| /* Data flow analysis for GNU compiler. |
| Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, |
| 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to the Free |
| Software Foundation, 59 Temple Place - Suite 330, Boston, MA |
| 02111-1307, USA. */ |
| |
| /* This file contains the data flow analysis pass of the compiler. It |
| computes data flow information which tells combine_instructions |
| which insns to consider combining and controls register allocation. |
| |
| Additional data flow information that is too bulky to record is |
| generated during the analysis, and is used at that time to create |
| autoincrement and autodecrement addressing. |
| |
| The first step is dividing the function into basic blocks. |
| find_basic_blocks does this. Then life_analysis determines |
| where each register is live and where it is dead. |
| |
| ** find_basic_blocks ** |
| |
| find_basic_blocks divides the current function's rtl into basic |
| blocks and constructs the CFG. The blocks are recorded in the |
| basic_block_info array; the CFG exists in the edge structures |
| referenced by the blocks. |
| |
| find_basic_blocks also finds any unreachable loops and deletes them. |
| |
| ** life_analysis ** |
| |
| life_analysis is called immediately after find_basic_blocks. |
| It uses the basic block information to determine where each |
| hard or pseudo register is live. |
| |
| ** live-register info ** |
| |
| The information about where each register is live is in two parts: |
| the REG_NOTES of insns, and the vector basic_block->global_live_at_start. |
| |
| basic_block->global_live_at_start has an element for each basic |
| block, and the element is a bit-vector with a bit for each hard or |
| pseudo register. The bit is 1 if the register is live at the |
| beginning of the basic block. |
| |
| Two types of elements can be added to an insn's REG_NOTES. |
| A REG_DEAD note is added to an insn's REG_NOTES for any register |
| that meets both of two conditions: The value in the register is not |
| needed in subsequent insns and the insn does not replace the value in |
| the register (in the case of multi-word hard registers, the value in |
| each register must be replaced by the insn to avoid a REG_DEAD note). |
| |
| In the vast majority of cases, an object in a REG_DEAD note will be |
| used somewhere in the insn. The (rare) exception to this is if an |
| insn uses a multi-word hard register and only some of the registers are |
| needed in subsequent insns. In that case, REG_DEAD notes will be |
| provided for those hard registers that are not subsequently needed. |
| Partial REG_DEAD notes of this type do not occur when an insn sets |
| only some of the hard registers used in such a multi-word operand; |
| omitting REG_DEAD notes for objects stored in an insn is optional and |
| the desire to do so does not justify the complexity of the partial |
| REG_DEAD notes. |
| |
| REG_UNUSED notes are added for each register that is set by the insn |
| but is unused subsequently (if every register set by the insn is unused |
| and the insn does not reference memory or have some other side-effect, |
| the insn is deleted instead). If only part of a multi-word hard |
| register is used in a subsequent insn, REG_UNUSED notes are made for |
| the parts that will not be used. |
| |
| To determine which registers are live after any insn, one can |
| start from the beginning of the basic block and scan insns, noting |
| which registers are set by each insn and which die there. |
| |
| ** Other actions of life_analysis ** |
| |
| life_analysis sets up the LOG_LINKS fields of insns because the |
| information needed to do so is readily available. |
| |
| life_analysis deletes insns whose only effect is to store a value |
| that is never used. |
| |
| life_analysis notices cases where a reference to a register as |
| a memory address can be combined with a preceding or following |
| incrementation or decrementation of the register. The separate |
| instruction to increment or decrement is deleted and the address |
| is changed to a POST_INC or similar rtx. |
| |
| Each time an incrementing or decrementing address is created, |
| a REG_INC element is added to the insn's REG_NOTES list. |
| |
| life_analysis fills in certain vectors containing information about |
| register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH, |
| REG_N_CALLS_CROSSED and REG_BASIC_BLOCK. |
| |
| life_analysis sets current_function_sp_is_unchanging if the function |
| doesn't modify the stack pointer. */ |
| |
| /* TODO: |
| |
| Split out from life_analysis: |
| - local property discovery |
| - global property computation |
| - log links creation |
| - pre/post modify transformation |
| */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "tree.h" |
| #include "rtl.h" |
| #include "tm_p.h" |
| #include "hard-reg-set.h" |
| #include "basic-block.h" |
| #include "insn-config.h" |
| #include "regs.h" |
| #include "flags.h" |
| #include "output.h" |
| #include "function.h" |
| #include "except.h" |
| #include "toplev.h" |
| #include "recog.h" |
| #include "expr.h" |
| #include "timevar.h" |
| |
| #include "obstack.h" |
| #include "splay-tree.h" |
| |
| #ifndef HAVE_epilogue |
| #define HAVE_epilogue 0 |
| #endif |
| #ifndef HAVE_prologue |
| #define HAVE_prologue 0 |
| #endif |
| #ifndef HAVE_sibcall_epilogue |
| #define HAVE_sibcall_epilogue 0 |
| #endif |
| |
| #ifndef EPILOGUE_USES |
| #define EPILOGUE_USES(REGNO) 0 |
| #endif |
| #ifndef EH_USES |
| #define EH_USES(REGNO) 0 |
| #endif |
| |
| #ifdef HAVE_conditional_execution |
| #ifndef REVERSE_CONDEXEC_PREDICATES_P |
| #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \ |
| (GET_CODE ((x)) == reversed_comparison_code ((y), NULL)) |
| #endif |
| #endif |
| |
| /* This is the maximum number of times we process any given block if the |
| latest loop depth count is smaller than this number. Only used for the |
| failure strategy to avoid infinite loops in calculate_global_regs_live. */ |
| #define MAX_LIVENESS_ROUNDS 20 |
| |
| /* Nonzero if the second flow pass has completed. */ |
| int flow2_completed; |
| |
| /* Maximum register number used in this function, plus one. */ |
| |
| int max_regno; |
| |
| /* Indexed by n, giving various register information */ |
| |
| varray_type reg_n_info; |
| |
| /* Regset of regs live when calls to `setjmp'-like functions happen. */ |
| /* ??? Does this exist only for the setjmp-clobbered warning message? */ |
| |
| regset regs_live_at_setjmp; |
| |
| /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers |
| that have to go in the same hard reg. |
| The first two regs in the list are a pair, and the next two |
| are another pair, etc. */ |
| rtx regs_may_share; |
| |
| /* Set of registers that may be eliminable. These are handled specially |
| in updating regs_ever_live. */ |
| |
| static HARD_REG_SET elim_reg_set; |
| |
| /* Holds information for tracking conditional register life information. */ |
| struct reg_cond_life_info |
| { |
| /* A boolean expression of conditions under which a register is dead. */ |
| rtx condition; |
| /* Conditions under which a register is dead at the basic block end. */ |
| rtx orig_condition; |
| |
| /* A boolean expression of conditions under which a register has been |
| stored into. */ |
| rtx stores; |
| |
| /* ??? Could store mask of bytes that are dead, so that we could finally |
| track lifetimes of multi-word registers accessed via subregs. */ |
| }; |
| |
| /* For use in communicating between propagate_block and its subroutines. |
| Holds all information needed to compute life and def-use information. */ |
| |
| struct propagate_block_info |
| { |
| /* The basic block we're considering. */ |
| basic_block bb; |
| |
| /* Bit N is set if register N is conditionally or unconditionally live. */ |
| regset reg_live; |
| |
| /* Bit N is set if register N is set this insn. */ |
| regset new_set; |
| |
| /* Element N is the next insn that uses (hard or pseudo) register N |
| within the current basic block; or zero, if there is no such insn. */ |
| rtx *reg_next_use; |
| |
| /* Contains a list of all the MEMs we are tracking for dead store |
| elimination. */ |
| rtx mem_set_list; |
| |
| /* If non-null, record the set of registers set unconditionally in the |
| basic block. */ |
| regset local_set; |
| |
| /* If non-null, record the set of registers set conditionally in the |
| basic block. */ |
| regset cond_local_set; |
| |
| #ifdef HAVE_conditional_execution |
| /* Indexed by register number, holds a reg_cond_life_info for each |
| register that is not unconditionally live or dead. */ |
| splay_tree reg_cond_dead; |
| |
| /* Bit N is set if register N is in an expression in reg_cond_dead. */ |
| regset reg_cond_reg; |
| #endif |
| |
| /* The length of mem_set_list. */ |
| int mem_set_list_len; |
| |
| /* Nonzero if the value of CC0 is live. */ |
| int cc0_live; |
| |
| /* Flags controlling the set of information propagate_block collects. */ |
| int flags; |
| /* Index of instruction being processed. */ |
| int insn_num; |
| }; |
| |
| /* Number of dead insns removed. */ |
| static int ndead; |
| |
| /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction |
| where given register died. When the register is marked alive, we use the |
| information to compute amount of instructions life range cross. |
| (remember, we are walking backward). This can be computed as current |
| pbi->insn_num - reg_deaths[regno]. |
| At the end of processing each basic block, the remaining live registers |
| are inspected and liferanges are increased same way so liverange of global |
| registers are computed correctly. |
| |
| The array is maintained clear for dead registers, so it can be safely reused |
| for next basic block without expensive memset of the whole array after |
| reseting pbi->insn_num to 0. */ |
| |
| static int *reg_deaths; |
| |
| /* Maximum length of pbi->mem_set_list before we start dropping |
| new elements on the floor. */ |
| #define MAX_MEM_SET_LIST_LEN 100 |
| |
| /* Forward declarations */ |
| static int verify_wide_reg_1 (rtx *, void *); |
| static void verify_wide_reg (int, basic_block); |
| static void verify_local_live_at_start (regset, basic_block); |
| static void notice_stack_pointer_modification_1 (rtx, rtx, void *); |
| static void notice_stack_pointer_modification (void); |
| static void mark_reg (rtx, void *); |
| static void mark_regs_live_at_end (regset); |
| static void calculate_global_regs_live (sbitmap, sbitmap, int); |
| static void propagate_block_delete_insn (rtx); |
| static rtx propagate_block_delete_libcall (rtx, rtx); |
| static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx); |
| static int libcall_dead_p (struct propagate_block_info *, rtx, rtx); |
| static void mark_set_regs (struct propagate_block_info *, rtx, rtx); |
| static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx, |
| rtx, rtx, int); |
| static int find_regno_partial (rtx *, void *); |
| |
| #ifdef HAVE_conditional_execution |
| static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx); |
| static void free_reg_cond_life_info (splay_tree_value); |
| static int flush_reg_cond_reg_1 (splay_tree_node, void *); |
| static void flush_reg_cond_reg (struct propagate_block_info *, int); |
| static rtx elim_reg_cond (rtx, unsigned int); |
| static rtx ior_reg_cond (rtx, rtx, int); |
| static rtx not_reg_cond (rtx); |
| static rtx and_reg_cond (rtx, rtx, int); |
| #endif |
| #ifdef AUTO_INC_DEC |
| static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx, |
| rtx, rtx); |
| static void find_auto_inc (struct propagate_block_info *, rtx, rtx); |
| static int try_pre_increment_1 (struct propagate_block_info *, rtx); |
| static int try_pre_increment (rtx, rtx, HOST_WIDE_INT); |
| #endif |
| static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx); |
| static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx); |
| void debug_flow_info (void); |
| static void add_to_mem_set_list (struct propagate_block_info *, rtx); |
| static int invalidate_mems_from_autoinc (rtx *, void *); |
| static void invalidate_mems_from_set (struct propagate_block_info *, rtx); |
| static void clear_log_links (sbitmap); |
| static int count_or_remove_death_notes_bb (basic_block, int); |
| static void allocate_bb_life_data (void); |
| |
| /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK |
| note associated with the BLOCK. */ |
| |
| rtx |
| first_insn_after_basic_block_note (basic_block block) |
| { |
| rtx insn; |
| |
| /* Get the first instruction in the block. */ |
| insn = BB_HEAD (block); |
| |
| if (insn == NULL_RTX) |
| return NULL_RTX; |
| if (LABEL_P (insn)) |
| insn = NEXT_INSN (insn); |
| gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn)); |
