blob: b591ffb5e7edad92011b8d6fed6a7875d5c85313 [file] [log] [blame]
/* Data flow functions for trees.
Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "hashtab.h"
#include "pointer-set.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "errors.h"
#include "timevar.h"
#include "expr.h"
#include "ggc.h"
#include "langhooks.h"
#include "flags.h"
#include "function.h"
#include "diagnostic.h"
#include "tree-dump.h"
#include "tree-gimple.h"
#include "tree-flow.h"
#include "tree-inline.h"
#include "tree-pass.h"
#include "convert.h"
#include "params.h"
#include "cgraph.h"
/* Build and maintain data flow information for trees. */
/* Counters used to display DFA and SSA statistics. */
struct dfa_stats_d
{
long num_stmt_anns;
long num_var_anns;
long num_defs;
long num_uses;
long num_phis;
long num_phi_args;
int max_num_phi_args;
long num_v_may_defs;
long num_vuses;
long num_v_must_defs;
};
/* State information for find_vars_r. */
struct walk_state
{
/* Hash table used to avoid adding the same variable more than once. */
htab_t vars_found;
};
/* Local functions. */
static void collect_dfa_stats (struct dfa_stats_d *);
static tree collect_dfa_stats_r (tree *, int *, void *);
static void add_immediate_use (tree, tree);
static tree find_vars_r (tree *, int *, void *);
static void add_referenced_var (tree, struct walk_state *);
static void compute_immediate_uses_for_phi (tree, bool (*)(tree));
static void compute_immediate_uses_for_stmt (tree, int, bool (*)(tree));
/* Global declarations. */
/* Array of all variables referenced in the function. */
varray_type referenced_vars;
/*---------------------------------------------------------------------------
Dataflow analysis (DFA) routines
---------------------------------------------------------------------------*/
/* Find all the variables referenced in the function. This function
builds the global arrays REFERENCED_VARS and CALL_CLOBBERED_VARS.
Note that this function does not look for statement operands, it simply
determines what variables are referenced in the program and detects
various attributes for each variable used by alias analysis and the
optimizer. */
static void
find_referenced_vars (void)
{
htab_t vars_found;
basic_block bb;
block_stmt_iterator si;
struct walk_state walk_state;
vars_found = htab_create (50, htab_hash_pointer, htab_eq_pointer, NULL);
memset (&walk_state, 0, sizeof (walk_state));
walk_state.vars_found = vars_found;
FOR_EACH_BB (bb)
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree *stmt_p = bsi_stmt_ptr (si);
walk_tree (stmt_p, find_vars_r, &walk_state, NULL);
}
htab_delete (vars_found);
}
struct tree_opt_pass pass_referenced_vars =
{
NULL, /* name */
NULL, /* gate */
find_referenced_vars, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_FIND_REFERENCED_VARS, /* tv_id */
PROP_gimple_leh | PROP_cfg, /* properties_required */
PROP_referenced_vars, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
0 /* letter */
};
/* Compute immediate uses.
CALC_FOR is an optional function pointer which indicates whether
immediate uses information should be calculated for a given SSA
variable. If NULL, then information is computed for all
variables.
FLAGS is one of {TDFA_USE_OPS, TDFA_USE_VOPS}. It is used by
compute_immediate_uses_for_stmt to determine whether to look at
virtual and/or real operands while computing def-use chains. */
void
compute_immediate_uses (int flags, bool (*calc_for)(tree))
{
basic_block bb;
block_stmt_iterator si;
FOR_EACH_BB (bb)
{
tree phi;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
if (is_gimple_reg (PHI_RESULT (phi)))
{
if (!(flags & TDFA_USE_OPS))
continue;
}
else
{
if (!(flags & TDFA_USE_VOPS))
continue;
}
compute_immediate_uses_for_phi (phi, calc_for);
}
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
get_stmt_operands (stmt);
compute_immediate_uses_for_stmt (stmt, flags, calc_for);
}
}
}
/* Invalidates dataflow information for a statement STMT. */
void
free_df_for_stmt (tree stmt)
{
dataflow_t *df;
if (TREE_CODE (stmt) == PHI_NODE)
df = &PHI_DF (stmt);
else
{
stmt_ann_t ann = stmt_ann (stmt);
if (!ann)
return;
df = &ann->df;
}
if (!*df)
return;
/* If we have a varray of immediate uses, then go ahead and release
it for re-use. */
if ((*df)->immediate_uses)
ggc_free ((*df)->immediate_uses);
/* Similarly for the main dataflow structure. */
ggc_free (*df);
*df = NULL;
}
/* Invalidate dataflow information for the whole function.
