// Create scalar nodes for all pointer arguments...
for (Function::arg_iterator I = f.arg_begin(), E = f.arg_end();
I != E; ++I) {
if (isa<PointerType>(I->getType())) {
// WD: Why do we set the external marker so early in the analysis?
// Functions we have definitions for, but are externally reachable have no external contexts
// that we'd want to BU external information into (since those contexts are by definition
// ones we don't have code for). Shouldn't this just be set in TD?
#if 0
DSNode * Node = getValueDest(I).getNode();
if (!f.hasInternalLinkage() || !f.hasPrivateLinkage())
Node->setExternalMarker();
#else
getValueDest(I).getNode();
#endif
}
}
// Create an entry for the return, which tracks which functions are in
// the graph
g.getOrCreateReturnNodeFor(f);
// Create a node to handle information about variable arguments
g.getOrCreateVANodeFor(f);
visit(f); // Single pass over the function
// If there are any constant globals referenced in this function, merge
// their initializers into the local graph from the globals graph.
// This resolves indirect calls in some common cases
// Only merge info for nodes that already exist in the local pass
// otherwise leaf functions could contain less collapsing than the globals
// graph
if (g.getScalarMap().global_begin() != g.getScalarMap().global_end()) {
ReachabilityCloner RC(&g, g.getGlobalsGraph(), 0);
for (DSScalarMap::global_iterator I = g.getScalarMap().global_begin(),
E = g.getScalarMap().global_end(); I != E; ++I) {
if (const GlobalVariable * GV = dyn_cast<GlobalVariable > (*I))
if (GV->isConstant())
RC.merge(g.getNodeForValue(GV), g.getGlobalsGraph()->getNodeForValue(GV));
}
}
g.markIncompleteNodes(DSGraph::MarkFormalArgs);
// Compute sources of external
unsigned EFlags = 0
| DSGraph::DontMarkFormalsExternal
| DSGraph::ProcessCallSites;
g.computeExternalFlags(EFlags);
g.computeIntPtrFlags();
// Remove any nodes made dead due to merging...
g.removeDeadNodes(DSGraph::KeepUnreachableGlobals);
}
// GraphBuilder ctor for working on the globals graph
explicit GraphBuilder(DSGraph& g)
:G(g), FB(0), TD(g.getDataLayout()), VAArray(0)
{}
void mergeInGlobalInitializer(GlobalVariable *GV);
void mergeExternalGlobal(GlobalVariable* GV);
void mergeFunction(Function* F) { getValueDest(F); }
};
/// Traverse the whole DSGraph, and propagate the unknown flags through all
/// out edges.
static void propagateUnknownFlag(DSGraph * G) {
std::vector<DSNode *> workList;
DenseSet<DSNode *> visited;
for (DSGraph::node_iterator I = G->node_begin(), E = G->node_end(); I != E; ++I)
if (I->isUnknownNode())
workList.push_back(&*I);
while (!workList.empty()) {
DSNode * N = workList.back();
workList.pop_back();
if (visited.count(N) != 0) continue;
visited.insert(N);
N->setUnknownMarker();
for (DSNode::edge_iterator I = N->edge_begin(), E = N->edge_end(); I != E; ++I)
if (!I->second.isNull())
workList.push_back(I->second.getNode());
}
}
}
//===----------------------------------------------------------------------===//
// Helper method implementations...
//
///
/// getValueDest - Return the DSNode that the actual value points to.
///
DSNodeHandle GraphBuilder::getValueDest(Value* V) {
if (isa<Constant>(V) && cast<Constant>(V)->isNullValue())
return 0; // Null doesn't point to anything, don't add to ScalarMap!
DSNodeHandle &NH = G.getNodeForValue(V);
if (!NH.isNull())
return NH; // Already have a node? Just return it...
// Otherwise we need to create a new node to point to.
// Check first for constant expressions that must be traversed to
// extract the actual value.
DSNode* N;
if (Function * F = dyn_cast<Function > (V)) {
// Create a new global node for this function.
N = createNode();
N->addFunction(F);
if (F->isDeclaration())
N->setExternFuncMarker();
} else if (GlobalValue * GV = dyn_cast<GlobalValue > (V)) {
// Create a new global node for this global variable.
N = createNode();
N->addGlobal(GV);
if (GV->isDeclaration())
N->setExternGlobalMarker();
} else if (Constant *C = dyn_cast<Constant>(V)) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->isCast()) {
if (isa<PointerType>(CE->getOperand(0)->getType()))
NH = getValueDest(CE->getOperand(0));
else
NH = createNode()->setUnknownMarker();
} else if (CE->getOpcode() == Instruction::GetElementPtr) {
visitGetElementPtrInst(*CE);
assert(G.hasNodeForValue(CE) && "GEP didn't get processed right?");
NH = G.getNodeForValue(CE);
} else {
// This returns a conservative unknown node for any unhandled ConstExpr
NH = createNode()->setUnknownMarker();
}
if (NH.isNull()) { // (getelementptr null, X) returns null
G.eraseNodeForValue(V);
return 0;
}
return NH;
} else if (isa<UndefValue>(C)) {
G.eraseNodeForValue(V);
return 0;
} else if (isa<GlobalAlias>(C)) {
// XXX: Need more investigation
// According to Andrew, DSA is broken on global aliasing, since it does
// not handle the aliases of parameters correctly. Here is only a quick
// fix for some special cases.
NH = getValueDest(cast<GlobalAlias>(C)->getAliasee());
return NH;
} else if (isa<BlockAddress>(C)) {
//
// FIXME: This may not be quite right; we should probably add a
// BlockAddress flag to the DSNode instead of using the unknown flag.