| |
| return NEXT_INSN (insn); |
| } |
| |
| /* Perform data flow analysis for the whole control flow graph. |
| FLAGS is a set of PROP_* flags to be used in accumulating flow info. */ |
| |
| void |
| life_analysis (FILE *file, int flags) |
| { |
| #ifdef ELIMINABLE_REGS |
| int i; |
| static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS; |
| #endif |
| |
| /* Record which registers will be eliminated. We use this in |
| mark_used_regs. */ |
| |
| CLEAR_HARD_REG_SET (elim_reg_set); |
| |
| #ifdef ELIMINABLE_REGS |
| for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++) |
| SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from); |
| #else |
| SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM); |
| #endif |
| |
| |
| #ifdef CANNOT_CHANGE_MODE_CLASS |
| if (flags & PROP_REG_INFO) |
| init_subregs_of_mode (); |
| #endif |
| |
| if (! optimize) |
| flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES); |
| |
| /* The post-reload life analysis have (on a global basis) the same |
| registers live as was computed by reload itself. elimination |
| Otherwise offsets and such may be incorrect. |
| |
| Reload will make some registers as live even though they do not |
| appear in the rtl. |
| |
| We don't want to create new auto-incs after reload, since they |
| are unlikely to be useful and can cause problems with shared |
| stack slots. */ |
| if (reload_completed) |
| flags &= ~(PROP_REG_INFO | PROP_AUTOINC); |
| |
| /* We want alias analysis information for local dead store elimination. */ |
| if (optimize && (flags & PROP_SCAN_DEAD_STORES)) |
| init_alias_analysis (); |
| |
| /* Always remove no-op moves. Do this before other processing so |
| that we don't have to keep re-scanning them. */ |
| delete_noop_moves (); |
| |
| /* Some targets can emit simpler epilogues if they know that sp was |
| not ever modified during the function. After reload, of course, |
| we've already emitted the epilogue so there's no sense searching. */ |
| if (! reload_completed) |
| notice_stack_pointer_modification (); |
| |
| /* Allocate and zero out data structures that will record the |
| data from lifetime analysis. */ |
| allocate_reg_life_data (); |
| allocate_bb_life_data (); |
| |
| /* Find the set of registers live on function exit. */ |
| mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start); |
| |
| /* "Update" life info from zero. It'd be nice to begin the |
| relaxation with just the exit and noreturn blocks, but that set |
| is not immediately handy. */ |
| |
| if (flags & PROP_REG_INFO) |
| { |
| memset (regs_ever_live, 0, sizeof (regs_ever_live)); |
| memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered)); |
| } |
| update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags); |
| if (reg_deaths) |
| { |
| free (reg_deaths); |
| reg_deaths = NULL; |
| } |
| |
| /* Clean up. */ |
| if (optimize && (flags & PROP_SCAN_DEAD_STORES)) |
| end_alias_analysis (); |
| |
| if (file) |
| dump_flow_info (file); |
| |
| /* Removing dead insns should have made jumptables really dead. */ |
| delete_dead_jumptables (); |
| } |
| |
| /* A subroutine of verify_wide_reg, called through for_each_rtx. |
| Search for REGNO. If found, return 2 if it is not wider than |
| word_mode. */ |
| |
| static int |
| verify_wide_reg_1 (rtx *px, void *pregno) |
| { |
| rtx x = *px; |
| unsigned int regno = *(int *) pregno; |
| |
| if (REG_P (x) && REGNO (x) == regno) |
| { |
| if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD) |
| return 2; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* A subroutine of verify_local_live_at_start. Search through insns |
| of BB looking for register REGNO. */ |
| |
| static void |
| verify_wide_reg (int regno, basic_block bb) |
| { |
| rtx head = BB_HEAD (bb), end = BB_END (bb); |
| |
| while (1) |
| { |
| if (INSN_P (head)) |
| { |
| int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, ®no); |
| if (r == 1) |
| return; |
| if (r == 2) |
| break; |
| } |
| if (head == end) |
| break; |
| head = NEXT_INSN (head); |
| } |
| if (dump_file) |
| { |
| fprintf (dump_file, "Register %d died unexpectedly.\n", regno); |
| dump_bb (bb, dump_file, 0); |
| } |
| fatal_error ("internal consistency failure"); |
| } |
| |
| /* A subroutine of update_life_info. Verify that there are no untoward |
| changes in live_at_start during a local update. */ |
| |
| static void |
| verify_local_live_at_start (regset new_live_at_start, basic_block bb) |
| { |
| if (reload_completed) |
| { |
| /* After reload, there are no pseudos, nor subregs of multi-word |
| registers. The regsets should exactly match. */ |
| if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start)) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| "live_at_start mismatch in bb %d, aborting\nNew:\n", |
| bb->index); |
| debug_bitmap_file (dump_file, new_live_at_start); |
| fputs ("Old:\n", dump_file); |
| dump_bb (bb, dump_file, 0); |
| } |
| fatal_error ("internal consistency failure"); |
| } |
| } |
| else |
| { |
| unsigned i; |
| reg_set_iterator rsi; |
| |
| /* Find the set of changed registers. */ |
| XOR_REG_SET (new_live_at_start, bb->global_live_at_start); |
| |
| EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi) |
| { |
| /* No registers should die. */ |
| if (REGNO_REG_SET_P (bb->global_live_at_start, i)) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| "Register %d died unexpectedly.\n", i); |
| dump_bb (bb, dump_file, 0); |
| } |
| fatal_error ("internal consistency failure"); |
| } |
| /* Verify that the now-live register is wider than word_mode. */ |
| verify_wide_reg (i, bb); |
| } |
| } |
| } |
| |
| /* Updates life information starting with the basic blocks set in BLOCKS. |
| If BLOCKS is null, consider it to be the universal set. |
| |
| If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing, |
| we are only expecting local modifications to basic blocks. If we find |
| extra registers live at the beginning of a block, then we either killed |
| useful data, or we have a broken split that wants data not provided. |
| If we find registers removed from live_at_start, that means we have |
| a broken peephole that is killing a register it shouldn't. |
| |
| ??? This is not true in one situation -- when a pre-reload splitter |
| generates subregs of a multi-word pseudo, current life analysis will |
| lose the kill. So we _can_ have a pseudo go live. How irritating. |
| |
| It is also not true when a peephole decides that it doesn't need one |
| or more of the inputs. |
| |
| Including PROP_REG_INFO does not properly refresh regs_ever_live |
| unless the caller resets it to zero. */ |
| |
| int |
| update_life_info (sbitmap blocks, enum update_life_extent extent, |
| int prop_flags) |
| { |
| regset tmp; |
| unsigned i; |
| int stabilized_prop_flags = prop_flags; |
| basic_block bb; |
| |
| tmp = ALLOC_REG_SET (®_obstack); |
| ndead = 0; |
| |
| if ((prop_flags & PROP_REG_INFO) && !reg_deaths) |
| reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno); |
| |
| timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks) |
| ? TV_LIFE_UPDATE : TV_LIFE); |
| |
| /* Changes to the CFG are only allowed when |
| doing a global update for the entire CFG. */ |
| gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES) |
| || (extent != UPDATE_LIFE_LOCAL && !blocks)); |
| |
| /* For a global update, we go through the relaxation process again. */ |
| if (extent != UPDATE_LIFE_LOCAL) |
| { |
| for ( ; ; ) |
| { |
| int changed = 0; |
| |
| calculate_global_regs_live (blocks, blocks, |
| prop_flags & (PROP_SCAN_DEAD_CODE |
| | PROP_SCAN_DEAD_STORES |
| | PROP_ALLOW_CFG_CHANGES)); |
| |
| if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES)) |
| != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES)) |
| break; |
| |
| /* Removing dead code may allow the CFG to be simplified which |
| in turn may allow for further dead code detection / removal. */ |
| FOR_EACH_BB_REVERSE (bb) |
| { |
| COPY_REG_SET (tmp, bb->global_live_at_end); |
| changed |= propagate_block (bb, tmp, NULL, NULL, |
| prop_flags & (PROP_SCAN_DEAD_CODE |
| | PROP_SCAN_DEAD_STORES |
| | PROP_KILL_DEAD_CODE)); |
| } |
| |
| /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to |
| subsequent propagate_block calls, since removing or acting as |
| removing dead code can affect global register liveness, which |
| is supposed to be finalized for this call after this loop. */ |
| stabilized_prop_flags |
| &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES |
| | PROP_KILL_DEAD_CODE); |
| |
| if (! changed) |
| break; |
| |
| /* We repeat regardless of what cleanup_cfg says. If there were |
| instructions deleted above, that might have been only a |
| partial improvement (see MAX_MEM_SET_LIST_LEN usage). |
| Further improvement may be possible. */ |
| cleanup_cfg (CLEANUP_EXPENSIVE); |
| |
| /* Zap the life information from the last round. If we don't |
| do this, we can wind up with registers that no longer appear |
| in the code being marked live at entry. */ |
| FOR_EACH_BB (bb) |
| { |
| CLEAR_REG_SET (bb->global_live_at_start); |
| CLEAR_REG_SET (bb->global_live_at_end); |
| } |
| } |
| |
| /* If asked, remove notes from the blocks we'll update. */ |
| if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES) |
| count_or_remove_death_notes (blocks, 1); |
| } |
| |
| /* Clear log links in case we are asked to (re)compute them. */ |
| if (prop_flags & PROP_LOG_LINKS) |
| clear_log_links (blocks); |
| |
| if (blocks) |
| { |
| EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, |
| { |
| bb = BASIC_BLOCK (i); |
| |
| COPY_REG_SET (tmp, bb->global_live_at_end); |
| propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags); |
| |
| if (extent == UPDATE_LIFE_LOCAL) |
| verify_local_live_at_start (tmp, bb); |
| }); |
| } |
| else |
| { |
| FOR_EACH_BB_REVERSE (bb) |
| { |
| COPY_REG_SET (tmp, bb->global_live_at_end); |
| |
| propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags); |
| |
| if (extent == UPDATE_LIFE_LOCAL) |
| verify_local_live_at_start (tmp, bb); |
| } |
| } |
| |
| FREE_REG_SET (tmp); |
| |
| if (prop_flags & PROP_REG_INFO) |
| { |
| reg_set_iterator rsi; |
| |
| /* The only pseudos that are live at the beginning of the function |
| are those that were not set anywhere in the function. local-alloc |
| doesn't know how to handle these correctly, so mark them as not |
| local to any one basic block. */ |
| EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end, |
| FIRST_PSEUDO_REGISTER, i, rsi) |
| REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; |
| |
| /* We have a problem with any pseudoreg that lives across the setjmp. |
| ANSI says that if a user variable does not change in value between |
| the setjmp and the longjmp, then the longjmp preserves it. This |
| includes longjmp from a place where the pseudo appears dead. |
| (In principle, the value still exists if it is in scope.) |
| If the pseudo goes in a hard reg, some other value may occupy |
| that hard reg where this pseudo is dead, thus clobbering the pseudo. |
| Conclusion: such a pseudo must not go in a hard reg. */ |
| EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp, |
| FIRST_PSEUDO_REGISTER, i, rsi) |
| { |
| if (regno_reg_rtx[i] != 0) |
| { |
| REG_LIVE_LENGTH (i) = -1; |
| REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN; |
| } |
| } |
| } |
| if (reg_deaths) |
| { |
| free (reg_deaths); |
| reg_deaths = NULL; |
| } |
| timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks) |
| ? TV_LIFE_UPDATE : TV_LIFE); |
| if (ndead && dump_file) |
| fprintf (dump_file, "deleted %i dead insns\n", ndead); |
| return ndead; |
| } |
| |
| /* Update life information in all blocks where BB_DIRTY is set. */ |
| |
| int |
| update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags) |
| { |
| sbitmap update_life_blocks = sbitmap_alloc (last_basic_block); |
| int n = 0; |
| basic_block bb; |
| int retval = 0; |
| |
| sbitmap_zero (update_life_blocks); |
| FOR_EACH_BB (bb) |
| { |
| if (bb->flags & BB_DIRTY) |
| { |
| SET_BIT (update_life_blocks, bb->index); |
| n++; |
| } |
| } |
| |
| if (n) |
| retval = update_life_info (update_life_blocks, extent, prop_flags); |
| |
| sbitmap_free (update_life_blocks); |
| return retval; |
| } |
| |
| /* Free the variables allocated by find_basic_blocks. */ |
| |
| void |
| free_basic_block_vars (void) |
| { |
| if (basic_block_info) |
| { |
| clear_edges (); |
| basic_block_info = NULL; |
| } |
| n_basic_blocks = 0; |
| last_basic_block = 0; |
| |
| ENTRY_BLOCK_PTR->aux = NULL; |
| ENTRY_BLOCK_PTR->global_live_at_end = NULL; |
| EXIT_BLOCK_PTR->aux = NULL; |
| EXIT_BLOCK_PTR->global_live_at_start = NULL; |
| } |
| |
| /* Delete any insns that copy a register to itself. */ |
| |
| int |
