| /* Subroutines needed for unwinding stack frames for exception handling. */ |
| /* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 |
| Free Software Foundation, Inc. |
| Contributed by Jason Merrill <jason@cygnus.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2, or (at your option) any later |
| version. |
| |
| In addition to the permissions in the GNU General Public License, the |
| Free Software Foundation gives you unlimited permission to link the |
| compiled version of this file into combinations with other programs, |
| and to distribute those combinations without any restriction coming |
| from the use of this file. (The General Public License restrictions |
| do apply in other respects; for example, they cover modification of |
| the file, and distribution when not linked into a combine |
| executable.) |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to the Free |
| Software Foundation, 59 Temple Place - Suite 330, Boston, MA |
| 02111-1307, USA. */ |
| |
| #ifndef _Unwind_Find_FDE |
| #include "tconfig.h" |
| #include "tsystem.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "dwarf2.h" |
| #include "unwind.h" |
| #define NO_BASE_OF_ENCODED_VALUE |
| #include "unwind-pe.h" |
| #include "unwind-dw2-fde.h" |
| #include "gthr.h" |
| #endif |
| |
| /* The unseen_objects list contains objects that have been registered |
| but not yet categorized in any way. The seen_objects list has had |
| it's pc_begin and count fields initialized at minimum, and is sorted |
| by decreasing value of pc_begin. */ |
| static struct object *unseen_objects; |
| static struct object *seen_objects; |
| |
| #ifdef __GTHREAD_MUTEX_INIT |
| static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT; |
| #else |
| static __gthread_mutex_t object_mutex; |
| #endif |
| |
| #ifdef __GTHREAD_MUTEX_INIT_FUNCTION |
| static void |
| init_object_mutex (void) |
| { |
| __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex); |
| } |
| |
| static void |
| init_object_mutex_once (void) |
| { |
| static __gthread_once_t once = __GTHREAD_ONCE_INIT; |
| __gthread_once (&once, init_object_mutex); |
| } |
| #else |
| #define init_object_mutex_once() |
| #endif |
| |
| /* Called from crtbegin.o to register the unwind info for an object. */ |
| |
| void |
| __register_frame_info_bases (const void *begin, struct object *ob, |
| void *tbase, void *dbase) |
| { |
| /* If .eh_frame is empty, don't register at all. */ |
| if ((uword *) begin == 0 || *(uword *) begin == 0) |
| return; |
| |
| ob->pc_begin = (void *)-1; |
| ob->tbase = tbase; |
| ob->dbase = dbase; |
| ob->u.single = begin; |
| ob->s.i = 0; |
| ob->s.b.encoding = DW_EH_PE_omit; |
| #ifdef DWARF2_OBJECT_END_PTR_EXTENSION |
| ob->fde_end = NULL; |
| #endif |
| |
| init_object_mutex_once (); |
| __gthread_mutex_lock (&object_mutex); |
| |
| ob->next = unseen_objects; |
| unseen_objects = ob; |
| |
| __gthread_mutex_unlock (&object_mutex); |
| } |
| |
| void |
| __register_frame_info (const void *begin, struct object *ob) |
| { |
| __register_frame_info_bases (begin, ob, 0, 0); |
| } |
| |
| void |
| __register_frame (void *begin) |
| { |
| struct object *ob; |
| |
| /* If .eh_frame is empty, don't register at all. */ |
| if (*(uword *) begin == 0) |
| return; |
| |
| ob = malloc (sizeof (struct object)); |
| __register_frame_info (begin, ob); |
| } |
| |
| /* Similar, but BEGIN is actually a pointer to a table of unwind entries |
| for different translation units. Called from the file generated by |
| collect2. */ |
| |
| void |
