blob: b25800bfedb91f99cfffc0a77fc0cd3cf066c72f [file] [log] [blame]
//===-- CanonicalType.h - C Language Family Type Representation -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the CanQual class template, which provides access to
// canonical types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_CANONICALTYPE_H
#define LLVM_CLANG_AST_CANONICALTYPE_H
#include "clang/AST/Type.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Casting.h"
namespace clang {
template<typename T> class CanProxy;
template<typename T> struct CanProxyAdaptor;
//----------------------------------------------------------------------------//
// Canonical, qualified type template
//----------------------------------------------------------------------------//
/// \brief Represents a canonical, potentially-qualified type.
///
/// The CanQual template is a lightweight smart pointer that provides access
/// to the canonical representation of a type, where all typedefs and other
/// syntactic sugar has been eliminated. A CanQualType may also have various
/// qualifiers (const, volatile, restrict) attached to it.
///
/// The template type parameter @p T is one of the Type classes (PointerType,
/// BuiltinType, etc.). The type stored within @c CanQual<T> will be of that
/// type (or some subclass of that type). The typedef @c CanQualType is just
/// a shorthand for @c CanQual<Type>.
///
/// An instance of @c CanQual<T> can be implicitly converted to a
/// @c CanQual<U> when T is derived from U, which essentially provides an
/// implicit upcast. For example, @c CanQual<LValueReferenceType> can be
/// converted to @c CanQual<ReferenceType>. Note that any @c CanQual type can
/// be implicitly converted to a QualType, but the reverse operation requires
/// a call to ASTContext::getCanonicalType().
///
///
template<typename T = Type>
class CanQual {
/// \brief The actual, canonical type.
QualType Stored;
public:
/// \brief Constructs a NULL canonical type.
CanQual() : Stored() { }
/// \brief Converting constructor that permits implicit upcasting of
/// canonical type pointers.
template <typename U>
CanQual(const CanQual<U> &Other,
typename std::enable_if<std::is_base_of<T, U>::value, int>::type = 0);
/// \brief Retrieve the underlying type pointer, which refers to a
/// canonical type.
///
/// The underlying pointer must not be NULL.
const T *getTypePtr() const { return cast<T>(Stored.getTypePtr()); }
/// \brief Retrieve the underlying type pointer, which refers to a
/// canonical type, or NULL.
///
const T *getTypePtrOrNull() const {
return cast_or_null<T>(Stored.getTypePtrOrNull());
}
/// \brief Implicit conversion to a qualified type.
operator QualType() const { return Stored; }
/// \brief Implicit conversion to bool.
explicit operator bool() const { return !isNull(); }
bool isNull() const {
return Stored.isNull();
}
SplitQualType split() const { return Stored.split(); }
/// \brief Retrieve a canonical type pointer with a different static type,
/// upcasting or downcasting as needed.
///
/// The getAs() function is typically used to try to downcast to a
/// more specific (canonical) type in the type system. For example:
///
/// @code
/// void f(CanQual<Type> T) {
/// if (CanQual<PointerType> Ptr = T->getAs<PointerType>()) {
/// // look at Ptr's pointee type
/// }
/// }
/// @endcode
///
/// \returns A proxy pointer to the same type, but with the specified
/// static type (@p U). If the dynamic type is not the specified static type
/// or a derived class thereof, a NULL canonical type.
template<typename U> CanProxy<U> getAs() const;
template<typename U> CanProxy<U> castAs() const;
/// \brief Overloaded arrow operator that produces a canonical type
/// proxy.
CanProxy<T> operator->() const;
/// \brief Retrieve all qualifiers.