| delete_noop_moves (void) |
| { |
| rtx insn, next; |
| basic_block bb; |
| int nnoops = 0; |
| |
| FOR_EACH_BB (bb) |
| { |
| for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next) |
| { |
| next = NEXT_INSN (insn); |
| if (INSN_P (insn) && noop_move_p (insn)) |
| { |
| rtx note; |
| |
| /* If we're about to remove the first insn of a libcall |
| then move the libcall note to the next real insn and |
| update the retval note. */ |
| if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) |
| && XEXP (note, 0) != insn) |
| { |
| rtx new_libcall_insn = next_real_insn (insn); |
| rtx retval_note = find_reg_note (XEXP (note, 0), |
| REG_RETVAL, NULL_RTX); |
| REG_NOTES (new_libcall_insn) |
| = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0), |
| REG_NOTES (new_libcall_insn)); |
| XEXP (retval_note, 0) = new_libcall_insn; |
| } |
| |
| delete_insn_and_edges (insn); |
| nnoops++; |
| } |
| } |
| } |
| if (nnoops && dump_file) |
| fprintf (dump_file, "deleted %i noop moves", nnoops); |
| return nnoops; |
| } |
| |
| /* Delete any jump tables never referenced. We can't delete them at the |
| time of removing tablejump insn as they are referenced by the preceding |
| insns computing the destination, so we delay deleting and garbagecollect |
| them once life information is computed. */ |
| void |
| delete_dead_jumptables (void) |
| { |
| basic_block bb; |
| |
| /* A dead jump table does not belong to any basic block. Scan insns |
| between two adjacent basic blocks. */ |
| FOR_EACH_BB (bb) |
| { |
| rtx insn, next; |
| |
| for (insn = NEXT_INSN (BB_END (bb)); |
| insn && !NOTE_INSN_BASIC_BLOCK_P (insn); |
| insn = next) |
| { |
| next = NEXT_INSN (insn); |
| if (LABEL_P (insn) |
| && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn) |
| && JUMP_P (next) |
| && (GET_CODE (PATTERN (next)) == ADDR_VEC |
| || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)) |
| { |
| rtx label = insn, jump = next; |
| |
| if (dump_file) |
| fprintf (dump_file, "Dead jumptable %i removed\n", |
| INSN_UID (insn)); |
| |
| next = NEXT_INSN (next); |
| delete_insn (jump); |
| delete_insn (label); |
| } |
| } |
| } |
| } |
| |
| /* Determine if the stack pointer is constant over the life of the function. |
| Only useful before prologues have been emitted. */ |
| |
| static void |
| notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, |
| void *data ATTRIBUTE_UNUSED) |
| { |
| if (x == stack_pointer_rtx |
| /* The stack pointer is only modified indirectly as the result |
| of a push until later in flow. See the comments in rtl.texi |
| regarding Embedded Side-Effects on Addresses. */ |
| || (MEM_P (x) |
| && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC |
| && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx)) |
| current_function_sp_is_unchanging = 0; |
| } |
| |
| static void |
| notice_stack_pointer_modification (void) |
| { |
| basic_block bb; |
| rtx insn; |
| |
| /* Assume that the stack pointer is unchanging if alloca hasn't |
| been used. */ |
| current_function_sp_is_unchanging = !current_function_calls_alloca; |
| if (! current_function_sp_is_unchanging) |
| return; |
| |
| FOR_EACH_BB (bb) |
| FOR_BB_INSNS (bb, insn) |
| { |
| if (INSN_P (insn)) |
| { |
| /* Check if insn modifies the stack pointer. */ |
| note_stores (PATTERN (insn), |
| notice_stack_pointer_modification_1, |
| NULL); |
| if (! current_function_sp_is_unchanging) |
| return; |
| } |
| } |
| } |
| |
| /* Mark a register in SET. Hard registers in large modes get all |
| of their component registers set as well. */ |
| |
| static void |
| mark_reg (rtx reg, void *xset) |
| { |
| regset set = (regset) xset; |
| int regno = REGNO (reg); |
| |
| gcc_assert (GET_MODE (reg) != BLKmode); |
| |
| SET_REGNO_REG_SET (set, regno); |
| if (regno < FIRST_PSEUDO_REGISTER) |
| { |
| int n = hard_regno_nregs[regno][GET_MODE (reg)]; |
| while (--n > 0) |
| SET_REGNO_REG_SET (set, regno + n); |
| } |
| } |
| |
| /* Mark those regs which are needed at the end of the function as live |
| at the end of the last basic block. */ |
| |
| static void |
| mark_regs_live_at_end (regset set) |
| { |
| unsigned int i; |
| |
| /* If exiting needs the right stack value, consider the stack pointer |
| live at the end of the function. */ |
| if ((HAVE_epilogue && epilogue_completed) |
| || ! EXIT_IGNORE_STACK |
| || (! FRAME_POINTER_REQUIRED |
| && ! current_function_calls_alloca |
| && flag_omit_frame_pointer) |
| || current_function_sp_is_unchanging) |
| { |
| SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM); |
| } |
| |
| /* Mark the frame pointer if needed at the end of the function. If |
| we end up eliminating it, it will be removed from the live list |
| of each basic block by reload. */ |
| |
| if (! reload_completed || frame_pointer_needed) |
| { |
| SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM); |
| #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM |
| /* If they are different, also mark the hard frame pointer as live. */ |
| if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM)) |
| SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM); |
| #endif |
| } |
| |
| #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED |
| /* Many architectures have a GP register even without flag_pic. |
| Assume the pic register is not in use, or will be handled by |
| other means, if it is not fixed. */ |
| if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM |
| && fixed_regs[PIC_OFFSET_TABLE_REGNUM]) |
| SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM); |
| #endif |
| |
| /* Mark all global registers, and all registers used by the epilogue |
| as being live at the end of the function since they may be |
| referenced by our caller. */ |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (global_regs[i] || EPILOGUE_USES (i)) |
| SET_REGNO_REG_SET (set, i); |
| |
| if (HAVE_epilogue && epilogue_completed) |
| { |
| /* Mark all call-saved registers that we actually used. */ |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (regs_ever_live[i] && ! LOCAL_REGNO (i) |
| && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i)) |
| SET_REGNO_REG_SET (set, i); |
| } |
| |
| #ifdef EH_RETURN_DATA_REGNO |
| /* Mark the registers that will contain data for the handler. */ |
| if (reload_completed && current_function_calls_eh_return) |
| for (i = 0; ; ++i) |
| { |
| unsigned regno = EH_RETURN_DATA_REGNO(i); |
| if (regno == INVALID_REGNUM) |
| break; |
| SET_REGNO_REG_SET (set, regno); |
| } |
| #endif |
| #ifdef EH_RETURN_STACKADJ_RTX |
| if ((! HAVE_epilogue || ! epilogue_completed) |
| && current_function_calls_eh_return) |
| { |
| rtx tmp = EH_RETURN_STACKADJ_RTX; |
| if (tmp && REG_P (tmp)) |
| mark_reg (tmp, set); |
| } |
| #endif |
| #ifdef EH_RETURN_HANDLER_RTX |
| if ((! HAVE_epilogue || ! epilogue_completed) |
| && current_function_calls_eh_return) |
| { |
| rtx tmp = EH_RETURN_HANDLER_RTX; |
| if (tmp && REG_P (tmp)) |
| mark_reg (tmp, set); |
| } |
| #endif |
| |
| /* Mark function return value. */ |
| diddle_return_value (mark_reg, set); |
| } |
| |
| /* Propagate global life info around the graph of basic blocks. Begin |
| considering blocks with their corresponding bit set in BLOCKS_IN. |
| If BLOCKS_IN is null, consider it the universal set. |
| |
| BLOCKS_OUT is set for every block that was changed. */ |
| |
| static void |
| calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags) |
| { |
| basic_block *queue, *qhead, *qtail, *qend, bb; |
| regset tmp, new_live_at_end, invalidated_by_call; |
| regset registers_made_dead; |
| bool failure_strategy_required = false; |
| int *block_accesses; |
| |
| /* The registers that are modified within this in block. */ |
| regset *local_sets; |
| |
| /* The registers that are conditionally modified within this block. |
| In other words, regs that are set only as part of a COND_EXEC. */ |
| regset *cond_local_sets; |
| |
| int i; |
| |
| /* Some passes used to forget clear aux field of basic block causing |
| sick behavior here. */ |
| #ifdef ENABLE_CHECKING |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) |
| gcc_assert (!bb->aux); |
| #endif |
| |
| tmp = ALLOC_REG_SET (®_obstack); |
| new_live_at_end = ALLOC_REG_SET (®_obstack); |
| invalidated_by_call = ALLOC_REG_SET (®_obstack); |
| registers_made_dead = ALLOC_REG_SET (®_obstack); |
| |
| /* Inconveniently, this is only readily available in hard reg set form. */ |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i) |
| if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)) |
| SET_REGNO_REG_SET (invalidated_by_call, i); |
| |
| /* Allocate space for the sets of local properties. */ |
| local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1), |
| sizeof (regset)); |
| cond_local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1), |
| sizeof (regset)); |
| |
| /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one |
| because the `head == tail' style test for an empty queue doesn't |
| work with a full queue. */ |
| queue = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1)) * sizeof (*queue)); |
| qtail = queue; |
| qhead = qend = queue + n_basic_blocks - (INVALID_BLOCK + 1); |
| |
| /* Queue the blocks set in the initial mask. Do this in reverse block |
| number order so that we are more likely for the first round to do |
| useful work. We use AUX non-null to flag that the block is queued. */ |
| if (blocks_in) |
| { |
| FOR_EACH_BB (bb) |
| if (TEST_BIT (blocks_in, bb->index)) |
| { |
| *--qhead = bb; |
| bb->aux = bb; |
| } |
| } |
| else |
| { |
| FOR_EACH_BB (bb) |
| { |
| *--qhead = bb; |
| bb->aux = bb; |
| } |
| } |
| |
| block_accesses = xcalloc (last_basic_block, sizeof (int)); |
| |
| /* We clean aux when we remove the initially-enqueued bbs, but we |
| don't enqueue ENTRY and EXIT initially, so clean them upfront and |
| unconditionally. */ |
| ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL; |
| |
| if (blocks_out) |
| sbitmap_zero (blocks_out); |
| |
| /* We work through the queue until there are no more blocks. What |
| is live at the end of this block is precisely the union of what |
| is live at the beginning of all its successors. So, we set its |
| GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field |
| for its successors. Then, we compute GLOBAL_LIVE_AT_START for |
| this block by walking through the instructions in this block in |
| reverse order and updating as we go. If that changed |
| GLOBAL_LIVE_AT_START, we add the predecessors of the block to the |
| queue; they will now need to recalculate GLOBAL_LIVE_AT_END. |
| |
| We are guaranteed to terminate, because GLOBAL_LIVE_AT_START |
| never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it |
| must either be live at the end of the block, or used within the |
| block. In the latter case, it will certainly never disappear |
| from GLOBAL_LIVE_AT_START. In the former case, the register |
| could go away only if it disappeared from GLOBAL_LIVE_AT_START |
| for one of the successor blocks. By induction, that cannot |
| occur. |
| |
| ??? This reasoning doesn't work if we start from non-empty initial |
| GLOBAL_LIVE_AT_START sets. And there are actually two problems: |
| 1) Updating may not terminate (endless oscillation). |
| 2) Even if it does (and it usually does), the resulting information |
| may be inaccurate. Consider for example the following case: |
| |
| a = ...; |
| while (...) {...} -- 'a' not mentioned at all |
| ... = a; |
| |
| If the use of 'a' is deleted between two calculations of liveness |
| information and the initial sets are not cleared, the information |
| about a's liveness will get stuck inside the loop and the set will |
| appear not to be dead. |
| |
| We do not attempt to solve 2) -- the information is conservatively |
| correct (i.e. we never claim that something live is dead) and the |
| amount of optimization opportunities missed due to this problem is |
| not significant. |
| |
| 1) is more serious. In order to fix it, we monitor the number of times |
| each block is processed. Once one of the blocks has been processed more |
| times than the maximum number of rounds, we use the following strategy: |
| When a register disappears from one of the sets, we add it to a MAKE_DEAD |
| set, remove all registers in this set from all GLOBAL_LIVE_AT_* sets and |
| add the blocks with changed sets into the queue. Thus we are guaranteed |
| to terminate (the worst case corresponds to all registers in MADE_DEAD, |
| in which case the original reasoning above is valid), but in general we |
| only fix up a few offending registers. |
| |
| The maximum number of rounds for computing liveness is the largest of |
| MAX_LIVENESS_ROUNDS and the latest loop depth count for this function. */ |
| |
| while (qhead != qtail) |
