blob: c645bc0eeecc50644936b20adb48db6cf9e99a94 [file] [log] [blame]
/*
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
* Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
* Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*
*/
# include <stdio.h>
# include "private/gc_pmark.h"
#if defined(MSWIN32) && defined(__GNUC__)
# include <excpt.h>
#endif
/* We put this here to minimize the risk of inlining. */
/*VARARGS*/
#ifdef __WATCOMC__
void GC_noop(void *p, ...) {}
#else
void GC_noop() {}
#endif
/* Single argument version, robust against whole program analysis. */
void GC_noop1(x)
word x;
{
static VOLATILE word sink;
sink = x;
}
/* mark_proc GC_mark_procs[MAX_MARK_PROCS] = {0} -- declared in gc_priv.h */
word GC_n_mark_procs = GC_RESERVED_MARK_PROCS;
/* Initialize GC_obj_kinds properly and standard free lists properly. */
/* This must be done statically since they may be accessed before */
/* GC_init is called. */
/* It's done here, since we need to deal with mark descriptors. */
struct obj_kind GC_obj_kinds[MAXOBJKINDS] = {
/* PTRFREE */ { &GC_aobjfreelist[0], 0 /* filled in dynamically */,
0 | GC_DS_LENGTH, FALSE, FALSE },
/* NORMAL */ { &GC_objfreelist[0], 0,
0 | GC_DS_LENGTH, /* Adjusted in GC_init_inner for EXTRA_BYTES */
TRUE /* add length to descr */, TRUE },
/* UNCOLLECTABLE */
{ &GC_uobjfreelist[0], 0,
0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
# ifdef ATOMIC_UNCOLLECTABLE
/* AUNCOLLECTABLE */
{ &GC_auobjfreelist[0], 0,
0 | GC_DS_LENGTH, FALSE /* add length to descr */, FALSE },
# endif
# ifdef STUBBORN_ALLOC
/*STUBBORN*/ { &GC_sobjfreelist[0], 0,
0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
# endif
};
# ifdef ATOMIC_UNCOLLECTABLE
# ifdef STUBBORN_ALLOC
int GC_n_kinds = 5;
# else
int GC_n_kinds = 4;
# endif
# else
# ifdef STUBBORN_ALLOC
int GC_n_kinds = 4;
# else
int GC_n_kinds = 3;
# endif
# endif
# ifndef INITIAL_MARK_STACK_SIZE
# define INITIAL_MARK_STACK_SIZE (1*HBLKSIZE)
/* INITIAL_MARK_STACK_SIZE * sizeof(mse) should be a */
/* multiple of HBLKSIZE. */
/* The incremental collector actually likes a larger */
/* size, since it want to push all marked dirty objs */
/* before marking anything new. Currently we let it */
/* grow dynamically. */
# endif
/*
* Limits of stack for GC_mark routine.
* All ranges between GC_mark_stack(incl.) and GC_mark_stack_top(incl.) still
* need to be marked from.
*/
word GC_n_rescuing_pages; /* Number of dirty pages we marked from */
/* excludes ptrfree pages, etc. */
mse * GC_mark_stack;
mse * GC_mark_stack_limit;
word GC_mark_stack_size = 0;
#ifdef PARALLEL_MARK
mse * VOLATILE GC_mark_stack_top;
#else
mse * GC_mark_stack_top;
#endif
static struct hblk * scan_ptr;
mark_state_t GC_mark_state = MS_NONE;
GC_bool GC_mark_stack_too_small = FALSE;
GC_bool GC_objects_are_marked = FALSE; /* Are there collectable marked */
/* objects in the heap? */
/* Is a collection in progress? Note that this can return true in the */
/* nonincremental case, if a collection has been abandoned and the */
/* mark state is now MS_INVALID. */
GC_bool GC_collection_in_progress()
{
return(GC_mark_state != MS_NONE);
}
/* clear all mark bits in the header */
void GC_clear_hdr_marks(hhdr)
register hdr * hhdr;
{
# ifdef USE_MARK_BYTES
BZERO(hhdr -> hb_marks, MARK_BITS_SZ);
# else
BZERO(hhdr -> hb_marks, MARK_BITS_SZ*sizeof(word));
# endif
}
/* Set all mark bits in the header. Used for uncollectable blocks. */
void GC_set_hdr_marks(hhdr)
register hdr * hhdr;
{
register int i;
for (i = 0; i < MARK_BITS_SZ; ++i) {
# ifdef USE_MARK_BYTES
hhdr -> hb_marks[i] = 1;
# else
hhdr -> hb_marks[i] = ONES;
# endif
}
}
/*
* Clear all mark bits associated with block h.
*/
/*ARGSUSED*/
# if defined(__STDC__) || defined(__cplusplus)
static void clear_marks_for_block(struct hblk *h, word dummy)
# else
static void clear_marks_for_block(h, dummy)
struct hblk *h;
word dummy;
# endif
{
register hdr * hhdr = HDR(h);
if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) return;
/* Mark bit for these is cleared only once the object is */
/* explicitly deallocated. This either frees the block, or */
/* the bit is cleared once the object is on the free list. */
GC_clear_hdr_marks(hhdr);
}
/* Slow but general routines for setting/clearing/asking about mark bits */
void GC_set_mark_bit(p)
ptr_t p;
{
register struct hblk *h = HBLKPTR(p);
register hdr * hhdr = HDR(h);
register int word_no = (word *)p - (word *)h;
set_mark_bit_from_hdr(hhdr, word_no);
}
void GC_clear_mark_bit(p)
ptr_t p;
{
register struct hblk *h = HBLKPTR(p);
register hdr * hhdr = HDR(h);
register int word_no = (word *)p - (word *)h;
clear_mark_bit_from_hdr(hhdr, word_no);
}
GC_bool GC_is_marked(p)
ptr_t p;
{
register struct hblk *h = HBLKPTR(p);
register hdr * hhdr = HDR(h);
register int word_no = (word *)p - (word *)h;
return(mark_bit_from_hdr(hhdr, word_no));
}
/*
* Clear mark bits in all allocated heap blocks. This invalidates
* the marker invariant, and sets GC_mark_state to reflect this.