Qualifiers getQualifiers() const { return Stored.getLocalQualifiers(); }
/// \brief Retrieve the const/volatile/restrict qualifiers.
unsigned getCVRQualifiers() const { return Stored.getLocalCVRQualifiers(); }
/// \brief Determines whether this type has any qualifiers
bool hasQualifiers() const { return Stored.hasLocalQualifiers(); }
bool isConstQualified() const {
return Stored.isLocalConstQualified();
}
bool isVolatileQualified() const {
return Stored.isLocalVolatileQualified();
}
bool isRestrictQualified() const {
return Stored.isLocalRestrictQualified();
}
/// \brief Determines if this canonical type is furthermore
/// canonical as a parameter. The parameter-canonicalization
/// process decays arrays to pointers and drops top-level qualifiers.
bool isCanonicalAsParam() const {
return Stored.isCanonicalAsParam();
}
/// \brief Retrieve the unqualified form of this type.
CanQual<T> getUnqualifiedType() const;
/// \brief Retrieves a version of this type with const applied.
/// Note that this does not always yield a canonical type.
QualType withConst() const {
return Stored.withConst();
}
/// \brief Determines whether this canonical type is more qualified than
/// the @p Other canonical type.
bool isMoreQualifiedThan(CanQual<T> Other) const {
return Stored.isMoreQualifiedThan(Other.Stored);
}
/// \brief Determines whether this canonical type is at least as qualified as
/// the @p Other canonical type.
bool isAtLeastAsQualifiedAs(CanQual<T> Other) const {
return Stored.isAtLeastAsQualifiedAs(Other.Stored);
}
/// \brief If the canonical type is a reference type, returns the type that
/// it refers to; otherwise, returns the type itself.
CanQual<Type> getNonReferenceType() const;
/// \brief Retrieve the internal representation of this canonical type.
void *getAsOpaquePtr() const { return Stored.getAsOpaquePtr(); }
/// \brief Construct a canonical type from its internal representation.
static CanQual<T> getFromOpaquePtr(void *Ptr);
/// \brief Builds a canonical type from a QualType.
///
/// This routine is inherently unsafe, because it requires the user to
/// ensure that the given type is a canonical type with the correct
// (dynamic) type.
static CanQual<T> CreateUnsafe(QualType Other);
void dump() const { Stored.dump(); }
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddPointer(getAsOpaquePtr());
}
};
template<typename T, typename U>
inline bool operator==(CanQual<T> x, CanQual<U> y) {
return x.getAsOpaquePtr() == y.getAsOpaquePtr();
}
template<typename T, typename U>
inline bool operator!=(CanQual<T> x, CanQual<U> y) {
return x.getAsOpaquePtr() != y.getAsOpaquePtr();
}
/// \brief Represents a canonical, potentially-qualified type.
typedef CanQual<Type> CanQualType;
inline CanQualType Type::getCanonicalTypeUnqualified() const {
return CanQualType::CreateUnsafe(getCanonicalTypeInternal());
}
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
CanQualType T) {
DB << static_cast<QualType>(T);
return DB;
}
//----------------------------------------------------------------------------//
// Internal proxy classes used by canonical types
//----------------------------------------------------------------------------//
#define LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(Accessor) \
CanQualType Accessor() const { \
return CanQualType::CreateUnsafe(this->getTypePtr()->Accessor()); \
}
#define LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(Type, Accessor) \
Type Accessor() const { return this->getTypePtr()->Accessor(); }
/// \brief Base class of all canonical proxy types, which is responsible for
/// storing the underlying canonical type and providing basic conversions.
template<typename T>
class CanProxyBase {
protected:
CanQual<T> Stored;
public:
/// \brief Retrieve the pointer to the underlying Type
const T *getTypePtr() const { return Stored.getTypePtr(); }
/// \brief Implicit conversion to the underlying pointer.