| { |
| int rescan, changed; |
| basic_block bb; |
| edge e; |
| edge_iterator ei; |
| |
| bb = *qhead++; |
| if (qhead == qend) |
| qhead = queue; |
| bb->aux = NULL; |
| |
| /* Should we start using the failure strategy? */ |
| if (bb != ENTRY_BLOCK_PTR) |
| { |
| int max_liveness_rounds = |
| MAX (MAX_LIVENESS_ROUNDS, cfun->max_loop_depth); |
| |
| block_accesses[bb->index]++; |
| if (block_accesses[bb->index] > max_liveness_rounds) |
| failure_strategy_required = true; |
| } |
| |
| /* Begin by propagating live_at_start from the successor blocks. */ |
| CLEAR_REG_SET (new_live_at_end); |
| |
| if (EDGE_COUNT (bb->succs) > 0) |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| basic_block sb = e->dest; |
| |
| /* Call-clobbered registers die across exception and |
| call edges. */ |
| /* ??? Abnormal call edges ignored for the moment, as this gets |
| confused by sibling call edges, which crashes reg-stack. */ |
| if (e->flags & EDGE_EH) |
| bitmap_ior_and_compl_into (new_live_at_end, |
| sb->global_live_at_start, |
| invalidated_by_call); |
| else |
| IOR_REG_SET (new_live_at_end, sb->global_live_at_start); |
| |
| /* If a target saves one register in another (instead of on |
| the stack) the save register will need to be live for EH. */ |
| if (e->flags & EDGE_EH) |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (EH_USES (i)) |
| SET_REGNO_REG_SET (new_live_at_end, i); |
| } |
| else |
| { |
| /* This might be a noreturn function that throws. And |
| even if it isn't, getting the unwind info right helps |
| debugging. */ |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (EH_USES (i)) |
| SET_REGNO_REG_SET (new_live_at_end, i); |
| } |
| |
| /* The all-important stack pointer must always be live. */ |
| SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM); |
| |
| /* Before reload, there are a few registers that must be forced |
| live everywhere -- which might not already be the case for |
| blocks within infinite loops. */ |
| if (! reload_completed) |
| { |
| /* Any reference to any pseudo before reload is a potential |
| reference of the frame pointer. */ |
| SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM); |
| |
| #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM |
| /* Pseudos with argument area equivalences may require |
| reloading via the argument pointer. */ |
| if (fixed_regs[ARG_POINTER_REGNUM]) |
| SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM); |
| #endif |
| |
| /* Any constant, or pseudo with constant equivalences, may |
| require reloading from memory using the pic register. */ |
| if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM |
| && fixed_regs[PIC_OFFSET_TABLE_REGNUM]) |
| SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM); |
| } |
| |
| if (bb == ENTRY_BLOCK_PTR) |
| { |
| COPY_REG_SET (bb->global_live_at_end, new_live_at_end); |
| continue; |
| } |
| |
| /* On our first pass through this block, we'll go ahead and continue. |
| Recognize first pass by checking if local_set is NULL for this |
| basic block. On subsequent passes, we get to skip out early if |
| live_at_end wouldn't have changed. */ |
| |
| if (local_sets[bb->index - (INVALID_BLOCK + 1)] == NULL) |
| { |
| local_sets[bb->index - (INVALID_BLOCK + 1)] |
| = ALLOC_REG_SET (®_obstack); |
| cond_local_sets[bb->index - (INVALID_BLOCK + 1)] |
| = ALLOC_REG_SET (®_obstack); |
| rescan = 1; |
| } |
| else |
| { |
| /* If any bits were removed from live_at_end, we'll have to |
| rescan the block. This wouldn't be necessary if we had |
| precalculated local_live, however with PROP_SCAN_DEAD_CODE |
| local_live is really dependent on live_at_end. */ |
| rescan = bitmap_intersect_compl_p (bb->global_live_at_end, |
| new_live_at_end); |
| |
| if (!rescan) |
| { |
| regset cond_local_set; |
| |
| /* If any of the registers in the new live_at_end set are |
| conditionally set in this basic block, we must rescan. |
| This is because conditional lifetimes at the end of the |
| block do not just take the live_at_end set into |
| account, but also the liveness at the start of each |
| successor block. We can miss changes in those sets if |
| we only compare the new live_at_end against the |
| previous one. */ |
| cond_local_set = cond_local_sets[bb->index - (INVALID_BLOCK + 1)]; |
| rescan = bitmap_intersect_p (new_live_at_end, cond_local_set); |
| } |
| |
| if (!rescan) |
| { |
| regset local_set; |
| |
| /* Find the set of changed bits. Take this opportunity |
| to notice that this set is empty and early out. */ |
| bitmap_xor (tmp, bb->global_live_at_end, new_live_at_end); |
| if (bitmap_empty_p (tmp)) |
| continue; |
| |
| /* If any of the changed bits overlap with local_sets[bb], |
| we'll have to rescan the block. */ |
| local_set = local_sets[bb->index - (INVALID_BLOCK + 1)]; |
| rescan = bitmap_intersect_p (tmp, local_set); |
| } |
| } |
| |
| /* Let our caller know that BB changed enough to require its |
| death notes updated. */ |
| if (blocks_out) |
| SET_BIT (blocks_out, bb->index); |
| |
| if (! rescan) |
| { |
| /* Add to live_at_start the set of all registers in |
| new_live_at_end that aren't in the old live_at_end. */ |
| |
| changed = bitmap_ior_and_compl_into (bb->global_live_at_start, |
| new_live_at_end, |
| bb->global_live_at_end); |
| COPY_REG_SET (bb->global_live_at_end, new_live_at_end); |
| if (! changed) |
| continue; |
| } |
| else |
| { |
| COPY_REG_SET (bb->global_live_at_end, new_live_at_end); |
| |
| /* Rescan the block insn by insn to turn (a copy of) live_at_end |
| into live_at_start. */ |
| propagate_block (bb, new_live_at_end, |
| local_sets[bb->index - (INVALID_BLOCK + 1)], |
| cond_local_sets[bb->index - (INVALID_BLOCK + 1)], |
| flags); |
| |
| /* If live_at start didn't change, no need to go farther. */ |
| if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end)) |
| continue; |
| |
| if (failure_strategy_required) |
| { |
| /* Get the list of registers that were removed from the |
| bb->global_live_at_start set. */ |
| bitmap_and_compl (tmp, bb->global_live_at_start, |
| new_live_at_end); |
| if (!bitmap_empty_p (tmp)) |
| { |
| bool pbb_changed; |
| basic_block pbb; |
| |
| /* It should not happen that one of registers we have |
| removed last time is disappears again before any other |
| register does. */ |
| pbb_changed = bitmap_ior_into (registers_made_dead, tmp); |
| gcc_assert (pbb_changed); |
| |
| /* Now remove the registers from all sets. */ |
| FOR_EACH_BB (pbb) |
| { |
| pbb_changed = false; |
| |
| pbb_changed |
| |= bitmap_and_compl_into (pbb->global_live_at_start, |
| registers_made_dead); |
| pbb_changed |
| |= bitmap_and_compl_into (pbb->global_live_at_end, |
| registers_made_dead); |
| if (!pbb_changed) |
| continue; |
| |
| /* Note the (possible) change. */ |
| if (blocks_out) |
| SET_BIT (blocks_out, pbb->index); |
| |
| /* Makes sure to really rescan the block. */ |
| if (local_sets[pbb->index - (INVALID_BLOCK + 1)]) |
| { |
| FREE_REG_SET (local_sets[pbb->index - (INVALID_BLOCK + 1)]); |
| FREE_REG_SET (cond_local_sets[pbb->index - (INVALID_BLOCK + 1)]); |
| local_sets[pbb->index - (INVALID_BLOCK + 1)] = 0; |
| } |
| |
| /* Add it to the queue. */ |
| if (pbb->aux == NULL) |
| { |
| *qtail++ = pbb; |
| if (qtail == qend) |
| qtail = queue; |
| pbb->aux = pbb; |
| } |
| } |
| continue; |
| } |
| } /* end of failure_strategy_required */ |
| |
| COPY_REG_SET (bb->global_live_at_start, new_live_at_end); |
| } |
| |
| /* Queue all predecessors of BB so that we may re-examine |
| their live_at_end. */ |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| { |
| basic_block pb = e->src; |
| if (pb->aux == NULL) |
| { |
| *qtail++ = pb; |
| if (qtail == qend) |
| qtail = queue; |
| pb->aux = pb; |
| } |
| } |
| } |
| |
| FREE_REG_SET (tmp); |
| FREE_REG_SET (new_live_at_end); |
| FREE_REG_SET (invalidated_by_call); |
| FREE_REG_SET (registers_made_dead); |
| |
| if (blocks_out) |
| { |
| EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i, |
| { |
| basic_block bb = BASIC_BLOCK (i); |
| FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]); |
| FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]); |
| }); |
| } |
| else |
| { |
| FOR_EACH_BB (bb) |
| { |
| FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]); |
| FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]); |
| } |
| } |
| |
| free (block_accesses); |
| free (queue); |
| free (cond_local_sets); |
| free (local_sets); |
| } |
| |
| |
| /* This structure is used to pass parameters to and from the |
| the function find_regno_partial(). It is used to pass in the |
| register number we are looking, as well as to return any rtx |
| we find. */ |
| |
| typedef struct { |
| unsigned regno_to_find; |
| rtx retval; |
| } find_regno_partial_param; |
| |
| |
| /* Find the rtx for the reg numbers specified in 'data' if it is |
| part of an expression which only uses part of the register. Return |
| it in the structure passed in. */ |
| static int |
| find_regno_partial (rtx *ptr, void *data) |
| { |
| find_regno_partial_param *param = (find_regno_partial_param *)data; |
| unsigned reg = param->regno_to_find; |
| param->retval = NULL_RTX; |
| |
| if (*ptr == NULL_RTX) |
| return 0; |
| |
| switch (GET_CODE (*ptr)) |
| { |
| case ZERO_EXTRACT: |
| case SIGN_EXTRACT: |
| case STRICT_LOW_PART: |
| if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg) |
| { |
| param->retval = XEXP (*ptr, 0); |
| return 1; |
| } |
| break; |
| |
| case SUBREG: |
| if (REG_P (SUBREG_REG (*ptr)) |
| && REGNO (SUBREG_REG (*ptr)) == reg) |
| { |
| param->retval = SUBREG_REG (*ptr); |
| return 1; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* Process all immediate successors of the entry block looking for pseudo |
| registers which are live on entry. Find all of those whose first |
| instance is a partial register reference of some kind, and initialize |
| them to 0 after the entry block. This will prevent bit sets within |
| registers whose value is unknown, and may contain some kind of sticky |
| bits we don't want. */ |
| |
| int |
| initialize_uninitialized_subregs (void) |
| { |
| rtx insn; |
| edge e; |
| unsigned reg, did_something = 0; |
| find_regno_partial_param param; |
| edge_iterator ei; |
| |
| /* APPLE LOCAL begin 4727273 */ |
| /* This is needed for ia64, since a subreg operation does not guarantee |
| that the NaT bit will be cleared. A discussion of this can be found |
| here: http://gcc.gnu.org/ml/gcc-patches/2001-11/msg00429.html |
| For the architectures we support, this code isn't needed and can |
| generate superfluous code. */ |
| #ifndef TARGET_MUST_INIT_SUBREG |
| return 0; |
| #endif |
| /* APPLE LOCAL end 4727273 */ |
| |
| FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) |
| { |
| basic_block bb = e->dest; |
| regset map = bb->global_live_at_start; |
| reg_set_iterator rsi; |
| |
| EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi) |
| { |
| int uid = REGNO_FIRST_UID (reg); |
| rtx i; |
| |
| /* Find an insn which mentions the register we are looking for. |
| Its preferable to have an instance of the register's rtl since |
| there may be various flags set which we need to duplicate. |
| If we can't find it, its probably an automatic whose initial |
| value doesn't matter, or hopefully something we don't care about. */ |
| for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i)) |
| ; |
| if (i != NULL_RTX) |
| { |
| /* Found the insn, now get the REG rtx, if we can. */ |
| param.regno_to_find = reg; |
| for_each_rtx (&i, find_regno_partial, ¶m); |
| if (param.retval != NULL_RTX) |
| { |
| start_sequence (); |
| emit_move_insn (param.retval, |
| CONST0_RTX (GET_MODE (param.retval))); |
| insn = get_insns (); |
| end_sequence (); |
| insert_insn_on_edge (insn, e); |
| did_something = 1; |
| } |
| } |
| } |
| } |
| |
| if (did_something) |
| commit_edge_insertions (); |
| return did_something; |
| } |
| |
| |
| /* Subroutines of life analysis. */ |
| |
| /* Allocate the permanent data structures that represent the results |
| of life analysis. */ |
| |
| static void |
| allocate_bb_life_data (void) |
| { |
| basic_block bb; |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) |
| { |
| bb->global_live_at_start = ALLOC_REG_SET (®_obstack); |
| bb->global_live_at_end = ALLOC_REG_SET (®_obstack); |
| } |
| |
| regs_live_at_setjmp = ALLOC_REG_SET (®_obstack); |
| } |
| |
| void |
| allocate_reg_life_data (void) |
| { |
| int i; |
| |
| max_regno = max_reg_num (); |
| gcc_assert (!reg_deaths); |
| reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno); |
| |
| /* Recalculate the register space, in case it has grown. Old style |
| vector oriented regsets would set regset_{size,bytes} here also. */ |
| allocate_reg_info (max_regno, FALSE, FALSE); |
| |