* (This implicitly starts marking to reestablish the invariant.)
*/
void GC_clear_marks()
{
GC_apply_to_all_blocks(clear_marks_for_block, (word)0);
GC_objects_are_marked = FALSE;
GC_mark_state = MS_INVALID;
scan_ptr = 0;
# ifdef GATHERSTATS
/* Counters reflect currently marked objects: reset here */
GC_composite_in_use = 0;
GC_atomic_in_use = 0;
# endif
}
/* Initiate a garbage collection. Initiates a full collection if the */
/* mark state is invalid. */
/*ARGSUSED*/
void GC_initiate_gc()
{
if (GC_dirty_maintained) GC_read_dirty();
# ifdef STUBBORN_ALLOC
GC_read_changed();
# endif
# ifdef CHECKSUMS
{
extern void GC_check_dirty();
if (GC_dirty_maintained) GC_check_dirty();
}
# endif
GC_n_rescuing_pages = 0;
if (GC_mark_state == MS_NONE) {
GC_mark_state = MS_PUSH_RESCUERS;
} else if (GC_mark_state != MS_INVALID) {
ABORT("unexpected state");
} /* else this is really a full collection, and mark */
/* bits are invalid. */
scan_ptr = 0;
}
static void alloc_mark_stack();
/* Perform a small amount of marking. */
/* We try to touch roughly a page of memory. */
/* Return TRUE if we just finished a mark phase. */
/* Cold_gc_frame is an address inside a GC frame that */
/* remains valid until all marking is complete. */
/* A zero value indicates that it's OK to miss some */
/* register values. */
/* We hold the allocation lock. In the case of */
/* incremental collection, the world may not be stopped.*/
#ifdef MSWIN32
/* For win32, this is called after we establish a structured */
/* exception handler, in case Windows unmaps one of our root */
/* segments. See below. In either case, we acquire the */
/* allocator lock long before we get here. */
GC_bool GC_mark_some_inner(cold_gc_frame)
ptr_t cold_gc_frame;
#else
GC_bool GC_mark_some(cold_gc_frame)
ptr_t cold_gc_frame;
#endif
{
switch(GC_mark_state) {
case MS_NONE:
return(FALSE);
case MS_PUSH_RESCUERS:
if (GC_mark_stack_top
>= GC_mark_stack_limit - INITIAL_MARK_STACK_SIZE/2) {
/* Go ahead and mark, even though that might cause us to */
/* see more marked dirty objects later on. Avoid this */
/* in the future. */
GC_mark_stack_too_small = TRUE;
MARK_FROM_MARK_STACK();
return(FALSE);
} else {
scan_ptr = GC_push_next_marked_dirty(scan_ptr);
if (scan_ptr == 0) {
# ifdef CONDPRINT
if (GC_print_stats) {
GC_printf1("Marked from %lu dirty pages\n",
(unsigned long)GC_n_rescuing_pages);
}
# endif
GC_push_roots(FALSE, cold_gc_frame);
GC_objects_are_marked = TRUE;
if (GC_mark_state != MS_INVALID) {
GC_mark_state = MS_ROOTS_PUSHED;
}
}
}
return(FALSE);
case MS_PUSH_UNCOLLECTABLE:
if (GC_mark_stack_top
>= GC_mark_stack + GC_mark_stack_size/4) {
# ifdef PARALLEL_MARK
/* Avoid this, since we don't parallelize the marker */
/* here. */
if (GC_parallel) GC_mark_stack_too_small = TRUE;
# endif
MARK_FROM_MARK_STACK();
return(FALSE);
} else {
scan_ptr = GC_push_next_marked_uncollectable(scan_ptr);
if (scan_ptr == 0) {
GC_push_roots(TRUE, cold_gc_frame);
GC_objects_are_marked = TRUE;
if (GC_mark_state != MS_INVALID) {
GC_mark_state = MS_ROOTS_PUSHED;
}
}
}
return(FALSE);
case MS_ROOTS_PUSHED:
# ifdef PARALLEL_MARK
/* In the incremental GC case, this currently doesn't */
/* quite do the right thing, since it runs to */
/* completion. On the other hand, starting a */
/* parallel marker is expensive, so perhaps it is */
/* the right thing? */
/* Eventually, incremental marking should run */
/* asynchronously in multiple threads, without grabbing */
/* the allocation lock. */
if (GC_parallel) {
GC_do_parallel_mark();
GC_ASSERT(GC_mark_stack_top < GC_first_nonempty);
GC_mark_stack_top = GC_mark_stack - 1;
if (GC_mark_stack_too_small) {
alloc_mark_stack(2*GC_mark_stack_size);
}
if (GC_mark_state == MS_ROOTS_PUSHED) {
GC_mark_state = MS_NONE;
return(TRUE);
} else {
return(FALSE);
}
}
# endif
if (GC_mark_stack_top >= GC_mark_stack) {
MARK_FROM_MARK_STACK();
return(FALSE);
} else {
GC_mark_state = MS_NONE;
if (GC_mark_stack_too_small) {
alloc_mark_stack(2*GC_mark_stack_size);
}
return(TRUE);
}
case MS_INVALID:
case MS_PARTIALLY_INVALID:
if (!GC_objects_are_marked) {
GC_mark_state = MS_PUSH_UNCOLLECTABLE;
return(FALSE);
}
if (GC_mark_stack_top >= GC_mark_stack) {
MARK_FROM_MARK_STACK();
return(FALSE);
}
if (scan_ptr == 0 && GC_mark_state == MS_INVALID) {
/* About to start a heap scan for marked objects. */
/* Mark stack is empty. OK to reallocate. */
if (GC_mark_stack_too_small) {
alloc_mark_stack(2*GC_mark_stack_size);
}
GC_mark_state = MS_PARTIALLY_INVALID;
}
scan_ptr = GC_push_next_marked(scan_ptr);
if (scan_ptr == 0 && GC_mark_state == MS_PARTIALLY_INVALID) {
GC_push_roots(TRUE, cold_gc_frame);
GC_objects_are_marked = TRUE;
if (GC_mark_state != MS_INVALID) {
GC_mark_state = MS_ROOTS_PUSHED;