| __register_frame_info_table_bases (void *begin, struct object *ob, |
| void *tbase, void *dbase) |
| { |
| ob->pc_begin = (void *)-1; |
| ob->tbase = tbase; |
| ob->dbase = dbase; |
| ob->u.array = begin; |
| ob->s.i = 0; |
| ob->s.b.from_array = 1; |
| ob->s.b.encoding = DW_EH_PE_omit; |
| |
| init_object_mutex_once (); |
| __gthread_mutex_lock (&object_mutex); |
| |
| ob->next = unseen_objects; |
| unseen_objects = ob; |
| |
| __gthread_mutex_unlock (&object_mutex); |
| } |
| |
| void |
| __register_frame_info_table (void *begin, struct object *ob) |
| { |
| __register_frame_info_table_bases (begin, ob, 0, 0); |
| } |
| |
| void |
| __register_frame_table (void *begin) |
| { |
| struct object *ob = malloc (sizeof (struct object)); |
| __register_frame_info_table (begin, ob); |
| } |
| |
| /* Called from crtbegin.o to deregister the unwind info for an object. */ |
| /* ??? Glibc has for a while now exported __register_frame_info and |
| __deregister_frame_info. If we call __register_frame_info_bases |
| from crtbegin (wherein it is declared weak), and this object does |
| not get pulled from libgcc.a for other reasons, then the |
| invocation of __deregister_frame_info will be resolved from glibc. |
| Since the registration did not happen there, we'll abort. |
| |
| Therefore, declare a new deregistration entry point that does the |
| exact same thing, but will resolve to the same library as |
| implements __register_frame_info_bases. */ |
| |
| void * |
| __deregister_frame_info_bases (const void *begin) |
| { |
| struct object **p; |
| struct object *ob = 0; |
| |
| /* If .eh_frame is empty, we haven't registered. */ |
| if ((uword *) begin == 0 || *(uword *) begin == 0) |
| return ob; |
| |
| init_object_mutex_once (); |
| __gthread_mutex_lock (&object_mutex); |
| |
| for (p = &unseen_objects; *p ; p = &(*p)->next) |
| if ((*p)->u.single == begin) |
| { |
| ob = *p; |
| *p = ob->next; |
| goto out; |
| } |
| |
| for (p = &seen_objects; *p ; p = &(*p)->next) |
| if ((*p)->s.b.sorted) |
| { |
| if ((*p)->u.sort->orig_data == begin) |
| { |
| ob = *p; |
| *p = ob->next; |
| free (ob->u.sort); |
| goto out; |
| } |
| } |
| else |
| { |
| if ((*p)->u.single == begin) |
| { |
| ob = *p; |
| *p = ob->next; |
| goto out; |
| } |
| } |
| |
| __gthread_mutex_unlock (&object_mutex); |
| abort (); |
| |
| out: |
| __gthread_mutex_unlock (&object_mutex); |
| return (void *) ob; |
| } |
| |
| void * |
| __deregister_frame_info (const void *begin) |
| { |
| return __deregister_frame_info_bases (begin); |
| } |
| |
| void |
| __deregister_frame (void *begin) |
| { |
| /* If .eh_frame is empty, we haven't registered. */ |
| if (*(uword *) begin != 0) |
| free (__deregister_frame_info (begin)); |
| } |
| |
| |
| /* Like base_of_encoded_value, but take the base from a struct object |
| instead of an _Unwind_Context. */ |
| |
| static _Unwind_Ptr |
| base_from_object (unsigned char encoding, struct object *ob) |
| { |
| if (encoding == DW_EH_PE_omit) |
| return 0; |
| |
| switch (encoding & 0x70) |
| { |
| case DW_EH_PE_absptr: |
| case DW_EH_PE_pcrel: |
| case DW_EH_PE_aligned: |
| return 0; |
| |
| case DW_EH_PE_textrel: |
| return (_Unwind_Ptr) ob->tbase; |
| case DW_EH_PE_datarel: |
| return (_Unwind_Ptr) ob->dbase; |
| } |
| abort (); |
| } |
| |
| /* Return the FDE pointer encoding from the CIE. */ |
| /* ??? This is a subset of extract_cie_info from unwind-dw2.c. */ |
| |
| static int |
| get_cie_encoding (const struct dwarf_cie *cie) |
| { |
| const unsigned char *aug, *p; |