| /* Reset all the data we'll collect in propagate_block and its |
| subroutines. */ |
| for (i = 0; i < max_regno; i++) |
| { |
| REG_N_SETS (i) = 0; |
| REG_N_REFS (i) = 0; |
| REG_N_DEATHS (i) = 0; |
| REG_N_CALLS_CROSSED (i) = 0; |
| REG_LIVE_LENGTH (i) = 0; |
| REG_FREQ (i) = 0; |
| REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN; |
| } |
| } |
| |
| /* Delete dead instructions for propagate_block. */ |
| |
| static void |
| propagate_block_delete_insn (rtx insn) |
| { |
| rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX); |
| |
| /* If the insn referred to a label, and that label was attached to |
| an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's |
| pretty much mandatory to delete it, because the ADDR_VEC may be |
| referencing labels that no longer exist. |
| |
| INSN may reference a deleted label, particularly when a jump |
| table has been optimized into a direct jump. There's no |
| real good way to fix up the reference to the deleted label |
| when the label is deleted, so we just allow it here. */ |
| |
| if (inote && LABEL_P (inote)) |
| { |
| rtx label = XEXP (inote, 0); |
| rtx next; |
| |
| /* The label may be forced if it has been put in the constant |
| pool. If that is the only use we must discard the table |
| jump following it, but not the label itself. */ |
| if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label) |
| && (next = next_nonnote_insn (label)) != NULL |
| && JUMP_P (next) |
| && (GET_CODE (PATTERN (next)) == ADDR_VEC |
| || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)) |
| { |
| rtx pat = PATTERN (next); |
| int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC; |
| int len = XVECLEN (pat, diff_vec_p); |
| int i; |
| |
| for (i = 0; i < len; i++) |
| LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--; |
| |
| delete_insn_and_edges (next); |
| ndead++; |
| } |
| } |
| |
| delete_insn_and_edges (insn); |
| ndead++; |
| } |
| |
| /* Delete dead libcalls for propagate_block. Return the insn |
| before the libcall. */ |
| |
| static rtx |
| propagate_block_delete_libcall (rtx insn, rtx note) |
| { |
| rtx first = XEXP (note, 0); |
| rtx before = PREV_INSN (first); |
| |
| delete_insn_chain_and_edges (first, insn); |
| ndead++; |
| return before; |
| } |
| |
| /* Update the life-status of regs for one insn. Return the previous insn. */ |
| |
| rtx |
| propagate_one_insn (struct propagate_block_info *pbi, rtx insn) |
| { |
| rtx prev = PREV_INSN (insn); |
| int flags = pbi->flags; |
| int insn_is_dead = 0; |
| int libcall_is_dead = 0; |
| rtx note; |
| unsigned i; |
| |
| if (! INSN_P (insn)) |
| return prev; |
| |
| note = find_reg_note (insn, REG_RETVAL, NULL_RTX); |
| if (flags & PROP_SCAN_DEAD_CODE) |
| { |
| insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)); |
| libcall_is_dead = (insn_is_dead && note != 0 |
| && libcall_dead_p (pbi, note, insn)); |
| } |
| |
| /* If an instruction consists of just dead store(s) on final pass, |
| delete it. */ |
| if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead) |
| { |
| /* If we're trying to delete a prologue or epilogue instruction |
| that isn't flagged as possibly being dead, something is wrong. |
| But if we are keeping the stack pointer depressed, we might well |
| be deleting insns that are used to compute the amount to update |
| it by, so they are fine. */ |
| if (reload_completed |
| && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE |
| && (TYPE_RETURNS_STACK_DEPRESSED |
| (TREE_TYPE (current_function_decl)))) |
| && (((HAVE_epilogue || HAVE_prologue) |
| && prologue_epilogue_contains (insn)) |
| || (HAVE_sibcall_epilogue |
| && sibcall_epilogue_contains (insn))) |
| && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0) |
| fatal_insn ("Attempt to delete prologue/epilogue insn:", insn); |
| |
| /* Record sets. Do this even for dead instructions, since they |
| would have killed the values if they hadn't been deleted. */ |
| mark_set_regs (pbi, PATTERN (insn), insn); |
| |
| /* CC0 is now known to be dead. Either this insn used it, |
| in which case it doesn't anymore, or clobbered it, |
| so the next insn can't use it. */ |
| pbi->cc0_live = 0; |
| |
| if (libcall_is_dead) |
| prev = propagate_block_delete_libcall (insn, note); |
| else |
| { |
| |
| /* If INSN contains a RETVAL note and is dead, but the libcall |
| as a whole is not dead, then we want to remove INSN, but |
| not the whole libcall sequence. |
| |
| However, we need to also remove the dangling REG_LIBCALL |
| note so that we do not have mis-matched LIBCALL/RETVAL |
| notes. In theory we could find a new location for the |
| REG_RETVAL note, but it hardly seems worth the effort. |
| |
| NOTE at this point will be the RETVAL note if it exists. */ |
| if (note) |
| { |
| rtx libcall_note; |
| |
| libcall_note |
| = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX); |
| remove_note (XEXP (note, 0), libcall_note); |
| } |
| |
| /* Similarly if INSN contains a LIBCALL note, remove the |
| dangling REG_RETVAL note. */ |
| note = find_reg_note (insn, REG_LIBCALL, NULL_RTX); |
| if (note) |
| { |
| rtx retval_note; |
| |
| retval_note |
| = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX); |
| remove_note (XEXP (note, 0), retval_note); |
| } |
| |
| /* Now delete INSN. */ |
| propagate_block_delete_insn (insn); |
| } |
| |
| return prev; |
| } |
| |
| /* See if this is an increment or decrement that can be merged into |
| a following memory address. */ |
| #ifdef AUTO_INC_DEC |
| { |
| rtx x = single_set (insn); |
| |
| /* Does this instruction increment or decrement a register? */ |
| if ((flags & PROP_AUTOINC) |
| && x != 0 |
| && REG_P (SET_DEST (x)) |
| && (GET_CODE (SET_SRC (x)) == PLUS |
| || GET_CODE (SET_SRC (x)) == MINUS) |
| && XEXP (SET_SRC (x), 0) == SET_DEST (x) |
| && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT |
| /* Ok, look for a following memory ref we can combine with. |
| If one is found, change the memory ref to a PRE_INC |
| or PRE_DEC, cancel this insn, and return 1. |
| Return 0 if nothing has been done. */ |
| && try_pre_increment_1 (pbi, insn)) |
| return prev; |
| } |
| #endif /* AUTO_INC_DEC */ |
| |
| CLEAR_REG_SET (pbi->new_set); |
| |
| /* If this is not the final pass, and this insn is copying the value of |
| a library call and it's dead, don't scan the insns that perform the |
| library call, so that the call's arguments are not marked live. */ |
| if (libcall_is_dead) |
| { |
| /* Record the death of the dest reg. */ |
| mark_set_regs (pbi, PATTERN (insn), insn); |
| |
| insn = XEXP (note, 0); |
| return PREV_INSN (insn); |
| } |
| else if (GET_CODE (PATTERN (insn)) == SET |
| && SET_DEST (PATTERN (insn)) == stack_pointer_rtx |
| && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS |
| && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx |
| && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT) |
| { |
| /* We have an insn to pop a constant amount off the stack. |
| (Such insns use PLUS regardless of the direction of the stack, |
| and any insn to adjust the stack by a constant is always a pop |
| or part of a push.) |
| These insns, if not dead stores, have no effect on life, though |
| they do have an effect on the memory stores we are tracking. */ |
| invalidate_mems_from_set (pbi, stack_pointer_rtx); |
| /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable |
| concludes that the stack pointer is not modified. */ |
| mark_set_regs (pbi, PATTERN (insn), insn); |
| } |
| else |
| { |
| rtx note; |
| /* Any regs live at the time of a call instruction must not go |
| in a register clobbered by calls. Find all regs now live and |
| record this for them. */ |
| |
| if (CALL_P (insn) && (flags & PROP_REG_INFO)) |
| { |
| reg_set_iterator rsi; |
| EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi) |
| REG_N_CALLS_CROSSED (i)++; |
| } |
| |
| /* Record sets. Do this even for dead instructions, since they |
| would have killed the values if they hadn't been deleted. */ |
| mark_set_regs (pbi, PATTERN (insn), insn); |
| |
| if (CALL_P (insn)) |
| { |
| regset live_at_end; |
| bool sibcall_p; |
| rtx note, cond; |
| int i; |
| |
| cond = NULL_RTX; |
| if (GET_CODE (PATTERN (insn)) == COND_EXEC) |
| cond = COND_EXEC_TEST (PATTERN (insn)); |
| |
| /* Non-constant calls clobber memory, constant calls do not |
| clobber memory, though they may clobber outgoing arguments |
| on the stack. */ |
| if (! CONST_OR_PURE_CALL_P (insn)) |
| { |
| free_EXPR_LIST_list (&pbi->mem_set_list); |
| pbi->mem_set_list_len = 0; |
| } |
| else |
| invalidate_mems_from_set (pbi, stack_pointer_rtx); |
| |
| /* There may be extra registers to be clobbered. */ |
| for (note = CALL_INSN_FUNCTION_USAGE (insn); |
| note; |
| note = XEXP (note, 1)) |
| if (GET_CODE (XEXP (note, 0)) == CLOBBER) |
| mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0), |
| cond, insn, pbi->flags); |
| |
| /* Calls change all call-used and global registers; sibcalls do not |
| clobber anything that must be preserved at end-of-function, |
| except for return values. */ |
| |
| sibcall_p = SIBLING_CALL_P (insn); |
| live_at_end = EXIT_BLOCK_PTR->global_live_at_start; |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i) |
| && ! (sibcall_p |
| && REGNO_REG_SET_P (live_at_end, i) |
| && ! refers_to_regno_p (i, i+1, |
| current_function_return_rtx, |
| (rtx *) 0))) |
| { |
| enum rtx_code code = global_regs[i] ? SET : CLOBBER; |
| /* We do not want REG_UNUSED notes for these registers. */ |
| mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn, |
| pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO)); |
| } |
| } |
| |
| /* If an insn doesn't use CC0, it becomes dead since we assume |
| that every insn clobbers it. So show it dead here; |
| mark_used_regs will set it live if it is referenced. */ |
| pbi->cc0_live = 0; |
| |
| /* Record uses. */ |
| if (! insn_is_dead) |
| mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn); |
| if ((flags & PROP_EQUAL_NOTES) |
| && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX)) |
| || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)))) |
| mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn); |
| |
| /* Sometimes we may have inserted something before INSN (such as a move) |
| when we make an auto-inc. So ensure we will scan those insns. */ |
| #ifdef AUTO_INC_DEC |
| prev = PREV_INSN (insn); |
| #endif |
| |
| if (! insn_is_dead && CALL_P (insn)) |
| { |
| int i; |
| rtx note, cond; |
| |
| cond = NULL_RTX; |
| if (GET_CODE (PATTERN (insn)) == COND_EXEC) |
| cond = COND_EXEC_TEST (PATTERN (insn)); |
| |
| /* Calls use their arguments, and may clobber memory which |
| address involves some register. */ |
| for (note = CALL_INSN_FUNCTION_USAGE (insn); |
| note; |
| note = XEXP (note, 1)) |
| /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both |
| of which mark_used_regs knows how to handle. */ |
| mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn); |
| |
| /* The stack ptr is used (honorarily) by a CALL insn. */ |
| if ((flags & PROP_REG_INFO) |
| && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM)) |
| reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num; |
| SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM); |
| |
| /* Calls may also reference any of the global registers, |
| so they are made live. */ |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| if (global_regs[i]) |
| mark_used_reg (pbi, regno_reg_rtx[i], cond, insn); |
| } |
| } |
| |
| pbi->insn_num++; |
| |
| return prev; |
| } |
| |
| /* Initialize a propagate_block_info struct for public consumption. |
| Note that the structure itself is opaque to this file, but that |
| the user can use the regsets provided here. */ |
| |
| struct propagate_block_info * |
| init_propagate_block_info (basic_block bb, regset live, regset local_set, |
| regset cond_local_set, int flags) |
| { |
| struct propagate_block_info *pbi = xmalloc (sizeof (*pbi)); |
| |
| pbi->bb = bb; |
| pbi->reg_live = live; |
| pbi->mem_set_list = NULL_RTX; |
| pbi->mem_set_list_len = 0; |
| pbi->local_set = local_set; |
| pbi->cond_local_set = cond_local_set; |
| pbi->cc0_live = 0; |
| pbi->flags = flags; |
| pbi->insn_num = 0; |
| |
| if (flags & (PROP_LOG_LINKS | PROP_AUTOINC)) |
| pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx)); |
| else |
| pbi->reg_next_use = NULL; |
| |
| pbi->new_set = BITMAP_ALLOC (NULL); |
| |
| #ifdef HAVE_conditional_execution |
| pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL, |
| free_reg_cond_life_info); |
| pbi->reg_cond_reg = BITMAP_ALLOC (NULL); |
| |
| /* If this block ends in a conditional branch, for each register |
| live from one side of the branch and not the other, record the |
| register as conditionally dead. */ |