//
N = createNode();
N->setUnknownMarker();
} else if (isa<ConstantStruct>(C) || isa<ConstantArray>(C) ||
isa<ConstantDataSequential>(C) || isa<ConstantDataArray>(C) ||
isa<ConstantDataVector>(C)) {
// Treat these the same way we treat global initializers
N = createNode();
NH.mergeWith(N);
MergeConstantInitIntoNode(NH, C->getType(), C);
} else {
errs() << "Unknown constant: " << *C << "\n";
assert(0 && "Unknown constant type!");
}
N = createNode(); // just create a shadow node
} else {
// Otherwise just create a shadow node
N = createNode();
}
NH.setTo(N, 0); // Remember that we are pointing to it...
return NH;
}
/// getLink - This method is used to return the specified link in the
/// specified node if one exists. If a link does not already exist (it's
/// null), then we create a new node, link it, then return it. We must
/// specify the type of the Node field we are accessing so that we know what
/// type should be linked to if we need to create a new node.
///
DSNodeHandle &GraphBuilder::getLink(const DSNodeHandle &node, unsigned LinkNo) {
DSNodeHandle &Node = const_cast<DSNodeHandle&>(node);
DSNodeHandle &Link = Node.getLink(LinkNo);
if (Link.isNull()) {
// If the link hasn't been created yet, make and return a new shadow node
Link = createNode();
}
return Link;
}
/// setDestTo - Set the ScalarMap entry for the specified value to point to the
/// specified destination. If the Value already points to a node, make sure to
/// merge the two destinations together.
///
void GraphBuilder::setDestTo(Value &V, const DSNodeHandle &NH) {
G.getNodeForValue(&V).mergeWith(NH);
}
//===----------------------------------------------------------------------===//
// Specific instruction type handler implementations...
//
// PHINode - Make the scalar for the PHI node point to all of the things the
// incoming values point to... which effectively causes them to be merged.
//
void GraphBuilder::visitPHINode(PHINode &PN) {
if (!isa<PointerType>(PN.getType())) return; // Only pointer PHIs
DSNodeHandle &PNDest = G.getNodeForValue(&PN);
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
PNDest.mergeWith(getValueDest(PN.getIncomingValue(i)));
}
void GraphBuilder::visitSelectInst(SelectInst &SI) {
if (!isa<PointerType>(SI.getType()))
return; // Only pointer Selects
DSNodeHandle &Dest = G.getNodeForValue(&SI);
DSNodeHandle S1 = getValueDest(SI.getOperand(1));
DSNodeHandle S2 = getValueDest(SI.getOperand(2));
Dest.mergeWith(S1);
Dest.mergeWith(S2);
}
void GraphBuilder::visitLoadInst(LoadInst &LI) {
//
// Create a DSNode for the pointer dereferenced by the load. If the DSNode
// is NULL, do nothing more (this can occur if the load is loading from a
// NULL pointer constant (bugpoint can generate such code).
//
DSNodeHandle Ptr = getValueDest(LI.getPointerOperand());
if (Ptr.isNull()) return; // Load from null
// Make that the node is read from...
Ptr.getNode()->setReadMarker();
// Ensure a typerecord exists...
Ptr.getNode()->growSizeForType(LI.getType(), Ptr.getOffset());
if (isa<PointerType>(LI.getType()))
setDestTo(LI, getLink(Ptr));
// check that it is the inserted value
if(TypeInferenceOptimize)
if(LI.hasOneUse())
if(StoreInst *SI = dyn_cast<StoreInst>(*(LI.use_begin())))
if(SI->getOperand(0) == &LI) {
++NumIgnoredInst;
return;
}
Ptr.getNode()->mergeTypeInfo(LI.getType(), Ptr.getOffset());
}
void GraphBuilder::visitStoreInst(StoreInst &SI) {
Type *StoredTy = SI.getOperand(0)->getType();
DSNodeHandle Dest = getValueDest(SI.getOperand(1));
if (Dest.isNull()) return;
// Mark that the node is written to...
Dest.getNode()->setModifiedMarker();
// Ensure a type-record exists...
Dest.getNode()->growSizeForType(StoredTy, Dest.getOffset());
// Avoid adding edges from null, or processing non-"pointer" stores
if (isa<PointerType>(StoredTy))
Dest.addEdgeTo(getValueDest(SI.getOperand(0)));
if(TypeInferenceOptimize)
if(SI.getOperand(0)->hasOneUse())
if(isa<LoadInst>(SI.getOperand(0))){
++NumIgnoredInst;
return;
}
Dest.getNode()->mergeTypeInfo(StoredTy, Dest.getOffset());
}
void GraphBuilder::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
if (isa<PointerType>(I.getType())) {
visitInstruction (I);
return;
}
//
// Create a DSNode for the dereferenced pointer . If the DSNode is NULL, do
// nothing more (this can occur if the pointer is a NULL constant; bugpoint
// can generate such code).
//
DSNodeHandle Ptr = getValueDest(I.getPointerOperand());
if (Ptr.isNull()) return;
//
// Make that the memory object is read and written.
//
Ptr.getNode()->setReadMarker();
Ptr.getNode()->setModifiedMarker();
//
// If the result of the compare-and-swap is a pointer, then we need to do
// a few things:
// o Merge the compare and swap values (which are pointers) with the result
// o Merge the DSNode of the pointer *within* the memory object with the
// DSNode of the compare, swap, and result DSNode.
//
if (isa<PointerType>(I.getType())) {
//
// Get the DSNodeHandle of the memory object returned from the load. Make
// it the DSNodeHandle of the instruction's result.
//
DSNodeHandle FieldPtr = getLink (Ptr);
setDestTo(I, getLink(Ptr));
//
// Merge the result, compare, and swap values of the instruction.