///
/// Also provides the ability to use canonical type proxies in a Boolean
// context,e.g.,
/// @code
/// if (CanQual<PointerType> Ptr = T->getAs<PointerType>()) { ... }
/// @endcode
operator const T*() const { return this->Stored.getTypePtrOrNull(); }
/// \brief Try to convert the given canonical type to a specific structural
/// type.
template<typename U> CanProxy<U> getAs() const {
return this->Stored.template getAs<U>();
}
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(Type::TypeClass, getTypeClass)
// Type predicates
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjectType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIncompleteType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIncompleteOrObjectType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVariablyModifiedType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIntegerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isEnumeralType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBooleanType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isCharType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isWideCharType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIntegralType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIntegralOrEnumerationType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isRealFloatingType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isComplexType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isAnyComplexType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isFloatingType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isRealType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isArithmeticType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVoidType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isDerivedType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isScalarType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isAggregateType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isAnyPointerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVoidPointerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isFunctionPointerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isMemberFunctionPointerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isClassType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isStructureType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isInterfaceType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isStructureOrClassType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isUnionType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isComplexIntegerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isNullPtrType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isDependentType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isOverloadableType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isArrayType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasPointerRepresentation)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasObjCPointerRepresentation)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasIntegerRepresentation)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasSignedIntegerRepresentation)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasUnsignedIntegerRepresentation)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasFloatingRepresentation)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isPromotableIntegerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isSignedIntegerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isUnsignedIntegerType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isSignedIntegerOrEnumerationType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isUnsignedIntegerOrEnumerationType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isConstantSizeType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isSpecifierType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(CXXRecordDecl*, getAsCXXRecordDecl)
/// \brief Retrieve the proxy-adaptor type.
///
/// This arrow operator is used when CanProxyAdaptor has been specialized
/// for the given type T. In that case, we reference members of the
/// CanProxyAdaptor specialization. Otherwise, this operator will be hidden
/// by the arrow operator in the primary CanProxyAdaptor template.
const CanProxyAdaptor<T> *operator->() const {
return static_cast<const CanProxyAdaptor<T> *>(this);
}
};
/// \brief Replacable canonical proxy adaptor class that provides the link
/// between a canonical type and the accessors of the type.
///
/// The CanProxyAdaptor is a replaceable class template that is instantiated
/// as part of each canonical proxy type. The primary template merely provides
/// redirection to the underlying type (T), e.g., @c PointerType. One can
/// provide specializations of this class template for each underlying type
/// that provide accessors returning canonical types (@c CanQualType) rather
/// than the more typical @c QualType, to propagate the notion of "canonical"
/// through the system.
template<typename T>
struct CanProxyAdaptor : CanProxyBase<T> { };
/// \brief Canonical proxy type returned when retrieving the members of a
/// canonical type or as the result of the @c CanQual<T>::getAs member
/// function.
///
/// The CanProxy type mainly exists as a proxy through which operator-> will
/// look to either map down to a raw T* (e.g., PointerType*) or to a proxy
/// type that provides canonical-type access to the fields of the type.
template<typename T>
class CanProxy : public CanProxyAdaptor<T> {
public:
/// \brief Build a NULL proxy.
CanProxy() { }
/// \brief Build a proxy to the given canonical type.
CanProxy(CanQual<T> Stored) { this->Stored = Stored; }
/// \brief Implicit conversion to the stored canonical type.
operator CanQual<T>() const { return this->Stored; }
};
} // end namespace clang
namespace llvm {
/// Implement simplify_type for CanQual<T>, so that we can dyn_cast from
/// CanQual<T> to a specific Type class. We're prefer isa/dyn_cast/cast/etc.
/// to return smart pointer (proxies?).
template<typename T>
struct simplify_type< ::clang::CanQual<T> > {
typedef const T *SimpleType;
static SimpleType getSimplifiedValue(::clang::CanQual<T> Val) {
return Val.getTypePtr();
}
};
// Teach SmallPtrSet that CanQual<T> is "basically a pointer".
template<typename T>
class PointerLikeTypeTraits<clang::CanQual<T> > {
public:
static inline void *getAsVoidPointer(clang::CanQual<T> P) {
return P.getAsOpaquePtr();
}
static inline clang::CanQual<T> getFromVoidPointer(void *P) {
return clang::CanQual<T>::getFromOpaquePtr(P);
}
// qualifier information is encoded in the low bits.
enum { NumLowBitsAvailable = 0 };
};
} // end namespace llvm
namespace clang {
//----------------------------------------------------------------------------//
// Canonical proxy adaptors for canonical type nodes.