| if (JUMP_P (BB_END (bb)) |
| && any_condjump_p (BB_END (bb))) |
| { |
| regset diff = ALLOC_REG_SET (®_obstack); |
| basic_block bb_true, bb_false; |
| unsigned i; |
| |
| /* Identify the successor blocks. */ |
| bb_true = EDGE_SUCC (bb, 0)->dest; |
| if (EDGE_COUNT (bb->succs) > 1) |
| { |
| bb_false = EDGE_SUCC (bb, 1)->dest; |
| |
| if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU) |
| { |
| basic_block t = bb_false; |
| bb_false = bb_true; |
| bb_true = t; |
| } |
| else |
| gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU); |
| } |
| else |
| { |
| /* This can happen with a conditional jump to the next insn. */ |
| gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true)); |
| |
| /* Simplest way to do nothing. */ |
| bb_false = bb_true; |
| } |
| |
| /* Compute which register lead different lives in the successors. */ |
| bitmap_xor (diff, bb_true->global_live_at_start, |
| bb_false->global_live_at_start); |
| |
| if (!bitmap_empty_p (diff)) |
| { |
| /* Extract the condition from the branch. */ |
| rtx set_src = SET_SRC (pc_set (BB_END (bb))); |
| rtx cond_true = XEXP (set_src, 0); |
| rtx reg = XEXP (cond_true, 0); |
| enum rtx_code inv_cond; |
| |
| if (GET_CODE (reg) == SUBREG) |
| reg = SUBREG_REG (reg); |
| |
| /* We can only track conditional lifetimes if the condition is |
| in the form of a reversible comparison of a register against |
| zero. If the condition is more complex than that, then it is |
| safe not to record any information. */ |
| inv_cond = reversed_comparison_code (cond_true, BB_END (bb)); |
| if (inv_cond != UNKNOWN |
| && REG_P (reg) |
| && XEXP (cond_true, 1) == const0_rtx) |
| { |
| rtx cond_false |
| = gen_rtx_fmt_ee (inv_cond, |
| GET_MODE (cond_true), XEXP (cond_true, 0), |
| XEXP (cond_true, 1)); |
| reg_set_iterator rsi; |
| |
| if (GET_CODE (XEXP (set_src, 1)) == PC) |
| { |
| rtx t = cond_false; |
| cond_false = cond_true; |
| cond_true = t; |
| } |
| |
| SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg)); |
| |
| /* For each such register, mark it conditionally dead. */ |
| EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi) |
| { |
| struct reg_cond_life_info *rcli; |
| rtx cond; |
| |
| rcli = xmalloc (sizeof (*rcli)); |
| |
| if (REGNO_REG_SET_P (bb_true->global_live_at_start, i)) |
| cond = cond_false; |
| else |
| cond = cond_true; |
| rcli->condition = cond; |
| rcli->stores = const0_rtx; |
| rcli->orig_condition = cond; |
| |
| splay_tree_insert (pbi->reg_cond_dead, i, |
| (splay_tree_value) rcli); |
| } |
| } |
| } |
| |
| FREE_REG_SET (diff); |
| } |
| #endif |
| |
| /* If this block has no successors, any stores to the frame that aren't |
| used later in the block are dead. So make a pass over the block |
| recording any such that are made and show them dead at the end. We do |
| a very conservative and simple job here. */ |
| if (optimize |
| && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE |
| && (TYPE_RETURNS_STACK_DEPRESSED |
| (TREE_TYPE (current_function_decl)))) |
| && (flags & PROP_SCAN_DEAD_STORES) |
| && (EDGE_COUNT (bb->succs) == 0 |
| || (EDGE_COUNT (bb->succs) == 1 |
| && EDGE_SUCC (bb, 0)->dest == EXIT_BLOCK_PTR |
| && ! current_function_calls_eh_return))) |
| { |
| rtx insn, set; |
| for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn)) |
| if (NONJUMP_INSN_P (insn) |
| && (set = single_set (insn)) |
| && MEM_P (SET_DEST (set))) |
| { |
| rtx mem = SET_DEST (set); |
| rtx canon_mem = canon_rtx (mem); |
| |
| if (XEXP (canon_mem, 0) == frame_pointer_rtx |
| || (GET_CODE (XEXP (canon_mem, 0)) == PLUS |
| && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx |
| && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT)) |
| add_to_mem_set_list (pbi, canon_mem); |
| } |
| } |
| |
| return pbi; |
| } |
| |
| /* Release a propagate_block_info struct. */ |
| |
| void |
| free_propagate_block_info (struct propagate_block_info *pbi) |
| { |
| free_EXPR_LIST_list (&pbi->mem_set_list); |
| |
| BITMAP_FREE (pbi->new_set); |
| |
| #ifdef HAVE_conditional_execution |
| splay_tree_delete (pbi->reg_cond_dead); |
| BITMAP_FREE (pbi->reg_cond_reg); |
| #endif |
| |
| if (pbi->flags & PROP_REG_INFO) |
| { |
| int num = pbi->insn_num; |
| unsigned i; |
| reg_set_iterator rsi; |
| |
| EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi) |
| { |
| REG_LIVE_LENGTH (i) += num - reg_deaths[i]; |
| reg_deaths[i] = 0; |
| } |
| } |
| if (pbi->reg_next_use) |
| free (pbi->reg_next_use); |
| |
| free (pbi); |
| } |
| |
| /* Compute the registers live at the beginning of a basic block BB from |
| those live at the end. |
| |
| When called, REG_LIVE contains those live at the end. On return, it |
| contains those live at the beginning. |
| |
| LOCAL_SET, if non-null, will be set with all registers killed |
| unconditionally by this basic block. |
| Likewise, COND_LOCAL_SET, if non-null, will be set with all registers |
| killed conditionally by this basic block. If there is any unconditional |
| set of a register, then the corresponding bit will be set in LOCAL_SET |
| and cleared in COND_LOCAL_SET. |
| It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this |
| case, the resulting set will be equal to the union of the two sets that |
| would otherwise be computed. |
| |
| Return nonzero if an INSN is deleted (i.e. by dead code removal). */ |
| |
| int |
| propagate_block (basic_block bb, regset live, regset local_set, |
| regset cond_local_set, int flags) |
| { |
| struct propagate_block_info *pbi; |
| rtx insn, prev; |
| int changed; |
| |
| pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags); |
| |
| if (flags & PROP_REG_INFO) |
| { |
| unsigned i; |
| reg_set_iterator rsi; |
| |
| /* Process the regs live at the end of the block. |
| Mark them as not local to any one basic block. */ |
| EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi) |
| REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; |
| } |
| |
| /* Scan the block an insn at a time from end to beginning. */ |
| |
| changed = 0; |
| for (insn = BB_END (bb); ; insn = prev) |
| { |
| /* If this is a call to `setjmp' et al, warn if any |
| non-volatile datum is live. */ |
| if ((flags & PROP_REG_INFO) |
| && CALL_P (insn) |
| && find_reg_note (insn, REG_SETJMP, NULL)) |
| IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live); |
| |
| prev = propagate_one_insn (pbi, insn); |
| if (!prev) |
| changed |= insn != get_insns (); |
| else |
| changed |= NEXT_INSN (prev) != insn; |
| |
| if (insn == BB_HEAD (bb)) |
| break; |
| } |
| |
| free_propagate_block_info (pbi); |
| |
| return changed; |
| } |
| |
| /* Return 1 if X (the body of an insn, or part of it) is just dead stores |
| (SET expressions whose destinations are registers dead after the insn). |
| NEEDED is the regset that says which regs are alive after the insn. |
| |
| Unless CALL_OK is nonzero, an insn is needed if it contains a CALL. |
| |
| If X is the entire body of an insn, NOTES contains the reg notes |
| pertaining to the insn. */ |
| |
| static int |
| insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok, |
| rtx notes ATTRIBUTE_UNUSED) |
| { |
| enum rtx_code code = GET_CODE (x); |
| |
| /* Don't eliminate insns that may trap. */ |
| if (flag_non_call_exceptions && may_trap_p (x)) |
| return 0; |
| |
| #ifdef AUTO_INC_DEC |
| /* As flow is invoked after combine, we must take existing AUTO_INC |
| expressions into account. */ |
| for (; notes; notes = XEXP (notes, 1)) |
| { |
| if (REG_NOTE_KIND (notes) == REG_INC) |
| { |
| int regno = REGNO (XEXP (notes, 0)); |
| |
| /* Don't delete insns to set global regs. */ |
| if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno]) |
| || REGNO_REG_SET_P (pbi->reg_live, regno)) |
| return 0; |
| } |
| } |
| #endif |
| |
| /* If setting something that's a reg or part of one, |
| see if that register's altered value will be live. */ |
| |
| if (code == SET) |
| { |
| rtx r = SET_DEST (x); |
| |
| #ifdef HAVE_cc0 |
| if (GET_CODE (r) == CC0) |
| return ! pbi->cc0_live; |
| #endif |
| |
| /* A SET that is a subroutine call cannot be dead. */ |
| if (GET_CODE (SET_SRC (x)) == CALL) |
| { |
| if (! call_ok) |
| return 0; |
| } |
| |
| /* Don't eliminate loads from volatile memory or volatile asms. */ |
| else if (volatile_refs_p (SET_SRC (x))) |
| return 0; |
| |
| if (MEM_P (r)) |
| { |
| rtx temp, canon_r; |
| |
| if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode) |
| return 0; |
| |
| canon_r = canon_rtx (r); |
| |
| /* Walk the set of memory locations we are currently tracking |
| and see if one is an identical match to this memory location. |
| If so, this memory write is dead (remember, we're walking |
| backwards from the end of the block to the start). Since |
| rtx_equal_p does not check the alias set or flags, we also |
| must have the potential for them to conflict (anti_dependence). */ |
| for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1)) |
| if (anti_dependence (r, XEXP (temp, 0))) |
| { |
| rtx mem = XEXP (temp, 0); |
| |
| if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0)) |
| && (GET_MODE_SIZE (GET_MODE (canon_r)) |
| <= GET_MODE_SIZE (GET_MODE (mem)))) |
| return 1; |
| |
| #ifdef AUTO_INC_DEC |
| /* Check if memory reference matches an auto increment. Only |
| post increment/decrement or modify are valid. */ |
| if (GET_MODE (mem) == GET_MODE (r) |
| && (GET_CODE (XEXP (mem, 0)) == POST_DEC |
| || GET_CODE (XEXP (mem, 0)) == POST_INC |
| || GET_CODE (XEXP (mem, 0)) == POST_MODIFY) |
| && GET_MODE (XEXP (mem, 0)) == GET_MODE (r) |
| && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0))) |
| return 1; |
| #endif |
| } |
| } |
| else |
| { |
| while (GET_CODE (r) == SUBREG |
| || GET_CODE (r) == STRICT_LOW_PART |
| || GET_CODE (r) == ZERO_EXTRACT) |
| r = XEXP (r, 0); |
| |
| if (REG_P (r)) |
| { |
| int regno = REGNO (r); |
| |
| /* Obvious. */ |
| if (REGNO_REG_SET_P (pbi->reg_live, regno)) |
| return 0; |
| |
| /* If this is a hard register, verify that subsequent |
| words are not needed. */ |
| if (regno < FIRST_PSEUDO_REGISTER) |
| { |
| int n = hard_regno_nregs[regno][GET_MODE (r)]; |
| |
| while (--n > 0) |
| if (REGNO_REG_SET_P (pbi->reg_live, regno+n)) |
| return 0; |
| } |
| |
| /* Don't delete insns to set global regs. */ |
| if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]) |
| return 0; |
| |
| /* Make sure insns to set the stack pointer aren't deleted. */ |
| if (regno == STACK_POINTER_REGNUM) |
| return 0; |
| |
| /* ??? These bits might be redundant with the force live bits |
| in calculate_global_regs_live. We would delete from |
| sequential sets; whether this actually affects real code |
| for anything but the stack pointer I don't know. */ |
| /* Make sure insns to set the frame pointer aren't deleted. */ |
| if (regno == FRAME_POINTER_REGNUM |
| && (! reload_completed || frame_pointer_needed)) |
| return 0; |
| #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM |
| if (regno == HARD_FRAME_POINTER_REGNUM |
| && (! reload_completed || frame_pointer_needed)) |
| return 0; |
| #endif |
| |
| #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM |
| /* Make sure insns to set arg pointer are never deleted |
| (if the arg pointer isn't fixed, there will be a USE |
| for it, so we can treat it normally). */ |
| if (regno == ARG_POINTER_REGNUM && fixed_regs[regno]) |
| return 0; |
| #endif |
| |
| /* Otherwise, the set is dead. */ |
| return 1; |
| } |
| } |
| } |
| |
| /* If performing several activities, insn is dead if each activity |
| is individually dead. Also, CLOBBERs and USEs can be ignored; a |
| CLOBBER or USE that's inside a PARALLEL doesn't make the insn |
| worth keeping. */ |
| else if (code == PARALLEL) |
| { |
| int i = XVECLEN (x, 0); |
| |
| for (i--; i >= 0; i--) |
| if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER |
| && GET_CODE (XVECEXP (x, 0, i)) != USE |
| && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* A CLOBBER of a pseudo-register that is dead serves no purpose. That |
| is not necessarily true for hard registers until after reload. */ |
| else if (code == CLOBBER) |
| { |
| if (REG_P (XEXP (x, 0)) |
| && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER |
| || reload_completed) |
| && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0)))) |
| return 1; |
| } |
| |
| /* ??? A base USE is a historical relic. It ought not be needed anymore. |
| Instances where it is still used are either (1) temporary and the USE |
| escaped the pass, (2) cruft and the USE need not be emitted anymore, |
| or (3) hiding bugs elsewhere that are not properly representing data |
| flow. */ |
| |
| return 0; |
| } |
| |
| /* If INSN is the last insn in a libcall, and assuming INSN is dead, |
| return 1 if the entire library call is dead. |