| _Unwind_Ptr dummy; |
| _Unwind_Word utmp; |
| _Unwind_Sword stmp; |
| |
| aug = cie->augmentation; |
| if (aug[0] != 'z') |
| return DW_EH_PE_absptr; |
| |
| p = aug + strlen ((const char *)aug) + 1; /* Skip the augmentation string. */ |
| p = read_uleb128 (p, &utmp); /* Skip code alignment. */ |
| p = read_sleb128 (p, &stmp); /* Skip data alignment. */ |
| if (cie->version == 1) /* Skip return address column. */ |
| p++; |
| else |
| p = read_uleb128 (p, &utmp); |
| |
| aug++; /* Skip 'z' */ |
| p = read_uleb128 (p, &utmp); /* Skip augmentation length. */ |
| while (1) |
| { |
| /* This is what we're looking for. */ |
| if (*aug == 'R') |
| return *p; |
| /* Personality encoding and pointer. */ |
| else if (*aug == 'P') |
| { |
| /* ??? Avoid dereferencing indirect pointers, since we're |
| faking the base address. Gotta keep DW_EH_PE_aligned |
| intact, however. */ |
| p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy); |
| } |
| /* LSDA encoding. */ |
| else if (*aug == 'L') |
| p++; |
| /* Otherwise end of string, or unknown augmentation. */ |
| else |
| return DW_EH_PE_absptr; |
| aug++; |
| } |
| } |
| |
| static inline int |
| get_fde_encoding (const struct dwarf_fde *f) |
| { |
| return get_cie_encoding (get_cie (f)); |
| } |
| |
| |
| /* Sorting an array of FDEs by address. |
| (Ideally we would have the linker sort the FDEs so we don't have to do |
| it at run time. But the linkers are not yet prepared for this.) */ |
| |
| /* Comparison routines. Three variants of increasing complexity. */ |
| |
| static int |
| fde_unencoded_compare (struct object *ob __attribute__((unused)), |
| const fde *x, const fde *y) |
| { |
| _Unwind_Ptr x_ptr = *(_Unwind_Ptr *) x->pc_begin; |
| _Unwind_Ptr y_ptr = *(_Unwind_Ptr *) y->pc_begin; |
| |
| if (x_ptr > y_ptr) |
| return 1; |
| if (x_ptr < y_ptr) |
| return -1; |
| return 0; |
| } |
| |
| static int |
| fde_single_encoding_compare (struct object *ob, const fde *x, const fde *y) |
| { |
| _Unwind_Ptr base, x_ptr, y_ptr; |
| |
| base = base_from_object (ob->s.b.encoding, ob); |
| read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr); |
| read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr); |
| |
| if (x_ptr > y_ptr) |
| return 1; |
| if (x_ptr < y_ptr) |
| return -1; |
| return 0; |
| } |
| |
| static int |
| fde_mixed_encoding_compare (struct object *ob, const fde *x, const fde *y) |
| { |
| int x_encoding, y_encoding; |
| _Unwind_Ptr x_ptr, y_ptr; |
| |
| x_encoding = get_fde_encoding (x); |
| read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob), |
| x->pc_begin, &x_ptr); |
| |
| y_encoding = get_fde_encoding (y); |
| read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob), |
| y->pc_begin, &y_ptr); |
| |
| if (x_ptr > y_ptr) |
| return 1; |
| if (x_ptr < y_ptr) |
| return -1; |
| return 0; |
| } |
| |
| typedef int (*fde_compare_t) (struct object *, const fde *, const fde *); |
| |
| |
| /* This is a special mix of insertion sort and heap sort, optimized for |
| the data sets that actually occur. They look like |
| 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130. |
| I.e. a linearly increasing sequence (coming from functions in the text |
| section), with additionally a few unordered elements (coming from functions |
| in gnu_linkonce sections) whose values are higher than the values in the |
| surrounding linear sequence (but not necessarily higher than the values |
| at the end of the linear sequence!). |
| The worst-case total run time is O(N) + O(n log (n)), where N is the |