//
FieldPtr.mergeWith (getValueDest (I.getCompareOperand()));
FieldPtr.mergeWith (getValueDest (I.getNewValOperand()));
}
//
// Modify the DSNode so that it has the loaded/written type at the
// appropriate offset.
//
Ptr.getNode()->growSizeForType(I.getType(), Ptr.getOffset());
Ptr.getNode()->mergeTypeInfo(I.getType(), Ptr.getOffset());
return;
}
void GraphBuilder::visitAtomicRMWInst(AtomicRMWInst &I) {
//
// Create a DSNode for the dereferenced pointer . If the DSNode is NULL, do
// nothing more (this can occur if the pointer is a NULL constant; bugpoint
// can generate such code).
//
DSNodeHandle Ptr = getValueDest(I.getPointerOperand());
if (Ptr.isNull()) return;
//
// Make that the memory object is read and written.
//
Ptr.getNode()->setReadMarker();
Ptr.getNode()->setModifiedMarker();
//
// Modify the DSNode so that it has the loaded/written type at the
// appropriate offset.
//
Ptr.getNode()->growSizeForType(I.getType(), Ptr.getOffset());
Ptr.getNode()->mergeTypeInfo(I.getType(), Ptr.getOffset());
return;
}
void GraphBuilder::visitReturnInst(ReturnInst &RI) {
if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
G.getOrCreateReturnNodeFor(*FB).mergeWith(getValueDest(RI.getOperand(0)));
}
void GraphBuilder::visitVAArgInst(VAArgInst &I) {
Module *M = FB->getParent();
Triple TargetTriple(M->getTargetTriple());
Triple::ArchType Arch = TargetTriple.getArch();
switch(Arch) {
case Triple::x86_64: {
// On x86_64, we have va_list as a struct {i32, i32, i8*, i8* }
// The first i8* is where arguments generally go, but the second i8* can
// be used also to pass arguments by register.
// We model this by having both the i8*'s point to an array of pointers
// to the arguments.
DSNodeHandle Ptr = G.getVANodeFor(*FB);
DSNodeHandle Dest = getValueDest(&I);
if (Ptr.isNull()) return;
// Make that the node is read and written
Ptr.getNode()->setReadMarker()->setModifiedMarker();
// Not updating type info, as it is already a collapsed node
if (isa<PointerType>(I.getType()))
Dest.mergeWith(Ptr);
return;
}
default: {
assert(0 && "What frontend generates this?");
DSNodeHandle Ptr = getValueDest(I.getOperand(0));
//FIXME: also updates the argument
if (Ptr.isNull()) return;
// Make that the node is read and written
Ptr.getNode()->setReadMarker()->setModifiedMarker();
// Ensure a type record exists.
DSNode *PtrN = Ptr.getNode();
PtrN->mergeTypeInfo(I.getType(), Ptr.getOffset());
if (isa<PointerType>(I.getType()))
setDestTo(I, getLink(Ptr));
}
}
}
void GraphBuilder::visitIntToPtrInst(IntToPtrInst &I) {
DSNode *N = createNode();
if(I.hasOneUse()) {
if(isa<ICmpInst>(*(I.use_begin()))) {
NumBoringIntToPtr++;
return;
}
} else {
N->setIntToPtrMarker();
N->setUnknownMarker();
}
setDestTo(I, N);
}
void GraphBuilder::visitPtrToIntInst(PtrToIntInst& I) {
DSNode* N = getValueDest(I.getOperand(0)).getNode();
if(I.hasOneUse()) {
if(isa<ICmpInst>(*(I.use_begin()))) {
NumBoringIntToPtr++;
return;
}
}
if(I.hasOneUse()) {
Value *V = dyn_cast<Value>(*(I.use_begin()));
DenseSet<Value *> Seen;
while(V && V->hasOneUse() &&
Seen.insert(V).second) {
if(isa<LoadInst>(V))
break;
if(isa<StoreInst>(V))
break;
if(isa<CallInst>(V))
break;
V = dyn_cast<Value>(*(V->use_begin()));
}
if(isa<BranchInst>(V)){
NumBoringIntToPtr++;
return;
}
}
if(N)
N->setPtrToIntMarker();
}
void GraphBuilder::visitBitCastInst(BitCastInst &I) {
if (!isa<PointerType>(I.getType())) return; // Only pointers
DSNodeHandle Ptr = getValueDest(I.getOperand(0));
if (Ptr.isNull()) return;
setDestTo(I, Ptr);
}
void GraphBuilder::visitCmpInst(CmpInst &I) {
//Address can escape through cmps
}
unsigned getValueOffset(Type *Ty, ArrayRef<unsigned> Idxs,
const DataLayout &TD) {
unsigned Offset = 0;
for (ArrayRef<unsigned>::iterator I = Idxs.begin(), E = Idxs.end(); I != E;
++I) {
// Lifted from DataLayout.cpp's getIndexedOffset.
// We can't use that because it insists on only allowing pointer types.
if (StructType *STy = dyn_cast<StructType>(Ty)) {
unsigned FieldNo = *I;
// Get structure layout information...
const StructLayout *Layout = TD.getStructLayout(STy);
// Add in the offset, as calculated by the structure layout info...
Offset += Layout->getElementOffset(FieldNo);
// Update Ty to refer to current element
Ty = STy->getElementType(FieldNo);
} else {
// Update Ty to refer to current element
Ty = cast<SequentialType>(Ty)->getElementType();
// Get the array index and the size of each array element.
int64_t arrayIdx = *I;
Offset += (uint64_t)arrayIdx * TD.getTypeAllocSize(Ty);
}
}
return Offset;
}
void GraphBuilder::visitInsertValueInst(InsertValueInst& I) {
setDestTo(I, createNode()->setAllocaMarker());
Type *StoredTy = I.getInsertedValueOperand()->getType();
DSNodeHandle Dest = getValueDest(&I);
Dest.mergeWith(getValueDest(I.getAggregateOperand()));
// Mark that the node is written to...