}
}
return(FALSE);
default:
ABORT("GC_mark_some: bad state");
return(FALSE);
}
}
#ifdef MSWIN32
# ifdef __GNUC__
typedef struct {
EXCEPTION_REGISTRATION ex_reg;
void *alt_path;
} ext_ex_regn;
static EXCEPTION_DISPOSITION mark_ex_handler(
struct _EXCEPTION_RECORD *ex_rec,
void *est_frame,
struct _CONTEXT *context,
void *disp_ctxt)
{
if (ex_rec->ExceptionCode == STATUS_ACCESS_VIOLATION) {
ext_ex_regn *xer = (ext_ex_regn *)est_frame;
/* Unwind from the inner function assuming the standard */
/* function prologue. */
/* Assumes code has not been compiled with */
/* -fomit-frame-pointer. */
context->Esp = context->Ebp;
context->Ebp = *((DWORD *)context->Esp);
context->Esp = context->Esp - 8;
/* Resume execution at the "real" handler within the */
/* wrapper function. */
context->Eip = (DWORD )(xer->alt_path);
return ExceptionContinueExecution;
} else {
return ExceptionContinueSearch;
}
}
# endif /* __GNUC__ */
GC_bool GC_mark_some(cold_gc_frame)
ptr_t cold_gc_frame;
{
GC_bool ret_val;
# ifndef __GNUC__
/* Windows 98 appears to asynchronously create and remove */
/* writable memory mappings, for reasons we haven't yet */
/* understood. Since we look for writable regions to */
/* determine the root set, we may try to mark from an */
/* address range that disappeared since we started the */
/* collection. Thus we have to recover from faults here. */
/* This code does not appear to be necessary for Windows */
/* 95/NT/2000. Note that this code should never generate */
/* an incremental GC write fault. */
__try {
# else /* __GNUC__ */
/* Manually install an exception handler since GCC does */
/* not yet support Structured Exception Handling (SEH) on */
/* Win32. */
ext_ex_regn er;
er.alt_path = &&handle_ex;
er.ex_reg.handler = mark_ex_handler;
asm volatile ("movl %%fs:0, %0" : "=r" (er.ex_reg.prev));
asm volatile ("movl %0, %%fs:0" : : "r" (&er));
# endif /* __GNUC__ */
ret_val = GC_mark_some_inner(cold_gc_frame);
# ifndef __GNUC__
} __except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
# else /* __GNUC__ */
/* Prevent GCC from considering the following code unreachable */
/* and thus eliminating it. */
if (er.alt_path != 0)
goto rm_handler;
handle_ex:
/* Execution resumes from here on an access violation. */
# endif /* __GNUC__ */
# ifdef CONDPRINT
if (GC_print_stats) {
GC_printf0("Caught ACCESS_VIOLATION in marker. "
"Memory mapping disappeared.\n");
}
# endif /* CONDPRINT */
/* We have bad roots on the stack. Discard mark stack. */
/* Rescan from marked objects. Redetermine roots. */
GC_invalidate_mark_state();
scan_ptr = 0;
ret_val = FALSE;
# ifndef __GNUC__
}
# else /* __GNUC__ */
rm_handler:
/* Uninstall the exception handler */
asm volatile ("mov %0, %%fs:0" : : "r" (er.ex_reg.prev));
# endif /* __GNUC__ */
return ret_val;
}
#endif /* MSWIN32 */
GC_bool GC_mark_stack_empty()
{
return(GC_mark_stack_top < GC_mark_stack);
}
#ifdef PROF_MARKER
word GC_prof_array[10];
# define PROF(n) GC_prof_array[n]++
#else
# define PROF(n)
#endif
/* Given a pointer to someplace other than a small object page or the */
/* first page of a large object, either: */
/* - return a pointer to somewhere in the first page of the large */
/* object, if current points to a large object. */
/* In this case *hhdr is replaced with a pointer to the header */
/* for the large object. */
/* - just return current if it does not point to a large object. */
/*ARGSUSED*/
ptr_t GC_find_start(current, hhdr, new_hdr_p)
register ptr_t current;
register hdr *hhdr, **new_hdr_p;
{
if (GC_all_interior_pointers) {
if (hhdr != 0) {
register ptr_t orig = current;
current = (ptr_t)HBLKPTR(current);
do {
current = current - HBLKSIZE*(word)hhdr;
hhdr = HDR(current);
} while(IS_FORWARDING_ADDR_OR_NIL(hhdr));
/* current points to near the start of the large object */
if (hhdr -> hb_flags & IGNORE_OFF_PAGE) return(orig);
if ((word *)orig - (word *)current
>= (ptrdiff_t)(hhdr->hb_sz)) {
/* Pointer past the end of the block */
return(orig);
}
*new_hdr_p = hhdr;
return(current);
} else {
return(current);
}
} else {
return(current);
}
}
void GC_invalidate_mark_state()
{
GC_mark_state = MS_INVALID;
GC_mark_stack_top = GC_mark_stack-1;
}
mse * GC_signal_mark_stack_overflow(msp)
mse * msp;
{
GC_mark_state = MS_INVALID;
GC_mark_stack_too_small = TRUE;
# ifdef CONDPRINT
if (GC_print_stats) {
GC_printf1("Mark stack overflow; current size = %lu entries\n",
GC_mark_stack_size);
}
# endif
return(msp - GC_MARK_STACK_DISCARDS);
}
/*
* Mark objects pointed to by the regions described by
* mark stack entries between GC_mark_stack and GC_mark_stack_top,
* inclusive. Assumes the upper limit of a mark stack entry
* is never 0. A mark stack entry never has size 0.