| total number of FDEs and n is the number of erratic ones. */ |
| |
| struct fde_accumulator |
| { |
| struct fde_vector *linear; |
| struct fde_vector *erratic; |
| }; |
| |
| static inline int |
| start_fde_sort (struct fde_accumulator *accu, size_t count) |
| { |
| size_t size; |
| if (! count) |
| return 0; |
| |
| size = sizeof (struct fde_vector) + sizeof (const fde *) * count; |
| if ((accu->linear = malloc (size))) |
| { |
| accu->linear->count = 0; |
| if ((accu->erratic = malloc (size))) |
| accu->erratic->count = 0; |
| return 1; |
| } |
| else |
| return 0; |
| } |
| |
| static inline void |
| fde_insert (struct fde_accumulator *accu, const fde *this_fde) |
| { |
| if (accu->linear) |
| accu->linear->array[accu->linear->count++] = this_fde; |
| } |
| |
| /* Split LINEAR into a linear sequence with low values and an erratic |
| sequence with high values, put the linear one (of longest possible |
| length) into LINEAR and the erratic one into ERRATIC. This is O(N). |
| |
| Because the longest linear sequence we are trying to locate within the |
| incoming LINEAR array can be interspersed with (high valued) erratic |
| entries. We construct a chain indicating the sequenced entries. |
| To avoid having to allocate this chain, we overlay it onto the space of |
| the ERRATIC array during construction. A final pass iterates over the |
| chain to determine what should be placed in the ERRATIC array, and |
| what is the linear sequence. This overlay is safe from aliasing. */ |
| |
| static inline void |
| fde_split (struct object *ob, fde_compare_t fde_compare, |
| struct fde_vector *linear, struct fde_vector *erratic) |
| { |
| static const fde *marker; |
| size_t count = linear->count; |
| const fde **chain_end = ▮ |
| size_t i, j, k; |
| |
| /* This should optimize out, but it is wise to make sure this assumption |
| is correct. Should these have different sizes, we cannot cast between |
| them and the overlaying onto ERRATIC will not work. */ |
| if (sizeof (const fde *) != sizeof (const fde **)) |
| abort (); |
| |
| for (i = 0; i < count; i++) |
| { |
| const fde **probe; |
| |
| for (probe = chain_end; |
| probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0; |
| probe = chain_end) |
| { |
| chain_end = (const fde **) erratic->array[probe - linear->array]; |
| erratic->array[probe - linear->array] = NULL; |
| } |
| erratic->array[i] = (const fde *) chain_end; |
| chain_end = &linear->array[i]; |
| } |
| |
| /* Each entry in LINEAR which is part of the linear sequence we have |
| discovered will correspond to a non-NULL entry in the chain we built in |
| the ERRATIC array. */ |
| for (i = j = k = 0; i < count; i++) |
| if (erratic->array[i]) |
| linear->array[j++] = linear->array[i]; |
| else |
| erratic->array[k++] = linear->array[i]; |
| linear->count = j; |
| erratic->count = k; |
| } |
| |
| #define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0) |
| |
| /* Convert a semi-heap to a heap. A semi-heap is a heap except possibly |
| for the first (root) node; push it down to its rightful place. */ |
| |
| static void |
| frame_downheap (struct object *ob, fde_compare_t fde_compare, const fde **a, |
| int lo, int hi) |
| { |
| int i, j; |
| |
| for (i = lo, j = 2*i+1; |
| j < hi; |
| j = 2*i+1) |
| { |
| if (j+1 < hi && fde_compare (ob, a[j], a[j+1]) < 0) |
| ++j; |
| |
| if (fde_compare (ob, a[i], a[j]) < 0) |
| { |
| SWAP (a[i], a[j]); |
| i = j; |
| } |
| else |
| break; |
| } |
| } |
| |
| /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must |