Dest.getNode()->setModifiedMarker();
Type* STy = I.getAggregateOperand()->getType();
unsigned Offset = getValueOffset(STy, I.getIndices(), TD);
// Ensure a type-record exists...
Dest.getNode()->mergeTypeInfo(StoredTy, Offset);
// Avoid adding edges from null, or processing non-"pointer" stores
if (isa<PointerType>(StoredTy))
Dest.addEdgeTo(getValueDest(I.getInsertedValueOperand()));
}
void GraphBuilder::visitExtractValueInst(ExtractValueInst& I) {
DSNodeHandle Ptr = getValueDest(I.getAggregateOperand());
// Make that the node is read from...
Ptr.getNode()->setReadMarker();
Type* STy = I.getAggregateOperand()->getType();
unsigned Offset = getValueOffset(STy, I.getIndices(), TD);
// Ensure a typerecord exists...
Ptr.getNode()->mergeTypeInfo(I.getType(), Offset);
if (isa<PointerType>(I.getType()))
setDestTo(I, getLink(Ptr));
}
void GraphBuilder::visitGetElementPtrInst(User &GEP) {
//
// Ensure that the indexed pointer has a DSNode.
//
DSNodeHandle NodeH = getValueDest(GEP.getOperand(0));
if (NodeH.isNull())
NodeH = createNode();
//
// There are a few quick and easy cases to handle. If the DSNode of the
// indexed pointer is already folded, then we know that the result of the
// GEP will have the same offset into the same DSNode
// as the indexed pointer.
//
if (!NodeH.isNull() &&
NodeH.getNode()->isNodeCompletelyFolded()) {
setDestTo(GEP, NodeH);
return;
}
//
// Okay, no easy way out. Calculate the offset into the object being
// indexed.
//
int Offset = 0;
// FIXME: I am not sure if the code below is completely correct (especially
// if we start doing fancy analysis on non-constant array indices).
// What if the array is indexed using a larger index than its declared
// size? Does the LLVM verifier catch such issues?
//
//
// Determine the offset (in bytes) between the result of the GEP and the
// GEP's pointer operand.
//
// Note: All of these subscripts are indexing INTO the elements we have...
//
// FIXME: We can do better for array indexing. First, if the array index is
// constant, we can determine how much farther we're moving the
// pointer. Second, we can try to use the results of other analysis
// passes (e.g., ScalarEvolution) to find min/max values to do less
// conservative type-folding.
//
for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
I != E; ++I)
if (StructType *STy = dyn_cast<StructType>(*I)) {
// indexing into a structure
// next index must be a constant
const ConstantInt* CUI = cast<ConstantInt>(I.getOperand());
int FieldNo = CUI->getSExtValue();
// increment the offset by the actual byte offset being accessed
unsigned requiredSize = TD.getTypeAllocSize(STy) + NodeH.getOffset() + Offset;
//
// Grow the DSNode size as needed.
//
if (!NodeH.getNode()->isArrayNode() || NodeH.getNode()->getSize() <= 0){
if (requiredSize > NodeH.getNode()->getSize())
NodeH.getNode()->growSize(requiredSize);
}
Offset += (unsigned)TD.getStructLayout(STy)->getElementOffset(FieldNo);
if (TypeInferenceOptimize) {
if (ArrayType* AT = dyn_cast<ArrayType>(STy->getTypeAtIndex(FieldNo))) {
NodeH.getNode()->mergeTypeInfo(AT, NodeH.getOffset() + Offset);
if ((++I) == E) {
break;
}
// Check if we are still indexing into an array.
// We only record the topmost array type of any nested array.
// Keep skipping indexes till we reach a non-array type.
// J is the type of the next index.
// Uncomment the line below to get all the nested types.
gep_type_iterator J = I;
while (isa<ArrayType>(*(++J))) {
// NodeH.getNode()->mergeTypeInfo(AT1, NodeH.getOffset() + Offset);
if((++I) == E) {
break;
}
J = I;
}
if ((I) == E) {
break;
}
}
}
} else if (ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
// indexing into an array.
NodeH.getNode()->setArrayMarker();
Type *CurTy = ATy->getElementType();
//
// Ensure that the DSNode's size is large enough to contain one
// element of the type to which the pointer points.
//
if (!isa<ArrayType>(CurTy) && NodeH.getNode()->getSize() <= 0) {
NodeH.getNode()->growSize(TD.getTypeAllocSize(CurTy));
} else if(isa<ArrayType>(CurTy) && NodeH.getNode()->getSize() <= 0){
Type *ETy = (cast<ArrayType>(CurTy))->getElementType();
while(isa<ArrayType>(ETy)) {
ETy = (cast<ArrayType>(ETy))->getElementType();
}
NodeH.getNode()->growSize(TD.getTypeAllocSize(ETy));
}
// Find if the DSNode belongs to the array
// If not fold.
if((NodeH.getOffset() || Offset != 0)
|| (!isa<ArrayType>(CurTy)
&& (NodeH.getNode()->getSize() != TD.getTypeAllocSize(CurTy)))) {
NodeH.getNode()->foldNodeCompletely();
NodeH.getNode();
Offset = 0;
break;
}
} else if (const PointerType *PtrTy = dyn_cast<PointerType>(*I)) {
// Get the type pointed to by the pointer
Type *CurTy = PtrTy->getElementType();
//
// Some LLVM transforms lower structure indexing into byte-level
// indexing. Try to recognize forms of that here.