* We try to traverse on the order of a hblk of memory before we return.
* Caller is responsible for calling this until the mark stack is empty.
* Note that this is the most performance critical routine in the
* collector. Hence it contains all sorts of ugly hacks to speed
* things up. In particular, we avoid procedure calls on the common
* path, we take advantage of peculiarities of the mark descriptor
* encoding, we optionally maintain a cache for the block address to
* header mapping, we prefetch when an object is "grayed", etc.
*/
mse * GC_mark_from(mark_stack_top, mark_stack, mark_stack_limit)
mse * mark_stack_top;
mse * mark_stack;
mse * mark_stack_limit;
{
int credit = HBLKSIZE; /* Remaining credit for marking work */
register word * current_p; /* Pointer to current candidate ptr. */
register word current; /* Candidate pointer. */
register word * limit; /* (Incl) limit of current candidate */
/* range */
register word descr;
register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
register ptr_t least_ha = GC_least_plausible_heap_addr;
DECLARE_HDR_CACHE;
# define SPLIT_RANGE_WORDS 128 /* Must be power of 2. */
GC_objects_are_marked = TRUE;
INIT_HDR_CACHE;
# ifdef OS2 /* Use untweaked version to circumvent compiler problem */
while (mark_stack_top >= mark_stack && credit >= 0) {
# else
while ((((ptr_t)mark_stack_top - (ptr_t)mark_stack) | credit)
>= 0) {
# endif
current_p = mark_stack_top -> mse_start;
descr = mark_stack_top -> mse_descr;
retry:
/* current_p and descr describe the current object. */
/* *mark_stack_top is vacant. */
/* The following is 0 only for small objects described by a simple */
/* length descriptor. For many applications this is the common */
/* case, so we try to detect it quickly. */
if (descr & ((~(WORDS_TO_BYTES(SPLIT_RANGE_WORDS) - 1)) | GC_DS_TAGS)) {
word tag = descr & GC_DS_TAGS;
switch(tag) {
case GC_DS_LENGTH:
/* Large length. */
/* Process part of the range to avoid pushing too much on the */
/* stack. */
GC_ASSERT(descr < (word)GC_greatest_plausible_heap_addr
- (word)GC_least_plausible_heap_addr);
# ifdef PARALLEL_MARK
# define SHARE_BYTES 2048
if (descr > SHARE_BYTES && GC_parallel
&& mark_stack_top < mark_stack_limit - 1) {
int new_size = (descr/2) & ~(sizeof(word)-1);
mark_stack_top -> mse_start = current_p;
mark_stack_top -> mse_descr = new_size + sizeof(word);
/* makes sure we handle */
/* misaligned pointers. */
mark_stack_top++;
current_p = (word *) ((char *)current_p + new_size);
descr -= new_size;
goto retry;
}
# endif /* PARALLEL_MARK */
mark_stack_top -> mse_start =
limit = current_p + SPLIT_RANGE_WORDS-1;
mark_stack_top -> mse_descr =
descr - WORDS_TO_BYTES(SPLIT_RANGE_WORDS-1);
/* Make sure that pointers overlapping the two ranges are */
/* considered. */
limit = (word *)((char *)limit + sizeof(word) - ALIGNMENT);
break;
case GC_DS_BITMAP:
mark_stack_top--;
descr &= ~GC_DS_TAGS;
credit -= WORDS_TO_BYTES(WORDSZ/2); /* guess */
while (descr != 0) {
if ((signed_word)descr < 0) {
current = *current_p;
FIXUP_POINTER(current);
if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
PREFETCH((ptr_t)current);
HC_PUSH_CONTENTS((ptr_t)current, mark_stack_top,
mark_stack_limit, current_p, exit1);
}
}
descr <<= 1;
++ current_p;
}
continue;
case GC_DS_PROC:
mark_stack_top--;
credit -= GC_PROC_BYTES;
mark_stack_top =
(*PROC(descr))
(current_p, mark_stack_top,
mark_stack_limit, ENV(descr));
continue;
case GC_DS_PER_OBJECT:
if ((signed_word)descr >= 0) {
/* Descriptor is in the object. */
descr = *(word *)((ptr_t)current_p + descr - GC_DS_PER_OBJECT);
} else {
/* Descriptor is in type descriptor pointed to by first */
/* word in object. */
ptr_t type_descr = *(ptr_t *)current_p;
/* type_descr is either a valid pointer to the descriptor */
/* structure, or this object was on a free list. If it */
/* it was anything but the last object on the free list, */
/* we will misinterpret the next object on the free list as */
/* the type descriptor, and get a 0 GC descriptor, which */
/* is ideal. Unfortunately, we need to check for the last */
/* object case explicitly. */
if (0 == type_descr) {
/* Rarely executed. */
mark_stack_top--;
continue;
}
descr = *(word *)(type_descr
- (descr - (GC_DS_PER_OBJECT
- GC_INDIR_PER_OBJ_BIAS)));
}
if (0 == descr) {
/* Can happen either because we generated a 0 descriptor */
/* or we saw a pointer to a free object. */
mark_stack_top--;
continue;
}
goto retry;
}
} else /* Small object with length descriptor */ {
mark_stack_top--;
limit = (word *)(((ptr_t)current_p) + (word)descr);
}
/* The simple case in which we're scanning a range. */
GC_ASSERT(!((word)current_p & (ALIGNMENT-1)));
credit -= (ptr_t)limit - (ptr_t)current_p;
limit -= 1;
{
# define PREF_DIST 4
# ifndef SMALL_CONFIG
word deferred;