| use a name that does not conflict. */ |
| |
| static void |
| frame_heapsort (struct object *ob, fde_compare_t fde_compare, |
| struct fde_vector *erratic) |
| { |
| /* For a description of this algorithm, see: |
| Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed., |
| p. 60-61. */ |
| const fde ** a = erratic->array; |
| /* A portion of the array is called a "heap" if for all i>=0: |
| If i and 2i+1 are valid indices, then a[i] >= a[2i+1]. |
| If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */ |
| size_t n = erratic->count; |
| int m; |
| |
| /* Expand our heap incrementally from the end of the array, heapifying |
| each resulting semi-heap as we go. After each step, a[m] is the top |
| of a heap. */ |
| for (m = n/2-1; m >= 0; --m) |
| frame_downheap (ob, fde_compare, a, m, n); |
| |
| /* Shrink our heap incrementally from the end of the array, first |
| swapping out the largest element a[0] and then re-heapifying the |
| resulting semi-heap. After each step, a[0..m) is a heap. */ |
| for (m = n-1; m >= 1; --m) |
| { |
| SWAP (a[0], a[m]); |
| frame_downheap (ob, fde_compare, a, 0, m); |
| } |
| #undef SWAP |
| } |
| |
| /* Merge V1 and V2, both sorted, and put the result into V1. */ |
| static inline void |
| fde_merge (struct object *ob, fde_compare_t fde_compare, |
| struct fde_vector *v1, struct fde_vector *v2) |
| { |
| size_t i1, i2; |
| const fde * fde2; |
| |
| i2 = v2->count; |
| if (i2 > 0) |
| { |
| i1 = v1->count; |
| do |
| { |
| i2--; |
| fde2 = v2->array[i2]; |
| while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0) |
| { |
| v1->array[i1+i2] = v1->array[i1-1]; |
| i1--; |
| } |
| v1->array[i1+i2] = fde2; |
| } |
| while (i2 > 0); |
| v1->count += v2->count; |
| } |
| } |
| |
| static inline void |
| end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count) |
| { |
| fde_compare_t fde_compare; |
| |
| if (accu->linear && accu->linear->count != count) |
| abort (); |
| |
| if (ob->s.b.mixed_encoding) |
| fde_compare = fde_mixed_encoding_compare; |
| else if (ob->s.b.encoding == DW_EH_PE_absptr) |
| fde_compare = fde_unencoded_compare; |
| else |
| fde_compare = fde_single_encoding_compare; |
| |
| if (accu->erratic) |
| { |
| fde_split (ob, fde_compare, accu->linear, accu->erratic); |
| if (accu->linear->count + accu->erratic->count != count) |
| abort (); |
| frame_heapsort (ob, fde_compare, accu->erratic); |
| fde_merge (ob, fde_compare, accu->linear, accu->erratic); |
| free (accu->erratic); |
| } |
| else |
| { |
| /* We've not managed to malloc an erratic array, |
| so heap sort in the linear one. */ |
| frame_heapsort (ob, fde_compare, accu->linear); |
| } |
| } |
| |
| |
| /* Update encoding, mixed_encoding, and pc_begin for OB for the |
| fde array beginning at THIS_FDE. Return the number of fdes |
| encountered along the way. */ |
| |
| static size_t |
| classify_object_over_fdes (struct object *ob, const fde *this_fde) |
| { |
| const struct dwarf_cie *last_cie = 0; |
| size_t count = 0; |
| int encoding = DW_EH_PE_absptr; |
| _Unwind_Ptr base = 0; |
| |
| for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) |
| { |
| const struct dwarf_cie *this_cie; |
| _Unwind_Ptr mask, pc_begin; |
| |
| /* Skip CIEs. */ |
| if (this_fde->CIE_delta == 0) |
| continue; |
| |
| /* Determine the encoding for this FDE. Note mixed encoded |
| objects for later. */ |
| this_cie = get_cie (this_fde); |
| if (this_cie != last_cie) |
| { |
| last_cie = this_cie; |
| encoding = get_cie_encoding (this_cie); |
| base = base_from_object (encoding, ob); |