//
Type * Int8Type = Type::getInt8Ty(CurTy->getContext());
ConstantInt * IS = dyn_cast<ConstantInt>(I.getOperand());
if (IS &&
(NodeH.getOffset() == 0) &&
(!(NodeH.getNode()->isArrayNode())) &&
(CurTy == Int8Type)) {
// Calculate the offset of the field
Offset += IS->getSExtValue() * TD.getTypeAllocSize (Int8Type);
//
// Grow the DSNode size as needed.
//
unsigned requiredSize = Offset + TD.getTypeAllocSize (Int8Type);
if (NodeH.getNode()->getSize() <= requiredSize){
NodeH.getNode()->growSize (requiredSize);
}
// Add in the offset calculated...
NodeH.setOffset(NodeH.getOffset()+Offset);
// Check the offset
DSNode *N = NodeH.getNode();
if (N) N->checkOffsetFoldIfNeeded(NodeH.getOffset());
// NodeH is now the pointer we want to GEP to be...
setDestTo(GEP, NodeH);
return;
}
//
// Unless we're advancing the pointer by zero bytes via array indexing,
// fold the node (i.e., mark it type-unknown) and indicate that we're
// indexing zero bytes into the object (because all fields are aliased).
//
// Note that we break out of the loop if we fold the node. Once
// something is folded, all values within it are considered to alias.
//
if (!isa<Constant>(I.getOperand()) ||
!cast<Constant>(I.getOperand())->isNullValue()) {
//
// Treat the memory object (DSNode) as an array.
//
NodeH.getNode()->setArrayMarker();
//
// Ensure that the DSNode's size is large enough to contain one
// element of the type to which the pointer points.
//
if (!isa<ArrayType>(CurTy) && NodeH.getNode()->getSize() <= 0){
NodeH.getNode()->growSize(TD.getTypeAllocSize(CurTy));
} else if (isa<ArrayType>(CurTy) && NodeH.getNode()->getSize() <= 0){
Type *ETy = (cast<ArrayType>(CurTy))->getElementType();
while (isa<ArrayType>(ETy)) {
ETy = (cast<ArrayType>(ETy))->getElementType();
}
NodeH.getNode()->growSize(TD.getTypeAllocSize(ETy));
}
//
// Fold the DSNode if we're indexing into it in a type-incompatible
// manner. That can occur if:
// 1) The DSNode represents a pointer into the object at a non-zero
// offset.
// 2) The offset of the pointer is already non-zero.
// 3) The size of the array element does not match the size into which
// the pointer indexing is indexing.
//
if (NodeH.getOffset() || Offset != 0 ||
(!isa<ArrayType>(CurTy) &&
(NodeH.getNode()->getSize() != TD.getTypeAllocSize(CurTy)))) {
NodeH.getNode()->foldNodeCompletely();
NodeH.getNode();
Offset = 0;
break;
}
}
}
// Add in the offset calculated...
NodeH.setOffset(NodeH.getOffset()+Offset);
// Check the offset
DSNode *N = NodeH.getNode();
if (N) N->checkOffsetFoldIfNeeded(NodeH.getOffset());
// NodeH is now the pointer we want to GEP to be...
setDestTo(GEP, NodeH);
}
void GraphBuilder::visitCallInst(CallInst &CI) {
visitCallSite(&CI);
}
void GraphBuilder::visitInvokeInst(InvokeInst &II) {
visitCallSite(&II);
}
void GraphBuilder::visitVAStart(CallSite CS) {
// Build out DSNodes for the va_list depending on the target arch
// And assosiate the right node with the VANode for this function
// so it can be merged with the right arguments from callsites
DSNodeHandle RetNH = getValueDest(CS.getArgument(0));
if (DSNode *N = RetNH.getNode())
visitVAStartNode(N);
}
void GraphBuilder::visitVAStartNode(DSNode* N) {
assert(N && "Null node as argument");
assert(FB && "No function for this graph?");
Module *M = FB->getParent();
assert(M && "No module for function");
Triple TargetTriple(M->getTargetTriple());
Triple::ArchType Arch = TargetTriple.getArch();
// Fetch the VANode associated with the func containing the call to va_start
DSNodeHandle & VANH = G.getVANodeFor(*FB);
// Make sure this NodeHandle has a node to go with it
if (VANH.isNull()) VANH.mergeWith(createNode());
// Create a dsnode for an array of pointers to the VAInfo for this func
// We create one such array for each function analyzed, as all
// calls to va_start will populate their argument with the same data.
if (!VAArray) VAArray = createNode();
VAArray->setArrayMarker();
VAArray->foldNodeCompletely();
VAArray->setLink(0,VANH);
//VAStart modifies its argument
N->setModifiedMarker();
// For the architectures we support, build dsnodes that match
// how we know va_list is used.
switch (Arch) {
case Triple::x86:
// On x86, we have:
// va_list as a pointer to an array of pointers to the variable arguments
if (N->getSize() < 1)
N->growSize(1);
N->setLink(0, VAArray);
break;
case Triple::x86_64:
// On x86_64, we have va_list as a struct {i32, i32, i8*, i8* }
// The first i8* is where arguments generally go, but the second i8* can
// be used also to pass arguments by register.
// We model this by having both the i8*'s point to an array of pointers
// to the arguments.
if (N->getSize() < 24)
N->growSize(24); //sizeof the va_list struct mentioned above
N->setLink(8,VAArray); //first i8*
N->setLink(16,VAArray); //second i8*
break;
default:
// FIXME: For now we abort if we don't know how to handle this arch
// Either add support for other architectures, or at least mark the
// nodes unknown/incomplete or whichever results in the correct
// conservative behavior in the general case
assert(0 && "VAstart not supported on this architecture!");
//XXX: This might be good enough in those cases that we don't know
//what the arch does
N->setIncompleteMarker()->setUnknownMarker()->foldNodeCompletely();
}
// XXX: We used to set the alloca marker for the DSNode passed to va_start.