Note this only invalidates dataflow information on statements and
PHI nodes which are reachable.
A deleted statement may still have attached dataflow information
on it. */
void
free_df (void)
{
basic_block bb;
block_stmt_iterator si;
FOR_EACH_BB (bb)
{
tree phi;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
free_df_for_stmt (phi);
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
free_df_for_stmt (stmt);
}
}
}
/* Helper for compute_immediate_uses. Check all the USE and/or VUSE
operands in phi node PHI and add a def-use edge between their
defining statement and PHI. CALC_FOR is as in
compute_immediate_uses.
PHI nodes are easy, we only need to look at their arguments. */
static void
compute_immediate_uses_for_phi (tree phi, bool (*calc_for)(tree))
{
int i;
gcc_assert (TREE_CODE (phi) == PHI_NODE);
for (i = 0; i < PHI_NUM_ARGS (phi); i++)
{
tree arg = PHI_ARG_DEF (phi, i);
if (TREE_CODE (arg) == SSA_NAME && (!calc_for || calc_for (arg)))
{
tree imm_rdef_stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF (phi, i));
if (!IS_EMPTY_STMT (imm_rdef_stmt))
add_immediate_use (imm_rdef_stmt, phi);
}
}
}
/* Another helper for compute_immediate_uses. Depending on the value
of FLAGS, check all the USE and/or VUSE operands in STMT and add a
def-use edge between their defining statement and STMT. CALC_FOR
is as in compute_immediate_uses. */
static void
compute_immediate_uses_for_stmt (tree stmt, int flags, bool (*calc_for)(tree))
{
tree use;
ssa_op_iter iter;
/* PHI nodes are handled elsewhere. */
gcc_assert (TREE_CODE (stmt) != PHI_NODE);
/* Look at USE_OPS or VUSE_OPS according to FLAGS. */
if (flags & TDFA_USE_OPS)
{
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
{
tree imm_stmt = SSA_NAME_DEF_STMT (use);
if (!IS_EMPTY_STMT (imm_stmt) && (!calc_for || calc_for (use)))
add_immediate_use (imm_stmt, stmt);
}
}
if (flags & TDFA_USE_VOPS)
{
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_VIRTUAL_USES)
{
tree imm_rdef_stmt = SSA_NAME_DEF_STMT (use);
if (!IS_EMPTY_STMT (imm_rdef_stmt) && (!calc_for || calc_for (use)))
add_immediate_use (imm_rdef_stmt, stmt);
}
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_ALL_KILLS)
{
tree imm_rdef_stmt = SSA_NAME_DEF_STMT (use);
if (!IS_EMPTY_STMT (imm_rdef_stmt) && (!calc_for || calc_for (use)))
add_immediate_use (imm_rdef_stmt, stmt);
}
}
}
/* Add statement USE_STMT to the list of statements that use definitions
made by STMT. */
static void
add_immediate_use (tree stmt, tree use_stmt)
{
struct dataflow_d **df;
if (TREE_CODE (stmt) == PHI_NODE)
df = &PHI_DF (stmt);
else
{
stmt_ann_t ann = get_stmt_ann (stmt);
df = &ann->df;
}
if (*df == NULL)
{
*df = ggc_alloc (sizeof (struct dataflow_d));
memset ((void *) *df, 0, sizeof (struct dataflow_d));
(*df)->uses[0] = use_stmt;
return;
}
if (!(*df)->uses[1])
{
(*df)->uses[1] = use_stmt;
return;
}
if ((*df)->immediate_uses == NULL)
VARRAY_TREE_INIT ((*df)->immediate_uses, 4, "immediate_uses");
VARRAY_PUSH_TREE ((*df)->immediate_uses, use_stmt);
}
/* If the immediate use of USE points to OLD, then redirect it to NEW. */
static void