/* Try to prefetch the next pointer to be examined asap. */
/* Empirically, this also seems to help slightly without */
/* prefetches, at least on linux/X86. Presumably this loop */
/* ends up with less register pressure, and gcc thus ends up */
/* generating slightly better code. Overall gcc code quality */
/* for this loop is still not great. */
for(;;) {
PREFETCH((ptr_t)limit - PREF_DIST*CACHE_LINE_SIZE);
GC_ASSERT(limit >= current_p);
deferred = *limit;
FIXUP_POINTER(deferred);
limit = (word *)((char *)limit - ALIGNMENT);
if ((ptr_t)deferred >= least_ha && (ptr_t)deferred < greatest_ha) {
PREFETCH((ptr_t)deferred);
break;
}
if (current_p > limit) goto next_object;
/* Unroll once, so we don't do too many of the prefetches */
/* based on limit. */
deferred = *limit;
FIXUP_POINTER(deferred);
limit = (word *)((char *)limit - ALIGNMENT);
if ((ptr_t)deferred >= least_ha && (ptr_t)deferred < greatest_ha) {
PREFETCH((ptr_t)deferred);
break;
}
if (current_p > limit) goto next_object;
}
# endif
while (current_p <= limit) {
/* Empirically, unrolling this loop doesn't help a lot. */
/* Since HC_PUSH_CONTENTS expands to a lot of code, */
/* we don't. */
current = *current_p;
FIXUP_POINTER(current);
PREFETCH((ptr_t)current_p + PREF_DIST*CACHE_LINE_SIZE);
if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
/* Prefetch the contents of the object we just pushed. It's */
/* likely we will need them soon. */
PREFETCH((ptr_t)current);
HC_PUSH_CONTENTS((ptr_t)current, mark_stack_top,
mark_stack_limit, current_p, exit2);
}
current_p = (word *)((char *)current_p + ALIGNMENT);
}
# ifndef SMALL_CONFIG
/* We still need to mark the entry we previously prefetched. */
/* We alrady know that it passes the preliminary pointer */
/* validity test. */
HC_PUSH_CONTENTS((ptr_t)deferred, mark_stack_top,
mark_stack_limit, current_p, exit4);
next_object:;
# endif
}
}
return mark_stack_top;
}
#ifdef PARALLEL_MARK
/* We assume we have an ANSI C Compiler. */
GC_bool GC_help_wanted = FALSE;
unsigned GC_helper_count = 0;
unsigned GC_active_count = 0;
mse * VOLATILE GC_first_nonempty;
word GC_mark_no = 0;
#define LOCAL_MARK_STACK_SIZE HBLKSIZE
/* Under normal circumstances, this is big enough to guarantee */
/* We don't overflow half of it in a single call to */
/* GC_mark_from. */
/* Steal mark stack entries starting at mse low into mark stack local */
/* until we either steal mse high, or we have max entries. */
/* Return a pointer to the top of the local mark stack. */
/* *next is replaced by a pointer to the next unscanned mark stack */
/* entry. */
mse * GC_steal_mark_stack(mse * low, mse * high, mse * local,
unsigned max, mse **next)
{
mse *p;
mse *top = local - 1;
unsigned i = 0;
/* Make sure that prior writes to the mark stack are visible. */
/* On some architectures, the fact that the reads are */
/* volatile should suffice. */
# if !defined(IA64) && !defined(HP_PA) && !defined(I386)
GC_memory_barrier();
# endif
GC_ASSERT(high >= low-1 && high - low + 1 <= GC_mark_stack_size);
for (p = low; p <= high && i <= max; ++p) {
word descr = *(volatile word *) &(p -> mse_descr);
/* In the IA64 memory model, the following volatile store is */
/* ordered after this read of descr. Thus a thread must read */
/* the original nonzero value. HP_PA appears to be similar, */
/* and if I'm reading the P4 spec correctly, X86 is probably */
/* also OK. In some other cases we need a barrier. */
# if !defined(IA64) && !defined(HP_PA) && !defined(I386)
GC_memory_barrier();
# endif
if (descr != 0) {
*(volatile word *) &(p -> mse_descr) = 0;
/* More than one thread may get this entry, but that's only */
/* a minor performance problem. */
++top;
top -> mse_descr = descr;
top -> mse_start = p -> mse_start;
GC_ASSERT( top -> mse_descr & GC_DS_TAGS != GC_DS_LENGTH ||
top -> mse_descr < GC_greatest_plausible_heap_addr
- GC_least_plausible_heap_addr);
/* If this is a big object, count it as */
/* size/256 + 1 objects. */
++i;
if ((descr & GC_DS_TAGS) == GC_DS_LENGTH) i += (descr >> 8);
}
}
*next = p;
return top;
}
/* Copy back a local mark stack. */
/* low and high are inclusive bounds. */
void GC_return_mark_stack(mse * low, mse * high)
{
mse * my_top;
mse * my_start;
size_t stack_size;
if (high < low) return;
stack_size = high - low + 1;
GC_acquire_mark_lock();
my_top = GC_mark_stack_top;
my_start = my_top + 1;
if (my_start - GC_mark_stack + stack_size > GC_mark_stack_size) {
# ifdef CONDPRINT
if (GC_print_stats) {
GC_printf0("No room to copy back mark stack.");
}
# endif
GC_mark_state = MS_INVALID;
GC_mark_stack_too_small = TRUE;
/* We drop the local mark stack. We'll fix things later. */
} else {
BCOPY(low, my_start, stack_size * sizeof(mse));
GC_ASSERT(GC_mark_stack_top = my_top);
# if !defined(IA64) && !defined(HP_PA)
GC_memory_barrier();