// Seems to me that you could allocate the va_list on the heap, so ignoring
// for now.
N->setModifiedMarker()->setVAStartMarker();
}
///
/// Method: visitIntrinsic()
///
/// Description:
/// Generate correct DSNodes for calls to LLVM intrinsic functions.
///
/// Inputs:
/// CS - The CallSite representing the call or invoke to the intrinsic.
/// F - A pointer to the function called by the call site.
///
/// Return value:
/// true - This intrinsic is properly handled by this method.
/// false - This intrinsic is not recognized by DSA.
///
bool GraphBuilder::visitIntrinsic(CallSite CS, Function *F) {
++NumIntrinsicCall;
//
// If this is a debug intrinsic, then don't do any special processing.
//
if (isa<DbgInfoIntrinsic>(CS.getInstruction()))
return true;
switch (F->getIntrinsicID()) {
case Intrinsic::vastart: {
visitVAStart(CS);
return true;
}
case Intrinsic::vacopy: {
// Simply merge the two arguments to va_copy.
// This results in loss of precision on the temporaries used to manipulate
// the va_list, and so isn't a big deal. In theory we would build a
// separate graph for this (like the one created in visitVAStartNode)
// and only merge the node containing the variable arguments themselves.
DSNodeHandle destNH = getValueDest(CS.getArgument(0));
DSNodeHandle srcNH = getValueDest(CS.getArgument(1));
destNH.mergeWith(srcNH);
return true;
}
case Intrinsic::stacksave: {
DSNode * Node = createNode();
Node->setAllocaMarker()->setIncompleteMarker()->setUnknownMarker();
Node->foldNodeCompletely();
setDestTo (*(CS.getInstruction()), Node);
return true;
}
case Intrinsic::stackrestore:
getValueDest(CS.getInstruction()).getNode()->setAllocaMarker()
->setIncompleteMarker()
->setUnknownMarker()
->foldNodeCompletely();
return true;
case Intrinsic::vaend:
// TODO: What to do here?
return true;
case Intrinsic::memcpy:
case Intrinsic::memmove: {
// Merge the first & second arguments, and mark the memory read and
// modified.
DSNodeHandle RetNH = getValueDest(CS.getArgument(0));
RetNH.mergeWith(getValueDest(CS.getArgument(1)));
if (DSNode *N = RetNH.getNode())
N->setModifiedMarker()->setReadMarker();
return true;
}
case Intrinsic::memset:
// Mark the memory modified.
if (DSNode *N = getValueDest(CS.getArgument(0)).getNode())
N->setModifiedMarker();
return true;
// TODO: Add support for the new EH system
#if 0
case Intrinsic::eh_exception: {
DSNode * Node = createNode();
Node->setIncompleteMarker();
Node->foldNodeCompletely();
setDestTo (*(CS.getInstruction()), Node);
return true;
}
case Intrinsic::eh_selector: {
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
I != E; ++I) {
if (isa<PointerType>((*I)->getType())) {
DSNodeHandle Ptr = getValueDest(*I);
if(Ptr.getNode()) {
Ptr.getNode()->setReadMarker();
Ptr.getNode()->setIncompleteMarker();
}
}
}
return true;
}
#endif
case Intrinsic::eh_typeid_for: {
DSNodeHandle Ptr = getValueDest(CS.getArgument(0));
Ptr.getNode()->setReadMarker();
Ptr.getNode()->setIncompleteMarker();
return true;
}
case Intrinsic::prefetch:
return true;
case Intrinsic::objectsize:
return true;
//
// The return address/frame address aliases with the stack,
// is type-unknown, and should
// have the unknown flag set since we don't know where it goes.
//
case Intrinsic::returnaddress:
case Intrinsic::frameaddress: {
DSNode * Node = createNode();
Node->setAllocaMarker()->setIncompleteMarker()->setUnknownMarker();
Node->foldNodeCompletely();
setDestTo (*(CS.getInstruction()), Node);
return true;
}
// Process lifetime intrinsics
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
return true;
default: {
//ignore pointer free intrinsics
if (!isa<PointerType>(F->getReturnType())) {
bool hasPtr = false;
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E && !hasPtr; ++I)
if (isa<PointerType>(I->getType()))
hasPtr = true;
if (!hasPtr)
return true;
}
DEBUG(errs() << "[dsa:local] Unhandled intrinsic: " << F->getName() << "\n");
assert(0 && "Unhandled intrinsic");
return false;
}
}
}
void GraphBuilder::visitCallSite(CallSite CS) {
//
// Get the called value. Strip off any casts which are lossless.
//
Value *Callee = CS.getCalledValue()->stripPointerCasts();
// Special case handling of certain libc allocation functions here.
if (Function *F = dyn_cast<Function>(Callee))
if (F->isIntrinsic() && visitIntrinsic(CS, F))
return;
//Can't do much about inline asm (yet!)
if (isa<InlineAsm> (Callee)) {
++NumAsmCall;
DSNodeHandle RetVal;
Instruction *I = CS.getInstruction();
if (isa<PointerType > (I->getType()))
RetVal = getValueDest(I);
// Calculate the arguments vector...
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I)
if (isa<PointerType > ((*I)->getType()))
RetVal.mergeWith(getValueDest(*I));
if (!RetVal.isNull())
RetVal.getNode()->foldNodeCompletely();
return;
}
// Set up the return value...
DSNodeHandle RetVal;
Instruction *I = CS.getInstruction();
if (isa<PointerType>(I->getType()))
RetVal = getValueDest(I);
DSNode *CalleeNode = 0;
if (!isa<Function>(Callee)) {
CalleeNode = getValueDest(Callee).getNode();
if (CalleeNode == 0) {
DEBUG(errs() << "WARNING: Program is calling through a null pointer?\n" << *I);
return; // Calling a null pointer?