redirect_immediate_use (tree use, tree old, tree new)
{
tree imm_stmt = SSA_NAME_DEF_STMT (use);
struct dataflow_d *df = get_immediate_uses (imm_stmt);
unsigned int num_uses = num_immediate_uses (df);
unsigned int i;
for (i = 0; i < num_uses; i++)
{
if (immediate_use (df, i) == old)
{
if (i == 0 || i == 1)
df->uses[i] = new;
else
VARRAY_TREE (df->immediate_uses, i - 2) = new;
}
}
}
/* Redirect all immediate uses for operands in OLD so that they point
to NEW. This routine should have no knowledge of how immediate
uses are stored. */
void
redirect_immediate_uses (tree old, tree new)
{
ssa_op_iter iter;
tree val;
FOR_EACH_SSA_TREE_OPERAND (val, old, iter, SSA_OP_ALL_USES)
redirect_immediate_use (val, old, new);
}
/*---------------------------------------------------------------------------
Manage annotations
---------------------------------------------------------------------------*/
/* Create a new annotation for a _DECL node T. */
var_ann_t
create_var_ann (tree t)
{
var_ann_t ann;
gcc_assert (t);
gcc_assert (DECL_P (t));
gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);
ann = ggc_alloc (sizeof (*ann));
memset ((void *) ann, 0, sizeof (*ann));
ann->common.type = VAR_ANN;
t->common.ann = (tree_ann_t) ann;
return ann;
}
/* Create a new annotation for a statement node T. */
stmt_ann_t
create_stmt_ann (tree t)
{
stmt_ann_t ann;
gcc_assert (is_gimple_stmt (t));
gcc_assert (!t->common.ann || t->common.ann->common.type == STMT_ANN);
ann = ggc_alloc (sizeof (*ann));
memset ((void *) ann, 0, sizeof (*ann));
ann->common.type = STMT_ANN;
/* Since we just created the annotation, mark the statement modified. */
ann->modified = true;
t->common.ann = (tree_ann_t) ann;
return ann;
}
/* Create a new annotation for a tree T. */
tree_ann_t
create_tree_ann (tree t)
{
tree_ann_t ann;
gcc_assert (t);
gcc_assert (!t->common.ann || t->common.ann->common.type == TREE_ANN_COMMON);
ann = ggc_alloc (sizeof (*ann));
memset ((void *) ann, 0, sizeof (*ann));
ann->common.type = TREE_ANN_COMMON;
t->common.ann = ann;
return ann;
}
/* Build a temporary. Make sure and register it to be renamed. */
tree
make_rename_temp (tree type, const char *prefix)
{
tree t = create_tmp_var (type, prefix);
if (referenced_vars)
{
add_referenced_tmp_var (t);
bitmap_set_bit (vars_to_rename, var_ann (t)->uid);
}
return t;
}
/*---------------------------------------------------------------------------
Debugging functions
---------------------------------------------------------------------------*/
/* Dump the list of all the referenced variables in the current function to
FILE. */
void
dump_referenced_vars (FILE *file)
{
size_t i;
fprintf (file, "\nReferenced variables in %s: %u\n\n",
get_name (current_function_decl), (unsigned) num_referenced_vars);
for (i = 0; i < num_referenced_vars; i++)
{
tree var = referenced_var (i);
fprintf (file, "Variable: ");
dump_variable (file, var);
fprintf (file, "\n");
}
}
/* Dump the list of all the referenced variables to stderr. */
void
debug_referenced_vars (void)
{
dump_referenced_vars (stderr);
}
/* Dump variable VAR and its may-aliases to FILE. */