| if (ob->s.b.encoding == DW_EH_PE_omit) |
| ob->s.b.encoding = encoding; |
| else if (ob->s.b.encoding != encoding) |
| ob->s.b.mixed_encoding = 1; |
| } |
| |
| read_encoded_value_with_base (encoding, base, this_fde->pc_begin, |
| &pc_begin); |
| |
| /* Take care to ignore link-once functions that were removed. |
| In these cases, the function address will be NULL, but if |
| the encoding is smaller than a pointer a true NULL may not |
| be representable. Assume 0 in the representable bits is NULL. */ |
| mask = size_of_encoded_value (encoding); |
| if (mask < sizeof (void *)) |
| mask = (1L << (mask << 3)) - 1; |
| else |
| mask = -1; |
| |
| if ((pc_begin & mask) == 0) |
| continue; |
| |
| count += 1; |
| if ((void *) pc_begin < ob->pc_begin) |
| ob->pc_begin = (void *) pc_begin; |
| } |
| |
| return count; |
| } |
| |
| static void |
| add_fdes (struct object *ob, struct fde_accumulator *accu, const fde *this_fde) |
| { |
| const struct dwarf_cie *last_cie = 0; |
| int encoding = ob->s.b.encoding; |
| _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob); |
| |
| for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) |
| { |
| const struct dwarf_cie *this_cie; |
| |
| /* Skip CIEs. */ |
| if (this_fde->CIE_delta == 0) |
| continue; |
| |
| if (ob->s.b.mixed_encoding) |
| { |
| /* Determine the encoding for this FDE. Note mixed encoded |
| objects for later. */ |
| this_cie = get_cie (this_fde); |
| if (this_cie != last_cie) |
| { |
| last_cie = this_cie; |
| encoding = get_cie_encoding (this_cie); |
| base = base_from_object (encoding, ob); |
| } |
| } |
| |
| if (encoding == DW_EH_PE_absptr) |
| { |
| if (*(_Unwind_Ptr *) this_fde->pc_begin == 0) |
| continue; |
| } |
| else |
| { |
| _Unwind_Ptr pc_begin, mask; |
| |
| read_encoded_value_with_base (encoding, base, this_fde->pc_begin, |
| &pc_begin); |
| |
| /* Take care to ignore link-once functions that were removed. |
| In these cases, the function address will be NULL, but if |
| the encoding is smaller than a pointer a true NULL may not |
| be representable. Assume 0 in the representable bits is NULL. */ |
| mask = size_of_encoded_value (encoding); |
| if (mask < sizeof (void *)) |
| mask = (1L << (mask << 3)) - 1; |
| else |
| mask = -1; |
| |
| if ((pc_begin & mask) == 0) |
| continue; |
| } |
| |
| fde_insert (accu, this_fde); |
| } |
| } |
| |
| /* Set up a sorted array of pointers to FDEs for a loaded object. We |
| count up the entries before allocating the array because it's likely to |
| be faster. We can be called multiple times, should we have failed to |
| allocate a sorted fde array on a previous occasion. */ |
| |
| static inline void |
| init_object (struct object* ob) |
| { |
| struct fde_accumulator accu; |
| size_t count; |
| |
| count = ob->s.b.count; |
| if (count == 0) |
| { |
| if (ob->s.b.from_array) |
| { |
| fde **p = ob->u.array; |
| for (count = 0; *p; ++p) |
| count += classify_object_over_fdes (ob, *p); |
| } |
| else |
| count = classify_object_over_fdes (ob, ob->u.single); |
| |
| /* The count field we have in the main struct object is somewhat |
| limited, but should suffice for virtually all cases. If the |
| counted value doesn't fit, re-write a zero. The worst that |
| happens is that we re-count next time -- admittedly non-trivial |
| in that this implies some 2M fdes, but at least we function. */ |
| ob->s.b.count = count; |
| if (ob->s.b.count != count) |
| ob->s.b.count = 0; |
| } |
| |
| if (!start_fde_sort (&accu, count)) |
| return; |
| |
| if (ob->s.b.from_array) |
| { |
| fde **p; |