# endif
/* On IA64, the volatile write acts as a release barrier. */
GC_mark_stack_top = my_top + stack_size;
}
GC_release_mark_lock();
GC_notify_all_marker();
}
/* Mark from the local mark stack. */
/* On return, the local mark stack is empty. */
/* But this may be achieved by copying the */
/* local mark stack back into the global one. */
void GC_do_local_mark(mse *local_mark_stack, mse *local_top)
{
unsigned n;
# define N_LOCAL_ITERS 1
# ifdef GC_ASSERTIONS
/* Make sure we don't hold mark lock. */
GC_acquire_mark_lock();
GC_release_mark_lock();
# endif
for (;;) {
for (n = 0; n < N_LOCAL_ITERS; ++n) {
local_top = GC_mark_from(local_top, local_mark_stack,
local_mark_stack + LOCAL_MARK_STACK_SIZE);
if (local_top < local_mark_stack) return;
if (local_top - local_mark_stack >= LOCAL_MARK_STACK_SIZE/2) {
GC_return_mark_stack(local_mark_stack, local_top);
return;
}
}
if (GC_mark_stack_top < GC_first_nonempty &&
GC_active_count < GC_helper_count
&& local_top > local_mark_stack + 1) {
/* Try to share the load, since the main stack is empty, */
/* and helper threads are waiting for a refill. */
/* The entries near the bottom of the stack are likely */
/* to require more work. Thus we return those, eventhough */
/* it's harder. */
mse * p;
mse * new_bottom = local_mark_stack
+ (local_top - local_mark_stack)/2;
GC_ASSERT(new_bottom > local_mark_stack
&& new_bottom < local_top);
GC_return_mark_stack(local_mark_stack, new_bottom - 1);
memmove(local_mark_stack, new_bottom,
(local_top - new_bottom + 1) * sizeof(mse));
local_top -= (new_bottom - local_mark_stack);
}
}
}
#define ENTRIES_TO_GET 5
long GC_markers = 2; /* Normally changed by thread-library- */
/* -specific code. */
/* Mark using the local mark stack until the global mark stack is empty */
/* and there are no active workers. Update GC_first_nonempty to reflect */
/* progress. */
/* Caller does not hold mark lock. */
/* Caller has already incremented GC_helper_count. We decrement it, */
/* and maintain GC_active_count. */
void GC_mark_local(mse *local_mark_stack, int id)
{
mse * my_first_nonempty;
GC_acquire_mark_lock();
GC_active_count++;
my_first_nonempty = GC_first_nonempty;
GC_ASSERT(GC_first_nonempty >= GC_mark_stack &&
GC_first_nonempty <= GC_mark_stack_top + 1);
# ifdef PRINTSTATS
GC_printf1("Starting mark helper %lu\n", (unsigned long)id);
# endif
GC_release_mark_lock();
for (;;) {
size_t n_on_stack;
size_t n_to_get;
mse *next;
mse * my_top;
mse * local_top;
mse * global_first_nonempty = GC_first_nonempty;
GC_ASSERT(my_first_nonempty >= GC_mark_stack &&
my_first_nonempty <= GC_mark_stack_top + 1);
GC_ASSERT(global_first_nonempty >= GC_mark_stack &&
global_first_nonempty <= GC_mark_stack_top + 1);
if (my_first_nonempty < global_first_nonempty) {
my_first_nonempty = global_first_nonempty;
} else if (global_first_nonempty < my_first_nonempty) {
GC_compare_and_exchange((word *)(&GC_first_nonempty),
(word) global_first_nonempty,
(word) my_first_nonempty);
/* If this fails, we just go ahead, without updating */
/* GC_first_nonempty. */
}
/* Perhaps we should also update GC_first_nonempty, if it */
/* is less. But that would require using atomic updates. */
my_top = GC_mark_stack_top;
n_on_stack = my_top - my_first_nonempty + 1;
if (0 == n_on_stack) {
GC_acquire_mark_lock();
my_top = GC_mark_stack_top;
n_on_stack = my_top - my_first_nonempty + 1;
if (0 == n_on_stack) {
GC_active_count--;
GC_ASSERT(GC_active_count <= GC_helper_count);
/* Other markers may redeposit objects */
/* on the stack. */
if (0 == GC_active_count) GC_notify_all_marker();
while (GC_active_count > 0
&& GC_first_nonempty > GC_mark_stack_top) {
/* We will be notified if either GC_active_count */
/* reaches zero, or if more objects are pushed on */
/* the global mark stack. */
GC_wait_marker();
}
if (GC_active_count == 0 &&
GC_first_nonempty > GC_mark_stack_top) {
GC_bool need_to_notify = FALSE;
/* The above conditions can't be falsified while we */
/* hold the mark lock, since neither */
/* GC_active_count nor GC_mark_stack_top can */
/* change. GC_first_nonempty can only be */
/* incremented asynchronously. Thus we know that */
/* both conditions actually held simultaneously. */
GC_helper_count--;
if (0 == GC_helper_count) need_to_notify = TRUE;
# ifdef PRINTSTATS
GC_printf1(
"Finished mark helper %lu\n", (unsigned long)id);
# endif
GC_release_mark_lock();
if (need_to_notify) GC_notify_all_marker();
return;
}
/* else there's something on the stack again, or */
/* another helper may push something. */
GC_active_count++;
GC_ASSERT(GC_active_count > 0);
GC_release_mark_lock();
continue;
} else {
GC_release_mark_lock();
}
}
n_to_get = ENTRIES_TO_GET;
if (n_on_stack < 2 * ENTRIES_TO_GET) n_to_get = 1;
local_top = GC_steal_mark_stack(my_first_nonempty, my_top,