| This is true if INSN copies a register (hard or pseudo) |
| and if the hard return reg of the call insn is dead. |
| (The caller should have tested the destination of the SET inside |
| INSN already for death.) |
| |
| If this insn doesn't just copy a register, then we don't |
| have an ordinary libcall. In that case, cse could not have |
| managed to substitute the source for the dest later on, |
| so we can assume the libcall is dead. |
| |
| PBI is the block info giving pseudoregs live before this insn. |
| NOTE is the REG_RETVAL note of the insn. */ |
| |
| static int |
| libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn) |
| { |
| rtx x = single_set (insn); |
| |
| if (x) |
| { |
| rtx r = SET_SRC (x); |
| |
| if (REG_P (r) || GET_CODE (r) == SUBREG) |
| { |
| rtx call = XEXP (note, 0); |
| rtx call_pat; |
| int i; |
| |
| /* Find the call insn. */ |
| while (call != insn && !CALL_P (call)) |
| call = NEXT_INSN (call); |
| |
| /* If there is none, do nothing special, |
| since ordinary death handling can understand these insns. */ |
| if (call == insn) |
| return 0; |
| |
| /* See if the hard reg holding the value is dead. |
| If this is a PARALLEL, find the call within it. */ |
| call_pat = PATTERN (call); |
| if (GET_CODE (call_pat) == PARALLEL) |
| { |
| for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--) |
| if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET |
| && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL) |
| break; |
| |
| /* This may be a library call that is returning a value |
| via invisible pointer. Do nothing special, since |
| ordinary death handling can understand these insns. */ |
| if (i < 0) |
| return 0; |
| |
| call_pat = XVECEXP (call_pat, 0, i); |
| } |
| |
| if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call))) |
| return 0; |
| |
| while ((insn = PREV_INSN (insn)) != call) |
| { |
| if (! INSN_P (insn)) |
| continue; |
| if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn))) |
| return 0; |
| } |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* 1 if register REGNO was alive at a place where `setjmp' was called |
| and was set more than once or is an argument. |
| Such regs may be clobbered by `longjmp'. */ |
| |
| int |
| regno_clobbered_at_setjmp (int regno) |
| { |
| if (n_basic_blocks == 0) |
| return 0; |
| |
| return ((REG_N_SETS (regno) > 1 |
| || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno)) |
| && REGNO_REG_SET_P (regs_live_at_setjmp, regno)); |
| } |
| |
| /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the |
| maximal list size; look for overlaps in mode and select the largest. */ |
| static void |
| add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem) |
| { |
| rtx i; |
| |
| /* We don't know how large a BLKmode store is, so we must not |
| take them into consideration. */ |
| if (GET_MODE (mem) == BLKmode) |
| return; |
| |
| for (i = pbi->mem_set_list; i ; i = XEXP (i, 1)) |
| { |
| rtx e = XEXP (i, 0); |
| if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0))) |
| { |
| if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e))) |
| { |
| #ifdef AUTO_INC_DEC |
| /* If we must store a copy of the mem, we can just modify |
| the mode of the stored copy. */ |
| if (pbi->flags & PROP_AUTOINC) |
| PUT_MODE (e, GET_MODE (mem)); |
| else |
| #endif |
| XEXP (i, 0) = mem; |
| } |
| return; |
| } |
| } |
| |
| if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN) |
| { |
| #ifdef AUTO_INC_DEC |
| /* Store a copy of mem, otherwise the address may be |
| scrogged by find_auto_inc. */ |
| if (pbi->flags & PROP_AUTOINC) |
| mem = shallow_copy_rtx (mem); |
| #endif |
| pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list); |
| pbi->mem_set_list_len++; |
| } |
| } |
| |
| /* INSN references memory, possibly using autoincrement addressing modes. |
| Find any entries on the mem_set_list that need to be invalidated due |
| to an address change. */ |
| |
| static int |
| invalidate_mems_from_autoinc (rtx *px, void *data) |
| { |
| rtx x = *px; |
| struct propagate_block_info *pbi = data; |
| |
| if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC) |
| { |
| invalidate_mems_from_set (pbi, XEXP (x, 0)); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */ |
| |
| static void |
| invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp) |
| { |
| rtx temp = pbi->mem_set_list; |
| rtx prev = NULL_RTX; |
| rtx next; |
| |
| while (temp) |
| { |
| next = XEXP (temp, 1); |
| if (reg_overlap_mentioned_p (exp, XEXP (temp, 0))) |
| { |
| /* Splice this entry out of the list. */ |
| if (prev) |
| XEXP (prev, 1) = next; |
| else |
| pbi->mem_set_list = next; |
| free_EXPR_LIST_node (temp); |
| pbi->mem_set_list_len--; |
| } |
| else |
| prev = temp; |
| temp = next; |
| } |
| } |
| |
| /* Process the registers that are set within X. Their bits are set to |
| 1 in the regset DEAD, because they are dead prior to this insn. |
| |
| If INSN is nonzero, it is the insn being processed. |
| |
| FLAGS is the set of operations to perform. */ |
| |
| static void |
| mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn) |
| { |
| rtx cond = NULL_RTX; |
| rtx link; |
| enum rtx_code code; |
| int flags = pbi->flags; |
| |
| if (insn) |
| for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) |
| { |
| if (REG_NOTE_KIND (link) == REG_INC) |
| mark_set_1 (pbi, SET, XEXP (link, 0), |
| (GET_CODE (x) == COND_EXEC |
| ? COND_EXEC_TEST (x) : NULL_RTX), |
| insn, flags); |
| } |
| retry: |
| switch (code = GET_CODE (x)) |
| { |
| case SET: |
| if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS) |
| flags |= PROP_ASM_SCAN; |
| /* Fall through */ |
| case CLOBBER: |
| mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags); |
| return; |
| |
| case COND_EXEC: |
| cond = COND_EXEC_TEST (x); |
| x = COND_EXEC_CODE (x); |
| goto retry; |
| |
| case PARALLEL: |
| { |
| int i; |
| |
| /* We must scan forwards. If we have an asm, we need to set |
| the PROP_ASM_SCAN flag before scanning the clobbers. */ |
| for (i = 0; i < XVECLEN (x, 0); i++) |
| { |
| rtx sub = XVECEXP (x, 0, i); |
| switch (code = GET_CODE (sub)) |
| { |
| case COND_EXEC: |
| gcc_assert (!cond); |
| |
| cond = COND_EXEC_TEST (sub); |
| sub = COND_EXEC_CODE (sub); |
| if (GET_CODE (sub) == SET) |
| goto mark_set; |
| if (GET_CODE (sub) == CLOBBER) |
| goto mark_clob; |
| break; |
| |
| case SET: |
| mark_set: |
| if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS) |
| flags |= PROP_ASM_SCAN; |
| /* Fall through */ |
| case CLOBBER: |
| mark_clob: |
| mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags); |
| break; |
| |
| case ASM_OPERANDS: |
| flags |= PROP_ASM_SCAN; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Process a single set, which appears in INSN. REG (which may not |
| actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is |
| being set using the CODE (which may be SET, CLOBBER, or COND_EXEC). |
| If the set is conditional (because it appear in a COND_EXEC), COND |
| will be the condition. */ |
| |
| static void |
| mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags) |
| { |
| int regno_first = -1, regno_last = -1; |
| unsigned long not_dead = 0; |
| int i; |
| |
| /* Modifying just one hardware register of a multi-reg value or just a |
| byte field of a register does not mean the value from before this insn |
| is now dead. Of course, if it was dead after it's unused now. */ |
| |
| switch (GET_CODE (reg)) |
| { |
| case PARALLEL: |
| /* Some targets place small structures in registers for return values of |
| functions. We have to detect this case specially here to get correct |
| flow information. */ |
| for (i = XVECLEN (reg, 0) - 1; i >= 0; i--) |
| if (XEXP (XVECEXP (reg, 0, i), 0) != 0) |
| mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn, |
| flags); |
| return; |
| |
| case SIGN_EXTRACT: |
| /* SIGN_EXTRACT cannot be an lvalue. */ |
| gcc_unreachable (); |
| |
| case ZERO_EXTRACT: |
| case STRICT_LOW_PART: |
| /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */ |
| do |
| reg = XEXP (reg, 0); |
| while (GET_CODE (reg) == SUBREG |
| || GET_CODE (reg) == ZERO_EXTRACT |
| || GET_CODE (reg) == STRICT_LOW_PART); |
| if (MEM_P (reg)) |
| break; |
| not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg)); |
| /* Fall through. */ |
| |
| case REG: |
| regno_last = regno_first = REGNO (reg); |
| if (regno_first < FIRST_PSEUDO_REGISTER) |
| regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1; |
| break; |
| |
| case SUBREG: |
| if (REG_P (SUBREG_REG (reg))) |
| { |
| enum machine_mode outer_mode = GET_MODE (reg); |
| enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg)); |
| |
| /* Identify the range of registers affected. This is moderately |
| tricky for hard registers. See alter_subreg. */ |
| |
| regno_last = regno_first = REGNO (SUBREG_REG (reg)); |
| if (regno_first < FIRST_PSEUDO_REGISTER) |
| { |
| regno_first += subreg_regno_offset (regno_first, inner_mode, |
| SUBREG_BYTE (reg), |
| outer_mode); |
| regno_last = (regno_first |
| + hard_regno_nregs[regno_first][outer_mode] - 1); |
| |
| /* Since we've just adjusted the register number ranges, make |
| sure REG matches. Otherwise some_was_live will be clear |
| when it shouldn't have been, and we'll create incorrect |
| REG_UNUSED notes. */ |
| reg = gen_rtx_REG (outer_mode, regno_first); |
| } |
| else |
| { |
| /* If the number of words in the subreg is less than the number |
| of words in the full register, we have a well-defined partial |
| set. Otherwise the high bits are undefined. |
| |
| This is only really applicable to pseudos, since we just took |
| care of multi-word hard registers. */ |
| if (((GET_MODE_SIZE (outer_mode) |
| + UNITS_PER_WORD - 1) / UNITS_PER_WORD) |
| < ((GET_MODE_SIZE (inner_mode) |
| + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) |
| not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, |
| regno_first); |
| |
| reg = SUBREG_REG (reg); |
| } |
| } |
| else |
| reg = SUBREG_REG (reg); |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* If this set is a MEM, then it kills any aliased writes. |
| If this set is a REG, then it kills any MEMs which use the reg. */ |
| if (optimize && (flags & PROP_SCAN_DEAD_STORES)) |
| { |
| if (REG_P (reg)) |
| invalidate_mems_from_set (pbi, reg); |
| |
| /* If the memory reference had embedded side effects (autoincrement |
| address modes) then we may need to kill some entries on the |
| memory set list. */ |
| if (insn && MEM_P (reg)) |
| for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi); |
| |
| if (MEM_P (reg) && ! side_effects_p (reg) |
| /* ??? With more effort we could track conditional memory life. */ |
| && ! cond) |
| add_to_mem_set_list (pbi, canon_rtx (reg)); |
| } |
| |
| if (REG_P (reg) |
| && ! (regno_first == FRAME_POINTER_REGNUM |
| && (! reload_completed || frame_pointer_needed)) |
| #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM |
| && ! (regno_first == HARD_FRAME_POINTER_REGNUM |
| && (! reload_completed || frame_pointer_needed)) |
| #endif |
| #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM |
| && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first]) |
| #endif |
| ) |
| { |
| int some_was_live = 0, some_was_dead = 0; |
| |
| for (i = regno_first; i <= regno_last; ++i) |
| { |
| int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i); |
| if (pbi->local_set) |
| { |
| /* Order of the set operation matters here since both |
| sets may be the same. */ |
| CLEAR_REGNO_REG_SET (pbi->cond_local_set, i); |
| if (cond != NULL_RTX |
| && ! REGNO_REG_SET_P (pbi->local_set, i)) |
| SET_REGNO_REG_SET (pbi->cond_local_set, i); |
| else |
| SET_REGNO_REG_SET (pbi->local_set, i); |
| } |
| if (code != CLOBBER) |
| SET_REGNO_REG_SET (pbi->new_set, i); |
| |
| some_was_live |= needed_regno; |
| some_was_dead |= ! needed_regno; |
| } |
| |
| #ifdef HAVE_conditional_execution |
| /* Consider conditional death in deciding that the register needs |
| a death note. */ |
| if (some_was_live && ! not_dead |
| /* The stack pointer is never dead. Well, not strictly true, |
| but it's very difficult to tell from here. Hopefully |
| combine_stack_adjustments will fix up the most egregious |
| errors. */ |
| && regno_first != STACK_POINTER_REGNUM) |
| { |
| for (i = regno_first; i <= regno_last; ++i) |
| if (! mark_regno_cond_dead (pbi, i, cond)) |
| not_dead |= ((unsigned long) 1) << (i - regno_first); |
| } |
| #endif |
| |
| /* Additional data to record if this is the final pass. */ |
| if (flags & (PROP_LOG_LINKS | PROP_REG_INFO |
| | PROP_DEATH_NOTES | PROP_AUTOINC)) |
| { |
| rtx y; |
| int blocknum = pbi->bb->index; |
| |
| y = NULL_RTX; |
| if (flags & (PROP_LOG_LINKS | PROP_AUTOINC)) |
| { |
| y = pbi->reg_next_use[regno_first]; |
| |