void
dump_variable (FILE *file, tree var)
{
var_ann_t ann;
if (TREE_CODE (var) == SSA_NAME)
{
if (POINTER_TYPE_P (TREE_TYPE (var)))
dump_points_to_info_for (file, var);
var = SSA_NAME_VAR (var);
}
if (var == NULL_TREE)
{
fprintf (file, "<nil>");
return;
}
print_generic_expr (file, var, dump_flags);
ann = var_ann (var);
fprintf (file, ", UID %u", (unsigned) ann->uid);
fprintf (file, ", ");
print_generic_expr (file, TREE_TYPE (var), dump_flags);
if (ann->type_mem_tag)
{
fprintf (file, ", type memory tag: ");
print_generic_expr (file, ann->type_mem_tag, dump_flags);
}
if (ann->is_alias_tag)
fprintf (file, ", is an alias tag");
if (TREE_ADDRESSABLE (var))
fprintf (file, ", is addressable");
if (is_global_var (var))
fprintf (file, ", is global");
if (TREE_THIS_VOLATILE (var))
fprintf (file, ", is volatile");
if (is_call_clobbered (var))
fprintf (file, ", call clobbered");
if (ann->default_def)
{
fprintf (file, ", default def: ");
print_generic_expr (file, ann->default_def, dump_flags);
}
if (ann->may_aliases)
{
fprintf (file, ", may aliases: ");
dump_may_aliases_for (file, var);
}
fprintf (file, "\n");
}
/* Dump variable VAR and its may-aliases to stderr. */
void
debug_variable (tree var)
{
dump_variable (stderr, var);
}
/* Dump def-use edges on FILE. */
void
dump_immediate_uses (FILE *file)
{
basic_block bb;
block_stmt_iterator si;
const char *funcname
= lang_hooks.decl_printable_name (current_function_decl, 2);
fprintf (file, "\nDef-use edges for function %s\n", funcname);
FOR_EACH_BB (bb)
{
tree phi;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
dump_immediate_uses_for (file, phi);
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
dump_immediate_uses_for (file, bsi_stmt (si));
}
fprintf (file, "\n");
}
/* Dump def-use edges on stderr. */
void
debug_immediate_uses (void)
{
dump_immediate_uses (stderr);
}
/* Dump all immediate uses for STMT on FILE. */
void
dump_immediate_uses_for (FILE *file, tree stmt)
{
dataflow_t df = get_immediate_uses (stmt);
int num_imm_uses = num_immediate_uses (df);
if (num_imm_uses > 0)
{
int i;
fprintf (file, "-> ");
print_generic_stmt (file, stmt, TDF_SLIM);
fprintf (file, "\n");
for (i = 0; i < num_imm_uses; i++)
{
fprintf (file, "\t");
print_generic_stmt (file, immediate_use (df, i), TDF_SLIM);
fprintf (file, "\n");
}
fprintf (file, "\n");
}
}
/* Dump immediate uses for STMT on stderr. */
void
debug_immediate_uses_for (tree stmt)
{
dump_immediate_uses_for (stderr, stmt);
}
/* Dump various DFA statistics to FILE. */
void
dump_dfa_stats (FILE *file)
{
struct dfa_stats_d dfa_stats;
unsigned long size, total = 0;
const char * const fmt_str = "%-30s%-13s%12s\n";
const char * const fmt_str_1 = "%-30s%13lu%11lu%c\n";
const char * const fmt_str_3 = "%-43s%11lu%c\n";
const char *funcname
= lang_hooks.decl_printable_name (current_function_decl, 2);
collect_dfa_stats (&dfa_stats);
fprintf (file, "\nDFA Statistics for %s\n\n", funcname);
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, fmt_str, "", " Number of ", "Memory");
fprintf (file, fmt_str, "", " instances ", "used ");