local_mark_stack, n_to_get,
&my_first_nonempty);
GC_ASSERT(my_first_nonempty >= GC_mark_stack &&
my_first_nonempty <= GC_mark_stack_top + 1);
GC_do_local_mark(local_mark_stack, local_top);
}
}
/* Perform Parallel mark. */
/* We hold the GC lock, not the mark lock. */
/* Currently runs until the mark stack is */
/* empty. */
void GC_do_parallel_mark()
{
mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
mse * local_top;
mse * my_top;
GC_acquire_mark_lock();
GC_ASSERT(I_HOLD_LOCK());
/* This could be a GC_ASSERT, but it seems safer to keep it on */
/* all the time, especially since it's cheap. */
if (GC_help_wanted || GC_active_count != 0 || GC_helper_count != 0)
ABORT("Tried to start parallel mark in bad state");
# ifdef PRINTSTATS
GC_printf1("Starting marking for mark phase number %lu\n",
(unsigned long)GC_mark_no);
# endif
GC_first_nonempty = GC_mark_stack;
GC_active_count = 0;
GC_helper_count = 1;
GC_help_wanted = TRUE;
GC_release_mark_lock();
GC_notify_all_marker();
/* Wake up potential helpers. */
GC_mark_local(local_mark_stack, 0);
GC_acquire_mark_lock();
GC_help_wanted = FALSE;
/* Done; clean up. */
while (GC_helper_count > 0) GC_wait_marker();
/* GC_helper_count cannot be incremented while GC_help_wanted == FALSE */
# ifdef PRINTSTATS
GC_printf1(
"Finished marking for mark phase number %lu\n",
(unsigned long)GC_mark_no);
# endif
GC_mark_no++;
GC_release_mark_lock();
GC_notify_all_marker();
}
/* Try to help out the marker, if it's running. */
/* We do not hold the GC lock, but the requestor does. */
void GC_help_marker(word my_mark_no)
{
mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
unsigned my_id;
mse * my_first_nonempty;
if (!GC_parallel) return;
GC_acquire_mark_lock();
while (GC_mark_no < my_mark_no
|| !GC_help_wanted && GC_mark_no == my_mark_no) {
GC_wait_marker();
}
my_id = GC_helper_count;
if (GC_mark_no != my_mark_no || my_id >= GC_markers) {
/* Second test is useful only if original threads can also */
/* act as helpers. Under Linux they can't. */
GC_release_mark_lock();
return;
}
GC_helper_count = my_id + 1;
GC_release_mark_lock();
GC_mark_local(local_mark_stack, my_id);
/* GC_mark_local decrements GC_helper_count. */
}
#endif /* PARALLEL_MARK */
/* Allocate or reallocate space for mark stack of size s words */
/* May silently fail. */
static void alloc_mark_stack(n)
word n;
{
mse * new_stack = (mse *)GC_scratch_alloc(n * sizeof(struct GC_ms_entry));
GC_mark_stack_too_small = FALSE;
if (GC_mark_stack_size != 0) {
if (new_stack != 0) {
word displ = (word)GC_mark_stack & (GC_page_size - 1);
signed_word size = GC_mark_stack_size * sizeof(struct GC_ms_entry);
/* Recycle old space */
if (0 != displ) displ = GC_page_size - displ;
size = (size - displ) & ~(GC_page_size - 1);
if (size > 0) {
GC_add_to_heap((struct hblk *)
((word)GC_mark_stack + displ), (word)size);
}
GC_mark_stack = new_stack;
GC_mark_stack_size = n;
GC_mark_stack_limit = new_stack + n;
# ifdef CONDPRINT
if (GC_print_stats) {
GC_printf1("Grew mark stack to %lu frames\n",
(unsigned long) GC_mark_stack_size);
}
# endif
} else {
# ifdef CONDPRINT
if (GC_print_stats) {
GC_printf1("Failed to grow mark stack to %lu frames\n",
(unsigned long) n);
}
# endif
}
} else {
if (new_stack == 0) {
GC_err_printf0("No space for mark stack\n");
EXIT();
}
GC_mark_stack = new_stack;
GC_mark_stack_size = n;
GC_mark_stack_limit = new_stack + n;
}
GC_mark_stack_top = GC_mark_stack-1;
}
void GC_mark_init()
{
alloc_mark_stack(INITIAL_MARK_STACK_SIZE);
}
/*
* Push all locations between b and t onto the mark stack.
* b is the first location to be checked. t is one past the last
* location to be checked.
* Should only be used if there is no possibility of mark stack
* overflow.
*/
void GC_push_all(bottom, top)
ptr_t bottom;
ptr_t top;
{
register word length;
bottom = (ptr_t)(((word) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
top = (ptr_t)(((word) top) & ~(ALIGNMENT-1));
if (top == 0 || bottom == top) return;
GC_mark_stack_top++;
if (GC_mark_stack_top >= GC_mark_stack_limit) {
ABORT("unexpected mark stack overflow");
}
length = top - bottom;
# if GC_DS_TAGS > ALIGNMENT - 1
length += GC_DS_TAGS;
length &= ~GC_DS_TAGS;
# endif
GC_mark_stack_top -> mse_start = (word *)bottom;
GC_mark_stack_top -> mse_descr = length;
}
/*
* Analogous to the above, but push only those pages h with dirty_fn(h) != 0.
* We use push_fn to actually push the block.
* Used both to selectively push dirty pages, or to push a block
* in piecemeal fashion, to allow for more marking concurrency.
* Will not overflow mark stack if push_fn pushes a small fixed number
* of entries. (This is invoked only if push_fn pushes a single entry,
* or if it marks each object before pushing it, thus ensuring progress
* in the event of a stack overflow.)