//----------------------------------------------------------------------------//
/// \brief Iterator adaptor that turns an iterator over canonical QualTypes
/// into an iterator over CanQualTypes.
template <typename InputIterator>
struct CanTypeIterator
: llvm::iterator_adaptor_base<
CanTypeIterator<InputIterator>, InputIterator,
typename std::iterator_traits<InputIterator>::iterator_category,
CanQualType,
typename std::iterator_traits<InputIterator>::difference_type,
CanProxy<Type>, CanQualType> {
CanTypeIterator() {}
explicit CanTypeIterator(InputIterator Iter)
: CanTypeIterator::iterator_adaptor_base(std::move(Iter)) {}
CanQualType operator*() const { return CanQualType::CreateUnsafe(*this->I); }
CanProxy<Type> operator->() const;
};
template<>
struct CanProxyAdaptor<ComplexType> : public CanProxyBase<ComplexType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
};
template<>
struct CanProxyAdaptor<PointerType> : public CanProxyBase<PointerType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
};
template<>
struct CanProxyAdaptor<BlockPointerType>
: public CanProxyBase<BlockPointerType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
};
template<>
struct CanProxyAdaptor<ReferenceType> : public CanProxyBase<ReferenceType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
};
template<>
struct CanProxyAdaptor<LValueReferenceType>
: public CanProxyBase<LValueReferenceType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
};
template<>
struct CanProxyAdaptor<RValueReferenceType>
: public CanProxyBase<RValueReferenceType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
};
template<>
struct CanProxyAdaptor<MemberPointerType>
: public CanProxyBase<MemberPointerType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const Type *, getClass)
};
// CanProxyAdaptors for arrays are intentionally unimplemented because
// they are not safe.
template<> struct CanProxyAdaptor<ArrayType>;
template<> struct CanProxyAdaptor<ConstantArrayType>;
template<> struct CanProxyAdaptor<IncompleteArrayType>;
template<> struct CanProxyAdaptor<VariableArrayType>;
template<> struct CanProxyAdaptor<DependentSizedArrayType>;
template<>
struct CanProxyAdaptor<DependentSizedExtVectorType>
: public CanProxyBase<DependentSizedExtVectorType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const Expr *, getSizeExpr)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(SourceLocation, getAttributeLoc)
};
template<>
struct CanProxyAdaptor<VectorType> : public CanProxyBase<VectorType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumElements)
};
template<>
struct CanProxyAdaptor<ExtVectorType> : public CanProxyBase<ExtVectorType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumElements)
};
template<>
struct CanProxyAdaptor<FunctionType> : public CanProxyBase<FunctionType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getReturnType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(FunctionType::ExtInfo, getExtInfo)
};
template<>
struct CanProxyAdaptor<FunctionNoProtoType>
: public CanProxyBase<FunctionNoProtoType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getReturnType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(FunctionType::ExtInfo, getExtInfo)
};
template<>
struct CanProxyAdaptor<FunctionProtoType>
: public CanProxyBase<FunctionProtoType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getReturnType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(FunctionType::ExtInfo, getExtInfo)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumParams)
CanQualType getParamType(unsigned i) const {
return CanQualType::CreateUnsafe(this->getTypePtr()->getParamType(i));
}
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVariadic)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getTypeQuals)
typedef CanTypeIterator<FunctionProtoType::param_type_iterator>
param_type_iterator;
param_type_iterator param_type_begin() const {
return param_type_iterator(this->getTypePtr()->param_type_begin());
}
param_type_iterator param_type_end() const {
return param_type_iterator(this->getTypePtr()->param_type_end());
}
// Note: canonical function types never have exception specifications
};
template<>
struct CanProxyAdaptor<TypeOfType> : public CanProxyBase<TypeOfType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getUnderlyingType)
};
template<>
struct CanProxyAdaptor<DecltypeType> : public CanProxyBase<DecltypeType> {
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(Expr *, getUnderlyingExpr)
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getUnderlyingType)
};
template <>
struct CanProxyAdaptor<UnaryTransformType>
: public CanProxyBase<UnaryTransformType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getBaseType)