fprintf (file, "---------------------------------------------------------\n");
size = num_referenced_vars * sizeof (tree);
total += size;
fprintf (file, fmt_str_1, "Referenced variables", (unsigned long)num_referenced_vars,
SCALE (size), LABEL (size));
size = dfa_stats.num_stmt_anns * sizeof (struct stmt_ann_d);
total += size;
fprintf (file, fmt_str_1, "Statements annotated", dfa_stats.num_stmt_anns,
SCALE (size), LABEL (size));
size = dfa_stats.num_var_anns * sizeof (struct var_ann_d);
total += size;
fprintf (file, fmt_str_1, "Variables annotated", dfa_stats.num_var_anns,
SCALE (size), LABEL (size));
size = dfa_stats.num_uses * sizeof (tree *);
total += size;
fprintf (file, fmt_str_1, "USE operands", dfa_stats.num_uses,
SCALE (size), LABEL (size));
size = dfa_stats.num_defs * sizeof (tree *);
total += size;
fprintf (file, fmt_str_1, "DEF operands", dfa_stats.num_defs,
SCALE (size), LABEL (size));
size = dfa_stats.num_vuses * sizeof (tree *);
total += size;
fprintf (file, fmt_str_1, "VUSE operands", dfa_stats.num_vuses,
SCALE (size), LABEL (size));
size = dfa_stats.num_v_may_defs * sizeof (tree *);
total += size;
fprintf (file, fmt_str_1, "V_MAY_DEF operands", dfa_stats.num_v_may_defs,
SCALE (size), LABEL (size));
size = dfa_stats.num_v_must_defs * sizeof (tree *);
total += size;
fprintf (file, fmt_str_1, "V_MUST_DEF operands", dfa_stats.num_v_must_defs,
SCALE (size), LABEL (size));
size = dfa_stats.num_phis * sizeof (struct tree_phi_node);
total += size;
fprintf (file, fmt_str_1, "PHI nodes", dfa_stats.num_phis,
SCALE (size), LABEL (size));
size = dfa_stats.num_phi_args * sizeof (struct phi_arg_d);
total += size;
fprintf (file, fmt_str_1, "PHI arguments", dfa_stats.num_phi_args,
SCALE (size), LABEL (size));
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, fmt_str_3, "Total memory used by DFA/SSA data", SCALE (total),
LABEL (total));
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, "\n");
if (dfa_stats.num_phis)
fprintf (file, "Average number of arguments per PHI node: %.1f (max: %d)\n",
(float) dfa_stats.num_phi_args / (float) dfa_stats.num_phis,
dfa_stats.max_num_phi_args);
fprintf (file, "\n");
}
/* Dump DFA statistics on stderr. */
void
debug_dfa_stats (void)
{
dump_dfa_stats (stderr);
}
/* Collect DFA statistics and store them in the structure pointed by
DFA_STATS_P. */
static void
collect_dfa_stats (struct dfa_stats_d *dfa_stats_p)
{
struct pointer_set_t *pset;
basic_block bb;
block_stmt_iterator i;
gcc_assert (dfa_stats_p);
memset ((void *)dfa_stats_p, 0, sizeof (struct dfa_stats_d));
/* Walk all the trees in the function counting references. Start at
basic block 0, but don't stop at block boundaries. */
pset = pointer_set_create ();
for (i = bsi_start (BASIC_BLOCK (0)); !bsi_end_p (i); bsi_next (&i))
walk_tree (bsi_stmt_ptr (i), collect_dfa_stats_r, (void *) dfa_stats_p,
pset);
pointer_set_destroy (pset);
FOR_EACH_BB (bb)
{
tree phi;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
dfa_stats_p->num_phis++;
dfa_stats_p->num_phi_args += PHI_NUM_ARGS (phi);
if (PHI_NUM_ARGS (phi) > dfa_stats_p->max_num_phi_args)