| for (p = ob->u.array; *p; ++p) |
| add_fdes (ob, &accu, *p); |
| } |
| else |
| add_fdes (ob, &accu, ob->u.single); |
| |
| end_fde_sort (ob, &accu, count); |
| |
| /* Save the original fde pointer, since this is the key by which the |
| DSO will deregister the object. */ |
| accu.linear->orig_data = ob->u.single; |
| ob->u.sort = accu.linear; |
| |
| ob->s.b.sorted = 1; |
| } |
| |
| /* A linear search through a set of FDEs for the given PC. This is |
| used when there was insufficient memory to allocate and sort an |
| array. */ |
| |
| static const fde * |
| linear_search_fdes (struct object *ob, const fde *this_fde, void *pc) |
| { |
| const struct dwarf_cie *last_cie = 0; |
| int encoding = ob->s.b.encoding; |
| _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob); |
| |
| for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde)) |
| { |
| const struct dwarf_cie *this_cie; |
| _Unwind_Ptr pc_begin, pc_range; |
| |
| /* Skip CIEs. */ |
| if (this_fde->CIE_delta == 0) |
| continue; |
| |
| if (ob->s.b.mixed_encoding) |
| { |
| /* Determine the encoding for this FDE. Note mixed encoded |
| objects for later. */ |
| this_cie = get_cie (this_fde); |
| if (this_cie != last_cie) |
| { |
| last_cie = this_cie; |
| encoding = get_cie_encoding (this_cie); |
| base = base_from_object (encoding, ob); |
| } |
| } |
| |
| if (encoding == DW_EH_PE_absptr) |
| { |
| pc_begin = ((_Unwind_Ptr *) this_fde->pc_begin)[0]; |
| pc_range = ((_Unwind_Ptr *) this_fde->pc_begin)[1]; |
| if (pc_begin == 0) |
| continue; |
| } |
| else |
| { |
| _Unwind_Ptr mask; |
| const unsigned char *p; |
| |
| p = read_encoded_value_with_base (encoding, base, |
| this_fde->pc_begin, &pc_begin); |
| read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); |
| |
| /* Take care to ignore link-once functions that were removed. |
| In these cases, the function address will be NULL, but if |
| the encoding is smaller than a pointer a true NULL may not |
| be representable. Assume 0 in the representable bits is NULL. */ |
| mask = size_of_encoded_value (encoding); |
| if (mask < sizeof (void *)) |
| mask = (1L << (mask << 3)) - 1; |
| else |
| mask = -1; |
| |
| if ((pc_begin & mask) == 0) |
| continue; |
| } |
| |
| if ((_Unwind_Ptr) pc - pc_begin < pc_range) |
| return this_fde; |
| } |
| |
| return NULL; |
| } |
| |
| /* Binary search for an FDE containing the given PC. Here are three |
| implementations of increasing complexity. */ |
| |
| static inline const fde * |
| binary_search_unencoded_fdes (struct object *ob, void *pc) |
| { |
| struct fde_vector *vec = ob->u.sort; |
| size_t lo, hi; |
| |
| for (lo = 0, hi = vec->count; lo < hi; ) |
| { |
| size_t i = (lo + hi) / 2; |
| const fde *f = vec->array[i]; |
| void *pc_begin; |
| uaddr pc_range; |
| |
| pc_begin = ((void **) f->pc_begin)[0]; |
| pc_range = ((uaddr *) f->pc_begin)[1]; |
| |
| if (pc < pc_begin) |
| hi = i; |
| else if (pc >= pc_begin + pc_range) |
| lo = i + 1; |
| else |
| return f; |
| } |
| |
| return NULL; |
| } |
| |
| static inline const fde * |
| binary_search_single_encoding_fdes (struct object *ob, void *pc) |
| { |
| struct fde_vector *vec = ob->u.sort; |
| int encoding = ob->s.b.encoding; |
| _Unwind_Ptr base = base_from_object (encoding, ob); |
| size_t lo, hi; |
| |
| for (lo = 0, hi = vec->count; lo < hi; ) |
| { |
| size_t i = (lo + hi) / 2; |
| const fde *f = vec->array[i]; |
| _Unwind_Ptr pc_begin, pc_range; |
| const unsigned char *p; |
| |
| p = read_encoded_value_with_base (encoding, base, f->pc_begin, |
| &pc_begin); |