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getUnderlyingType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(UnaryTransformType::UTTKind, getUTTKind)
};
template<>
struct CanProxyAdaptor<TagType> : public CanProxyBase<TagType> {
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(TagDecl *, getDecl)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBeingDefined)
};
template<>
struct CanProxyAdaptor<RecordType> : public CanProxyBase<RecordType> {
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(RecordDecl *, getDecl)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBeingDefined)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasConstFields)
};
template<>
struct CanProxyAdaptor<EnumType> : public CanProxyBase<EnumType> {
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(EnumDecl *, getDecl)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBeingDefined)
};
template<>
struct CanProxyAdaptor<TemplateTypeParmType>
: public CanProxyBase<TemplateTypeParmType> {
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getDepth)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getIndex)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isParameterPack)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(TemplateTypeParmDecl *, getDecl)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(IdentifierInfo *, getIdentifier)
};
template<>
struct CanProxyAdaptor<ObjCObjectType>
: public CanProxyBase<ObjCObjectType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getBaseType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const ObjCInterfaceDecl *,
getInterface)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCUnqualifiedId)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCUnqualifiedClass)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedId)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedClass)
typedef ObjCObjectPointerType::qual_iterator qual_iterator;
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_begin)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_end)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, qual_empty)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumProtocols)
};
template<>
struct CanProxyAdaptor<ObjCObjectPointerType>
: public CanProxyBase<ObjCObjectPointerType> {
LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const ObjCInterfaceType *,
getInterfaceType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCIdType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCClassType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedIdType)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedClassType)
typedef ObjCObjectPointerType::qual_iterator qual_iterator;
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_begin)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_end)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, qual_empty)
LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumProtocols)
};
//----------------------------------------------------------------------------//
// Method and function definitions
//----------------------------------------------------------------------------//
template<typename T>
inline CanQual<T> CanQual<T>::getUnqualifiedType() const {
return CanQual<T>::CreateUnsafe(Stored.getLocalUnqualifiedType());
}
template<typename T>
inline CanQual<Type> CanQual<T>::getNonReferenceType() const {
if (CanQual<ReferenceType> RefType = getAs<ReferenceType>())
return RefType->getPointeeType();
else
return *this;
}
template<typename T>
CanQual<T> CanQual<T>::getFromOpaquePtr(void *Ptr) {
CanQual<T> Result;
Result.Stored = QualType::getFromOpaquePtr(Ptr);
assert((!Result || Result.Stored.getAsOpaquePtr() == (void*)-1 ||
Result.Stored.isCanonical()) && "Type is not canonical!");
return Result;
}
template<typename T>
CanQual<T> CanQual<T>::CreateUnsafe(QualType Other) {
assert((Other.isNull() || Other.isCanonical()) && "Type is not canonical!");
assert((Other.isNull() || isa<T>(Other.getTypePtr())) &&
"Dynamic type does not meet the static type's requires");
CanQual<T> Result;
Result.Stored = Other;
return Result;
}
template<typename T>
template<typename U>
CanProxy<U> CanQual<T>::getAs() const {
ArrayType_cannot_be_used_with_getAs<U> at;
(void)at;
if (Stored.isNull())
return CanProxy<U>();
if (isa<U>(Stored.getTypePtr()))
return CanQual<U>::CreateUnsafe(Stored);
return CanProxy<U>();
}
template<typename T>
template<typename U>
CanProxy<U> CanQual<T>::castAs() const {
ArrayType_cannot_be_used_with_getAs<U> at;
(void)at;
assert(!Stored.isNull() && isa<U>(Stored.getTypePtr()));
return CanQual<U>::CreateUnsafe(Stored);
}
template<typename T>
CanProxy<T> CanQual<T>::operator->() const {
return CanProxy<T>(*this);
}
template <typename InputIterator>
CanProxy<Type> CanTypeIterator<InputIterator>::operator->() const {
return CanProxy<Type>(*this);
}
}
#endif