}
}
// NOTE: This code is identical to 'DSGraph::getDSCallSiteForCallSite',
// the reason it's duplicated is because this calls getValueDest instead
// of getNodeForValue to get the DSNodes for the arguments. Since we're in
// local it's possible that we need to create a DSNode for the argument, as
// opposed to getNodeForValue which simply retrieves the existing node.
//Get the FunctionType for the called function
const FunctionType *CalleeFuncType = DSCallSite::FunctionTypeOfCallSite(CS);
int NumFixedArgs = CalleeFuncType->getNumParams();
// Sanity check--this really, really shouldn't happen
if (!CalleeFuncType->isVarArg())
assert(CS.arg_size() == static_cast<unsigned>(NumFixedArgs) &&
"Too many arguments/incorrect function signature!");
std::vector<DSNodeHandle> Args;
Args.reserve(CS.arg_size());
DSNodeHandle VarArgNH;
// Calculate the arguments vector...
// Add all fixed pointer arguments, then merge the rest together
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
I != E; ++I)
if (isa<PointerType>((*I)->getType())) {
DSNodeHandle ArgNode = getValueDest(*I);
if (I - CS.arg_begin() < NumFixedArgs) {
Args.push_back(ArgNode);
} else {
VarArgNH.mergeWith(ArgNode);
}
}
// Add a new function call entry...
if (CalleeNode) {
++NumIndirectCall;
G.getFunctionCalls().push_back(DSCallSite(CS, RetVal, VarArgNH, CalleeNode,
Args));
} else {
++NumDirectCall;
G.getFunctionCalls().push_back(DSCallSite(CS, RetVal, VarArgNH,
cast<Function>(Callee),
Args));
}
}
// visitInstruction - For all other instruction types, if we have any arguments
// that are of pointer type, make them have unknown composition bits, and merge
// the nodes together.
void GraphBuilder::visitInstruction(Instruction &Inst) {
DSNodeHandle CurNode;
if (isa<PointerType>(Inst.getType()))
CurNode = getValueDest(&Inst);
for (User::op_iterator I = Inst.op_begin(), E = Inst.op_end(); I != E; ++I)
if (isa<PointerType>((*I)->getType()))
CurNode.mergeWith(getValueDest(*I));
if (DSNode *N = CurNode.getNode())
N->setUnknownMarker();
}
//===----------------------------------------------------------------------===//
// LocalDataStructures Implementation
//===----------------------------------------------------------------------===//
//
// Function: MergeConstantInitIntoNode()
//
// Description:
// Merge the specified constant into the specified DSNode.
//
void
GraphBuilder::MergeConstantInitIntoNode(DSNodeHandle &NH,
Type* Ty,
Constant *C) {
//
// Ensure a type-record exists...
//
DSNode *NHN = NH.getNode();
//NHN->mergeTypeInfo(Ty, NH.getOffset());
//
// If we've found something of pointer type, create or find its DSNode and
// make a link from the specified DSNode to the new DSNode describing the
// pointer we've just found.
//
if (isa<PointerType>(Ty)) {
NHN->mergeTypeInfo(Ty, NH.getOffset());
NH.addEdgeTo(getValueDest(C));
return;
}
//
// If the type of the object (array element, structure field, etc.) is an
// integer or floating point type, then just ignore it. It has no DSNode.
//
if (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()) return;
//
// Handle aggregate constants.
//
if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
//
// For an array, we don't worry about different elements pointing to
// different objects; we essentially pretend that all array elements alias.
//
Type * ElementType = cast<ArrayType>(Ty)->getElementType();
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
Constant * ConstElement = cast<Constant>(CA->getOperand(i));
MergeConstantInitIntoNode(NH, ElementType, ConstElement);
}
} else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
//
// For a structure, we need to merge each element of the constant structure
// into the specified DSNode. However, we must also handle structures that
// end with a zero-length array ([0 x sbyte]); this is a common C idiom
// that continues to plague the world.
//
//NHN->mergeTypeInfo(Ty, NH.getOffset());
const StructLayout *SL = TD.getStructLayout(cast<StructType>(Ty));
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
DSNode *NHN = NH.getNode();
if (SL->getElementOffset(i) < SL->getSizeInBytes()) {
//
// Get the type and constant value of this particular element of the
// constant structure.
//
Type * ElementType = cast<StructType>(Ty)->getElementType(i);
Constant * ConstElement = cast<Constant>(CS->getOperand(i));
//
// Get the offset (in bytes) into the memory object that we're
// analyzing.
//
unsigned offset = NH.getOffset()+(unsigned)SL->getElementOffset(i);
NHN->mergeTypeInfo(ElementType, offset);
//
// Create a new DSNodeHandle. This DSNodeHandle will point to the same
// DSNode as the one we're constructing for our caller; however, it
// will point into a different offset into that DSNode.
//
DSNodeHandle NewNH (NHN, offset);
assert ((NHN->isNodeCompletelyFolded() || (NewNH.getOffset() == offset))
&& "Need to resize DSNode!");
//
// Recursively merge in this element of the constant struture into the
// DSNode.
//
MergeConstantInitIntoNode(NewNH, ElementType, ConstElement);
} else if (SL->getElementOffset(i) == SL->getSizeInBytes()) {
//
// If this is one of those cute structures that ends with a zero-length
// array, just fold the DSNode now and get it over with.
//
DEBUG(errs() << "Zero size element at end of struct\n" );
NHN->foldNodeCompletely();
} else {
assert(0 && "type was smaller than offsets of struct layout indicate");
}
}
} else if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) {
//
// Undefined values and NULL pointers have no DSNodes, so they do nothing.