| read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); |
| |
| if ((_Unwind_Ptr) pc < pc_begin) |
| hi = i; |
| else if ((_Unwind_Ptr) pc >= pc_begin + pc_range) |
| lo = i + 1; |
| else |
| return f; |
| } |
| |
| return NULL; |
| } |
| |
| static inline const fde * |
| binary_search_mixed_encoding_fdes (struct object *ob, void *pc) |
| { |
| struct fde_vector *vec = ob->u.sort; |
| size_t lo, hi; |
| |
| for (lo = 0, hi = vec->count; lo < hi; ) |
| { |
| size_t i = (lo + hi) / 2; |
| const fde *f = vec->array[i]; |
| _Unwind_Ptr pc_begin, pc_range; |
| const unsigned char *p; |
| int encoding; |
| |
| encoding = get_fde_encoding (f); |
| p = read_encoded_value_with_base (encoding, |
| base_from_object (encoding, ob), |
| f->pc_begin, &pc_begin); |
| read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range); |
| |
| if ((_Unwind_Ptr) pc < pc_begin) |
| hi = i; |
| else if ((_Unwind_Ptr) pc >= pc_begin + pc_range) |
| lo = i + 1; |
| else |
| return f; |
| } |
| |
| return NULL; |
| } |
| |
| static const fde * |
| search_object (struct object* ob, void *pc) |
| { |
| /* If the data hasn't been sorted, try to do this now. We may have |
| more memory available than last time we tried. */ |
| if (! ob->s.b.sorted) |
| { |
| init_object (ob); |
| |
| /* Despite the above comment, the normal reason to get here is |
| that we've not processed this object before. A quick range |
| check is in order. */ |
| if (pc < ob->pc_begin) |
| return NULL; |
| } |
| |
| if (ob->s.b.sorted) |
| { |
| if (ob->s.b.mixed_encoding) |
| return binary_search_mixed_encoding_fdes (ob, pc); |
| else if (ob->s.b.encoding == DW_EH_PE_absptr) |
| return binary_search_unencoded_fdes (ob, pc); |
| else |
| return binary_search_single_encoding_fdes (ob, pc); |
| } |
| else |
| { |
| /* Long slow labourious linear search, cos we've no memory. */ |
| if (ob->s.b.from_array) |
| { |
| fde **p; |
| for (p = ob->u.array; *p ; p++) |
| { |
| const fde *f = linear_search_fdes (ob, *p, pc); |
| if (f) |
| return f; |
| } |
| return NULL; |
| } |
| else |
| return linear_search_fdes (ob, ob->u.single, pc); |
| } |
| } |
| |
| const fde * |
| _Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases) |
| { |
| struct object *ob; |
| const fde *f = NULL; |
| |
| init_object_mutex_once (); |
| __gthread_mutex_lock (&object_mutex); |
| |
| /* Linear search through the classified objects, to find the one |
| containing the pc. Note that pc_begin is sorted descending, and |
| we expect objects to be non-overlapping. */ |
| for (ob = seen_objects; ob; ob = ob->next) |
| if (pc >= ob->pc_begin) |
| { |
| f = search_object (ob, pc); |
| if (f) |
| goto fini; |
| break; |
| } |
| |
| /* Classify and search the objects we've not yet processed. */ |
| while ((ob = unseen_objects)) |
| { |
| struct object **p; |
| |
| unseen_objects = ob->next; |
| f = search_object (ob, pc); |
| |
| /* Insert the object into the classified list. */ |
| for (p = &seen_objects; *p ; p = &(*p)->next) |
| if ((*p)->pc_begin < ob->pc_begin) |
| break; |
| ob->next = *p; |
| *p = ob; |
| |
| if (f) |
| goto fini; |
| } |
| |
| fini: |
| __gthread_mutex_unlock (&object_mutex); |
| |
| if (f) |
| { |
| int encoding; |
| |
| bases->tbase = ob->tbase; |
| bases->dbase = ob->dbase; |
| |
| encoding = ob->s.b.encoding; |
| if (ob->s.b.mixed_encoding) |
| encoding = get_fde_encoding (f); |
| read_encoded_value_with_base (encoding, base_from_object (encoding, ob), |
| f->pc_begin, (_Unwind_Ptr *)&bases->func); |
| } |
| |
| return f; |
| } |