dfa_stats_p->max_num_phi_args = PHI_NUM_ARGS (phi);
}
}
}
/* Callback for walk_tree to collect DFA statistics for a tree and its
children. */
static tree
collect_dfa_stats_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data)
{
tree t = *tp;
struct dfa_stats_d *dfa_stats_p = (struct dfa_stats_d *)data;
if (t->common.ann)
{
switch (ann_type (t->common.ann))
{
case STMT_ANN:
{
stmt_ann_t ann = (stmt_ann_t) t->common.ann;
dfa_stats_p->num_stmt_anns++;
dfa_stats_p->num_defs += NUM_DEFS (DEF_OPS (ann));
dfa_stats_p->num_uses += NUM_USES (USE_OPS (ann));
dfa_stats_p->num_v_may_defs +=
NUM_V_MAY_DEFS (V_MAY_DEF_OPS (ann));
dfa_stats_p->num_vuses += NUM_VUSES (VUSE_OPS (ann));
dfa_stats_p->num_v_must_defs +=
NUM_V_MUST_DEFS (V_MUST_DEF_OPS (ann));
break;
}
case VAR_ANN:
dfa_stats_p->num_var_anns++;
break;
default:
break;
}
}
return NULL;
}
/*---------------------------------------------------------------------------
Miscellaneous helpers
---------------------------------------------------------------------------*/
/* Callback for walk_tree. Used to collect variables referenced in
the function. */
static tree
find_vars_r (tree *tp, int *walk_subtrees, void *data)
{
struct walk_state *walk_state = (struct walk_state *) data;
/* If T is a regular variable that the optimizers are interested
in, add it to the list of variables. */
if (SSA_VAR_P (*tp))
add_referenced_var (*tp, walk_state);
/* Type, _DECL and constant nodes have no interesting children.
Ignore them. */
else if (IS_TYPE_OR_DECL_P (*tp) || CONSTANT_CLASS_P (*tp))
*walk_subtrees = 0;
return NULL_TREE;
}
/* Add VAR to the list of dereferenced variables.
WALK_STATE contains a hash table used to avoid adding the same
variable more than once. Note that this function assumes that
VAR is a valid SSA variable. If WALK_STATE is NULL, no
duplicate checking is done. */
static void
add_referenced_var (tree var, struct walk_state *walk_state)
{
void **slot;
var_ann_t v_ann;
v_ann = get_var_ann (var);
if (walk_state)
slot = htab_find_slot (walk_state->vars_found, (void *) var, INSERT);
else
slot = NULL;
if (slot == NULL || *slot == NULL)
{
/* This is the first time we find this variable, add it to the
REFERENCED_VARS array and annotate it with attributes that are
intrinsic to the variable. */
if (slot)
*slot = (void *) var;
v_ann->uid = num_referenced_vars;
VARRAY_PUSH_TREE (referenced_vars, var);
/* Global variables are always call-clobbered. */
if (is_global_var (var))
mark_call_clobbered (var);
/* Scan DECL_INITIAL for pointer variables as they may contain
address arithmetic referencing the address of other
variables. */
if (DECL_INITIAL (var))
walk_tree (&DECL_INITIAL (var), find_vars_r, walk_state, 0);
}
}
/* Return the virtual variable associated to the non-scalar variable VAR. */
tree
get_virtual_var (tree var)
{
STRIP_NOPS (var);
if (TREE_CODE (var) == SSA_NAME)
var = SSA_NAME_VAR (var);
while (TREE_CODE (var) == REALPART_EXPR || TREE_CODE (var) == IMAGPART_EXPR
|| handled_component_p (var))
var = TREE_OPERAND (var, 0);
/* Treating GIMPLE registers as virtual variables makes no sense.