//
} else if (isa<ConstantDataSequential>(C)) {
//
// ConstantDataSequential's are arrays of integers or floats, so they
// have no DSNodes. Nothing to do here.
//
} else {
assert(0 && "Unknown constant type!");
}
}
void GraphBuilder::mergeInGlobalInitializer(GlobalVariable *GV) {
// Ensure that the global variable is not external
assert(!GV->isDeclaration() && "Cannot merge in external global!");
//
// Get a node handle to the global node and merge the initializer into it.
//
DSNodeHandle NH = getValueDest(GV);
//
// Ensure that the DSNode is large enough to hold the new constant that we'll
// be adding to it.
//
Type * ElementType = GV->getType()->getElementType();
while(ArrayType *ATy = dyn_cast<ArrayType>(ElementType)) {
ElementType = ATy->getElementType();
}
if(!NH.getNode()->isNodeCompletelyFolded()) {
unsigned requiredSize = TD.getTypeAllocSize(ElementType) + NH.getOffset();
if (NH.getNode()->getSize() < requiredSize){
NH.getNode()->growSize (requiredSize);
}
}
//
// Do the actual merging in of the constant initializer.
//
MergeConstantInitIntoNode(NH, GV->getType()->getElementType(), GV->getInitializer());
}
void GraphBuilder::mergeExternalGlobal(GlobalVariable *GV) {
// Get a node handle to the global node and merge the initializer into it.
DSNodeHandle NH = getValueDest(GV);
}
// some evil programs use sections as linker generated arrays
// read a description of this behavior in and apply it
// format: numglobals section globals...
// terminates when numglobals == 0
void handleMagicSections(DSGraph* GlobalsGraph, Module& M) {
std::ifstream msf(hasMagicSections.c_str(), std::ifstream::in);
if (msf.good()) {
//no checking happens here
unsigned count = 0;
msf >> count;
while (count) {
std::string section;
msf >> section;
svset<Value*> inSection;
for (Module::iterator MI = M.begin(), ME = M.end();
MI != ME; ++MI)
if (MI->hasSection() && MI->getSection() == section)
inSection.insert(MI);
for (Module::global_iterator MI = M.global_begin(), ME = M.global_end();
MI != ME; ++MI)
if (MI->hasSection() && MI->getSection() == section)
inSection.insert(MI);
for (unsigned x = 0; x < count; ++x) {
std::string global;
msf >> global;
Value* V = M.getNamedValue(global);
if (V) {
DSNodeHandle& DHV = GlobalsGraph->getNodeForValue(V);
for (svset<Value*>::iterator SI = inSection.begin(),
SE = inSection.end(); SI != SE; ++SI) {
DEBUG(errs() << "Merging " << V->getName().str() << " with "
<< (*SI)->getName().str() << "\n");
GlobalsGraph->getNodeForValue(*SI).mergeWith(DHV);
}
}
}
msf >> count;
}
} else {
errs() << "Failed to open magic sections file:" << hasMagicSections <<
"\n";
}
}
char LocalDataStructures::ID;
bool LocalDataStructures::runOnModule(Module &M) {
init(&getAnalysis<DataLayout>());
addrAnalysis = &getAnalysis<AddressTakenAnalysis>();
// First step, build the globals graph.
{
GraphBuilder GGB(*GlobalsGraph);
// Add initializers for all of the globals to the globals graph.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
if (!(I->hasSection() && I->getSection() == "llvm.metadata")) {
if (I->isDeclaration())
GGB.mergeExternalGlobal(I);
else
GGB.mergeInGlobalInitializer(I);
}
// Add Functions to the globals graph.
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI){
if(addrAnalysis->hasAddressTaken(FI)) {
GGB.mergeFunction(FI);
}
}
}
if (hasMagicSections.size())
handleMagicSections(GlobalsGraph, M);
// Next step, iterate through the nodes in the globals graph, unioning
// together the globals into equivalence classes.
formGlobalECs();
// Iterate through the address taken functions in the globals graph,
// collecting them in a list, to be used as target for call sites that
// cant be resolved.
formGlobalFunctionList();
GlobalsGraph->maskIncompleteMarkers();
// Calculate all of the graphs...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isDeclaration()) {
DSGraph* G = new DSGraph(GlobalECs, getDataLayout(), *TypeSS, GlobalsGraph);
GraphBuilder GGB(*I, *G, *this);
G->getAuxFunctionCalls() = G->getFunctionCalls();
setDSGraph(*I, G);
propagateUnknownFlag(G);
callgraph.insureEntry(I);
G->buildCallGraph(callgraph, GlobalFunctionList, true);
G->maskIncompleteMarkers();
G->markIncompleteNodes(DSGraph::MarkFormalArgs
|DSGraph::IgnoreGlobals);
cloneIntoGlobals(G, DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes |
DSGraph::StripAllocaBit);
formGlobalECs();
DEBUG(G->AssertGraphOK());
}
//GlobalsGraph->removeTriviallyDeadNodes();
GlobalsGraph->markIncompleteNodes(DSGraph::MarkFormalArgs
|DSGraph::IgnoreGlobals);
GlobalsGraph->computeExternalFlags(DSGraph::ProcessCallSites);
// Now that we've computed all of the graphs, and merged all of the info into
// the globals graph, see if we have further constrained the globals in the
// program if so, update GlobalECs and remove the extraneous globals from the
// program.
formGlobalECs();
propagateUnknownFlag(GlobalsGraph);
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isDeclaration()) {
DSGraph *Graph = getOrCreateGraph(I);
Graph->maskIncompleteMarkers();
cloneGlobalsInto(Graph, DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
Graph->markIncompleteNodes(DSGraph::MarkFormalArgs
|DSGraph::IgnoreGlobals);
}
return false;
}