| /* The next use is no longer next, since a store intervenes. */ |
| for (i = regno_first; i <= regno_last; ++i) |
| pbi->reg_next_use[i] = 0; |
| } |
| |
| if (flags & PROP_REG_INFO) |
| { |
| for (i = regno_first; i <= regno_last; ++i) |
| { |
| /* Count (weighted) references, stores, etc. This counts a |
| register twice if it is modified, but that is correct. */ |
| REG_N_SETS (i) += 1; |
| REG_N_REFS (i) += 1; |
| REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb); |
| |
| /* The insns where a reg is live are normally counted |
| elsewhere, but we want the count to include the insn |
| where the reg is set, and the normal counting mechanism |
| would not count it. */ |
| REG_LIVE_LENGTH (i) += 1; |
| } |
| |
| /* If this is a hard reg, record this function uses the reg. */ |
| if (regno_first < FIRST_PSEUDO_REGISTER) |
| { |
| for (i = regno_first; i <= regno_last; i++) |
| regs_ever_live[i] = 1; |
| if (flags & PROP_ASM_SCAN) |
| for (i = regno_first; i <= regno_last; i++) |
| regs_asm_clobbered[i] = 1; |
| } |
| else |
| { |
| /* Keep track of which basic blocks each reg appears in. */ |
| if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN) |
| REG_BASIC_BLOCK (regno_first) = blocknum; |
| else if (REG_BASIC_BLOCK (regno_first) != blocknum) |
| REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL; |
| } |
| } |
| |
| if (! some_was_dead) |
| { |
| if (flags & PROP_LOG_LINKS) |
| { |
| /* Make a logical link from the next following insn |
| that uses this register, back to this insn. |
| The following insns have already been processed. |
| |
| We don't build a LOG_LINK for hard registers containing |
| in ASM_OPERANDs. If these registers get replaced, |
| we might wind up changing the semantics of the insn, |
| even if reload can make what appear to be valid |
| assignments later. |
| |
| We don't build a LOG_LINK for global registers to |
| or from a function call. We don't want to let |
| combine think that it knows what is going on with |
| global registers. */ |
| if (y && (BLOCK_NUM (y) == blocknum) |
| && (regno_first >= FIRST_PSEUDO_REGISTER |
| || (asm_noperands (PATTERN (y)) < 0 |
| && ! ((CALL_P (insn) |
| || CALL_P (y)) |
| && global_regs[regno_first])))) |
| LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y)); |
| } |
| } |
| else if (not_dead) |
| ; |
| else if (! some_was_live) |
| { |
| if (flags & PROP_REG_INFO) |
| REG_N_DEATHS (regno_first) += 1; |
| |
| if (flags & PROP_DEATH_NOTES) |
| { |
| /* Note that dead stores have already been deleted |
| when possible. If we get here, we have found a |
| dead store that cannot be eliminated (because the |
| same insn does something useful). Indicate this |
| by marking the reg being set as dying here. */ |
| REG_NOTES (insn) |
| = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn)); |
| } |
| } |
| else |
| { |
| if (flags & PROP_DEATH_NOTES) |
| { |
| /* This is a case where we have a multi-word hard register |
| and some, but not all, of the words of the register are |
| needed in subsequent insns. Write REG_UNUSED notes |
| for those parts that were not needed. This case should |
| be rare. */ |
| |
| for (i = regno_first; i <= regno_last; ++i) |
| if (! REGNO_REG_SET_P (pbi->reg_live, i)) |
| REG_NOTES (insn) |
| = alloc_EXPR_LIST (REG_UNUSED, |
| regno_reg_rtx[i], |
| REG_NOTES (insn)); |
| } |
| } |
| } |
| |
| /* Mark the register as being dead. */ |
| if (some_was_live |
| /* The stack pointer is never dead. Well, not strictly true, |
| but it's very difficult to tell from here. Hopefully |
| combine_stack_adjustments will fix up the most egregious |
| errors. */ |
| && regno_first != STACK_POINTER_REGNUM) |
| { |
| for (i = regno_first; i <= regno_last; ++i) |
| if (!(not_dead & (((unsigned long) 1) << (i - regno_first)))) |
| { |
| if ((pbi->flags & PROP_REG_INFO) |
| && REGNO_REG_SET_P (pbi->reg_live, i)) |
| { |
| REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i]; |
| reg_deaths[i] = 0; |
| } |
| CLEAR_REGNO_REG_SET (pbi->reg_live, i); |
| } |
| } |
| } |
| else if (REG_P (reg)) |
| { |
| if (flags & (PROP_LOG_LINKS | PROP_AUTOINC)) |
| pbi->reg_next_use[regno_first] = 0; |
| |
| if ((flags & PROP_REG_INFO) != 0 |
| && (flags & PROP_ASM_SCAN) != 0 |
| && regno_first < FIRST_PSEUDO_REGISTER) |
| { |
| for (i = regno_first; i <= regno_last; i++) |
| regs_asm_clobbered[i] = 1; |
| } |
| } |
| |
| /* If this is the last pass and this is a SCRATCH, show it will be dying |
| here and count it. */ |
| else if (GET_CODE (reg) == SCRATCH) |
| { |
| if (flags & PROP_DEATH_NOTES) |
| REG_NOTES (insn) |
| = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn)); |
| } |
| } |
| |
| #ifdef HAVE_conditional_execution |
| /* Mark REGNO conditionally dead. |
| Return true if the register is now unconditionally dead. */ |
| |
| static int |
| mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond) |
| { |
| /* If this is a store to a predicate register, the value of the |
| predicate is changing, we don't know that the predicate as seen |
| before is the same as that seen after. Flush all dependent |
| conditions from reg_cond_dead. This will make all such |
| conditionally live registers unconditionally live. */ |
| if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno)) |
| flush_reg_cond_reg (pbi, regno); |
| |
| /* If this is an unconditional store, remove any conditional |
| life that may have existed. */ |
| if (cond == NULL_RTX) |
| splay_tree_remove (pbi->reg_cond_dead, regno); |
| else |
| { |
| splay_tree_node node; |
| struct reg_cond_life_info *rcli; |
| rtx ncond; |
| |
| /* Otherwise this is a conditional set. Record that fact. |
| It may have been conditionally used, or there may be a |
| subsequent set with a complementary condition. */ |
| |
| node = splay_tree_lookup (pbi->reg_cond_dead, regno); |
| if (node == NULL) |
| { |
| /* The register was unconditionally live previously. |
| Record the current condition as the condition under |
| which it is dead. */ |
| rcli = xmalloc (sizeof (*rcli)); |
| rcli->condition = cond; |
| rcli->stores = cond; |
| rcli->orig_condition = const0_rtx; |
| splay_tree_insert (pbi->reg_cond_dead, regno, |
| (splay_tree_value) rcli); |
| |
| SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0))); |
| |
| /* Not unconditionally dead. */ |
| return 0; |
| } |
| else |
| { |
| /* The register was conditionally live previously. |
| Add the new condition to the old. */ |
| rcli = (struct reg_cond_life_info *) node->value; |
| ncond = rcli->condition; |
| ncond = ior_reg_cond (ncond, cond, 1); |
| if (rcli->stores == const0_rtx) |
| rcli->stores = cond; |
| else if (rcli->stores != const1_rtx) |
| rcli->stores = ior_reg_cond (rcli->stores, cond, 1); |
| |
| /* If the register is now unconditionally dead, remove the entry |
| in the splay_tree. A register is unconditionally dead if the |
| dead condition ncond is true. A register is also unconditionally |
| dead if the sum of all conditional stores is an unconditional |
| store (stores is true), and the dead condition is identically the |
| same as the original dead condition initialized at the end of |
| the block. This is a pointer compare, not an rtx_equal_p |
| compare. */ |
| if (ncond == const1_rtx |
| || (ncond == rcli->orig_condition && rcli->stores == const1_rtx)) |
| splay_tree_remove (pbi->reg_cond_dead, regno); |
| else |
| { |
| rcli->condition = ncond; |
| |
| SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0))); |
| |
| /* Not unconditionally dead. */ |
| return 0; |
| } |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* Called from splay_tree_delete for pbi->reg_cond_life. */ |
| |
| static void |
| free_reg_cond_life_info (splay_tree_value value) |
| { |
| struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value; |
| free (rcli); |
| } |
| |
| /* Helper function for flush_reg_cond_reg. */ |
| |
| static int |
| flush_reg_cond_reg_1 (splay_tree_node node, void *data) |
| { |
| struct reg_cond_life_info *rcli; |
| int *xdata = (int *) data; |
| unsigned int regno = xdata[0]; |
| |
| /* Don't need to search if last flushed value was farther on in |
| the in-order traversal. */ |
| if (xdata[1] >= (int) node->key) |
| return 0; |
| |
| /* Splice out portions of the expression that refer to regno. */ |
| rcli = (struct reg_cond_life_info *) node->value; |
| rcli->condition = elim_reg_cond (rcli->condition, regno); |
| if (rcli->stores != const0_rtx && rcli->stores != const1_rtx) |
| rcli->stores = elim_reg_cond (rcli->stores, regno); |
| |
| /* If the entire condition is now false, signal the node to be removed. */ |
| if (rcli->condition == const0_rtx) |
| { |
| xdata[1] = node->key; |
| return -1; |
| } |
| else |
| gcc_assert (rcli->condition != const1_rtx); |
| |
| return 0; |
| } |
| |
| /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */ |
| |
| static void |
| flush_reg_cond_reg (struct propagate_block_info *pbi, int regno) |
| { |
| int pair[2]; |
| |
| pair[0] = regno; |
| pair[1] = -1; |
| while (splay_tree_foreach (pbi->reg_cond_dead, |
| flush_reg_cond_reg_1, pair) == -1) |
| splay_tree_remove (pbi->reg_cond_dead, pair[1]); |
| |
| CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno); |
| } |
| |
| /* Logical arithmetic on predicate conditions. IOR, NOT and AND. |
| For ior/and, the ADD flag determines whether we want to add the new |
| condition X to the old one unconditionally. If it is zero, we will |
| only return a new expression if X allows us to simplify part of |
| OLD, otherwise we return NULL to the caller. |
| If ADD is nonzero, we will return a new condition in all cases. The |
| toplevel caller of one of these functions should always pass 1 for |
| ADD. */ |
| |
| static rtx |
| ior_reg_cond (rtx old, rtx x, int add) |
| { |
| rtx op0, op1; |
| |
| if (COMPARISON_P (old)) |
| { |
| if (COMPARISON_P (x) |
| && REVERSE_CONDEXEC_PREDICATES_P (x, old) |
| && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0))) |
| return const1_rtx; |
| if (GET_CODE (x) == GET_CODE (old) |
| && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0))) |
| return old; |
| if (! add) |
| return NULL; |
| return gen_rtx_IOR (0, old, x); |
| } |
| |
| switch (GET_CODE (old)) |
| { |
| case IOR: |
| op0 = ior_reg_cond (XEXP (old, 0), x, 0); |
| op1 = ior_reg_cond (XEXP (old, 1), x, 0); |
| if (op0 != NULL || op1 != NULL) |
| { |
| if (op0 == const0_rtx) |
| return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x); |
| if (op1 == const0_rtx) |
| return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x); |
| if (op0 == const1_rtx || op1 == const1_rtx) |
| return const1_rtx; |
| if (op0 == NULL) |
| op0 = gen_rtx_IOR (0, XEXP (old, 0), x); |
| else if (rtx_equal_p (x, op0)) |
| /* (x | A) | x ~ (x | A). */ |
| return old; |
| if (op1 == NULL) |
| op1 = gen_rtx_IOR (0, XEXP (old, 1), x); |
| else if (rtx_equal_p (x, op1)) |
| /* (A | x) | x ~ (A | x). */ |
| return old; |
| return gen_rtx_IOR (0, op0, op1); |
| } |
| if (! add) |
| return NULL; |
| return gen_rtx_IOR (0, old, x); |
| |
| case AND: |
| op0 = ior_reg_cond (XEXP (old, 0), x, 0); |
| op1 = ior_reg_cond (XEXP (old, 1), x, 0); |
| if (op0 != NULL || op1 != NULL) |
| { |
| if (op0 == const1_rtx) |
| return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x); |
| if (op1 == const1_rtx) |
| return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x); |
| if (op0 == const0_rtx || op1 == const0_rtx) |
| return const0_rtx; |
| if (op0 == NULL) |
| op0 = gen_rtx_IOR (0, XEXP (old, 0), x); |
| else if (rtx_equal_p (x, op0)) |
| /* (x & A) | x ~ x. */ |
| return op0; |
| if (op1 == NULL) |
| op1 = gen_rtx_IOR (0, XEXP (old, 1), x); |
| else if (rtx_equal_p (x, op1)) |
| /* (A & x) | x ~ x. */ |
| return op1; |
| return gen_rtx_AND (0, op0, op1); |
| } |
| if (! add) |
| return NULL; |
| return gen_rtx_IOR (0, old, x); |
| |
| case NOT: |
| op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0); |
| if (op0 != NULL) |
| return not_reg_cond (op0); |
| if (! add) |
| return NULL; |
| return gen_rtx_IOR (0, old, x); |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| static rtx |
| not_reg_cond (rtx x) |
| { |
| if (x == const0_rtx) |
| return const1_rtx; |
| else if (x == const1_rtx) |
| return const0_rtx; |
| if (GET_CODE (x) == NOT) |
| return XEXP (x, 0); |
| if (COMPARISON_P (x) |
| && REG_P (XEXP (x, 0))) |
| { |
| gcc_assert (XEXP (x, 1) == const0_rtx); |
| |
| return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL), |
| VOIDmode, XEXP (x, 0), const0_rtx); |
| } |
| return gen_rtx_NOT (0, x); |
| } |
| |
| static rtx |
| and_reg_cond (rtx old, rtx x, int add) |
| { |
| rtx op0, op1; |
| |
| if (COMPARISON_P (old)) |
| { |
| if (COMPARISON_P (x) |
| && GET_CODE (x) == reversed_comparison_code (old, NULL) |
| && REGNO (XEXP (x,
|