Also complain if we couldn't extract a _DECL out of the original
expression. */
gcc_assert (SSA_VAR_P (var));
gcc_assert (!is_gimple_reg (var));
return var;
}
/* Add a temporary variable to REFERENCED_VARS. This is similar to
add_referenced_var, but is used by passes that need to add new temps to
the REFERENCED_VARS array after the program has been scanned for
variables. The variable will just receive a new UID and be added
to the REFERENCED_VARS array without checking for duplicates. */
void
add_referenced_tmp_var (tree var)
{
add_referenced_var (var, NULL);
}
/* Add all the non-SSA variables found in STMT's operands to the bitmap
VARS_TO_RENAME. */
void
mark_new_vars_to_rename (tree stmt, bitmap vars_to_rename)
{
ssa_op_iter iter;
tree val;
bitmap vars_in_vops_to_rename;
bool found_exposed_symbol = false;
int v_may_defs_before, v_may_defs_after;
int v_must_defs_before, v_must_defs_after;
vars_in_vops_to_rename = BITMAP_ALLOC (NULL);
/* Before re-scanning the statement for operands, mark the existing
virtual operands to be renamed again. We do this because when new
symbols are exposed, the virtual operands that were here before due to
aliasing will probably be removed by the call to get_stmt_operand.
Therefore, we need to flag them to be renamed beforehand.
We flag them in a separate bitmap because we don't really want to
rename them if there are not any newly exposed symbols in the
statement operands. */
v_may_defs_before = NUM_V_MAY_DEFS (STMT_V_MAY_DEF_OPS (stmt));
v_must_defs_before = NUM_V_MUST_DEFS (STMT_V_MUST_DEF_OPS (stmt));
FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter,
SSA_OP_VMAYDEF | SSA_OP_VUSE | SSA_OP_VMUSTDEF)
{
if (!DECL_P (val))
val = SSA_NAME_VAR (val);
bitmap_set_bit (vars_in_vops_to_rename, var_ann (val)->uid);
}
/* Now force an operand re-scan on the statement and mark any newly
exposed variables. */
modify_stmt (stmt);
get_stmt_operands (stmt);
v_may_defs_after = NUM_V_MAY_DEFS (STMT_V_MAY_DEF_OPS (stmt));
v_must_defs_after = NUM_V_MUST_DEFS (STMT_V_MUST_DEF_OPS (stmt));
FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_ALL_OPERANDS)
{
if (DECL_P (val))
{
found_exposed_symbol = true;
bitmap_set_bit (vars_to_rename, var_ann (val)->uid);
}
}
/* If we found any newly exposed symbols, or if there are fewer VDEF
operands in the statement, add the variables we had set in
VARS_IN_VOPS_TO_RENAME to VARS_TO_RENAME. We need to check for
vanishing VDEFs because in those cases, the names that were formerly
generated by this statement are not going to be available anymore. */
if (found_exposed_symbol
|| v_may_defs_before > v_may_defs_after
|| v_must_defs_before > v_must_defs_after)
bitmap_ior_into (vars_to_rename, vars_in_vops_to_rename);
BITMAP_FREE (vars_in_vops_to_rename);
}
/* Find all variables within the gimplified statement that were not previously
visible to the function and add them to the referenced variables list. */
static tree
find_new_referenced_vars_1 (tree *tp, int *walk_subtrees,
void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
if (TREE_CODE (t) == VAR_DECL && !var_ann (t))
add_referenced_tmp_var (t);
if (IS_TYPE_OR_DECL_P (t))
*walk_subtrees = 0;
return NULL;
}
void
find_new_referenced_vars (tree *stmt_p)
{
walk_tree (stmt_p, find_new_referenced_vars_1, NULL, NULL);
}
/* Mark all call-clobbered variables for renaming. */
void
mark_call_clobbered_vars_to_rename (void)
{
unsigned i;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
{
tree var = referenced_var (i);
bitmap_set_bit (vars_to_rename, var_ann (var)->uid);
}
}