*/
void GC_push_selected(bottom, top, dirty_fn, push_fn)
ptr_t bottom;
ptr_t top;
int (*dirty_fn) GC_PROTO((struct hblk * h));
void (*push_fn) GC_PROTO((ptr_t bottom, ptr_t top));
{
register struct hblk * h;
bottom = (ptr_t)(((long) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
top = (ptr_t)(((long) top) & ~(ALIGNMENT-1));
if (top == 0 || bottom == top) return;
h = HBLKPTR(bottom + HBLKSIZE);
if (top <= (ptr_t) h) {
if ((*dirty_fn)(h-1)) {
(*push_fn)(bottom, top);
}
return;
}
if ((*dirty_fn)(h-1)) {
(*push_fn)(bottom, (ptr_t)h);
}
while ((ptr_t)(h+1) <= top) {
if ((*dirty_fn)(h)) {
if ((word)(GC_mark_stack_top - GC_mark_stack)
> 3 * GC_mark_stack_size / 4) {
/* Danger of mark stack overflow */
(*push_fn)((ptr_t)h, top);
return;
} else {
(*push_fn)((ptr_t)h, (ptr_t)(h+1));
}
}
h++;
}
if ((ptr_t)h != top) {
if ((*dirty_fn)(h)) {
(*push_fn)((ptr_t)h, top);
}
}
if (GC_mark_stack_top >= GC_mark_stack_limit) {
ABORT("unexpected mark stack overflow");
}
}
# ifndef SMALL_CONFIG
#ifdef PARALLEL_MARK
/* Break up root sections into page size chunks to better spread */
/* out work. */
GC_bool GC_true_func(struct hblk *h) { return TRUE; }
# define GC_PUSH_ALL(b,t) GC_push_selected(b,t,GC_true_func,GC_push_all);
#else
# define GC_PUSH_ALL(b,t) GC_push_all(b,t);
#endif
void GC_push_conditional(bottom, top, all)
ptr_t bottom;
ptr_t top;
int all;
{
if (all) {
if (GC_dirty_maintained) {
# ifdef PROC_VDB
/* Pages that were never dirtied cannot contain pointers */
GC_push_selected(bottom, top, GC_page_was_ever_dirty, GC_push_all);
# else
GC_push_all(bottom, top);
# endif
} else {
GC_push_all(bottom, top);
}
} else {
GC_push_selected(bottom, top, GC_page_was_dirty, GC_push_all);
}
}
#endif
# if defined(MSWIN32) || defined(MSWINCE)
void __cdecl GC_push_one(p)
# else
void GC_push_one(p)
# endif
word p;
{
GC_PUSH_ONE_STACK(p, MARKED_FROM_REGISTER);
}
struct GC_ms_entry *GC_mark_and_push(obj, mark_stack_ptr, mark_stack_limit, src)
GC_PTR obj;
struct GC_ms_entry * mark_stack_ptr;
struct GC_ms_entry * mark_stack_limit;
GC_PTR *src;
{
PREFETCH(obj);
PUSH_CONTENTS(obj, mark_stack_ptr /* modified */, mark_stack_limit, src,
was_marked /* internally generated exit label */);
return mark_stack_ptr;
}
# ifdef __STDC__
# define BASE(p) (word)GC_base((void *)(p))
# else
# define BASE(p) (word)GC_base((char *)(p))
# endif
/* Mark and push (i.e. gray) a single object p onto the main */
/* mark stack. Consider p to be valid if it is an interior */
/* pointer. */
/* The object p has passed a preliminary pointer validity */
/* test, but we do not definitely know whether it is valid. */
/* Mark bits are NOT atomically updated. Thus this must be the */
/* only thread setting them. */
# if defined(PRINT_BLACK_LIST) || defined(KEEP_BACK_PTRS)
void GC_mark_and_push_stack(p, source)
ptr_t source;
# else
void GC_mark_and_push_stack(p)
# define source 0
# endif
register word p;
{
register word r;
register hdr * hhdr;
register int displ;
GET_HDR(p, hhdr);
if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
if (hhdr != 0) {
r = BASE(p);
hhdr = HDR(r);
displ = BYTES_TO_WORDS(HBLKDISPL(r));
}
} else {
register map_entry_type map_entry;
displ = HBLKDISPL(p);
map_entry = MAP_ENTRY((hhdr -> hb_map), displ);
if (map_entry >= MAX_OFFSET) {
if (map_entry == OFFSET_TOO_BIG || !GC_all_interior_pointers) {
r = BASE(p);
displ = BYTES_TO_WORDS(HBLKDISPL(r));
if (r == 0) hhdr = 0;
} else {
/* Offset invalid, but map reflects interior pointers */
hhdr = 0;
}
} else {
displ = BYTES_TO_WORDS(displ);
displ -= map_entry;
r = (word)((word *)(HBLKPTR(p)) + displ);
}
}
/* If hhdr != 0 then r == GC_base(p), only we did it faster. */
/* displ is the word index within the block. */
if (hhdr == 0) {
# ifdef PRINT_BLACK_LIST
GC_add_to_black_list_stack(p, source);
# else
GC_add_to_black_list_stack(p);
# endif
# undef source /* In case we had to define it. */
} else {
if (!mark_bit_from_hdr(hhdr, displ)) {
set_mark_bit_from_hdr(hhdr, displ);
GC_STORE_BACK_PTR(source, (ptr_t)r);
PUSH_OBJ((word *)r, hhdr, GC_mark_stack_top,
GC_mark_stack_limit);
}
}
}
# ifdef TRACE_BUF
# define TRACE_ENTRIES 1000
struct trace_entry {
char * kind;
word gc_no;
word words_allocd;
word arg1;
word arg2;
} GC_trace_buf[TRACE_ENTRIES];
int GC_trace_buf_ptr = 0;
void GC_add_trace_entry(char *kind, word arg1, word arg2)
{
GC_trace_buf[GC_trace_buf_ptr].kind = kind;
GC_trace_buf[GC_trace_buf_ptr].gc_no = GC_gc_no;
GC_trace_buf[GC_trace_buf_ptr].words_allocd = GC_words_allocd;
GC_trace_buf[GC_trace_buf_ptr].arg1 = arg1 ^ 0x80000000;
GC_trace_buf[GC_trace_buf_ptr].arg2 = arg2 ^ 0x80000000;
GC_trace_buf_ptr++;
if (GC_trace_buf_ptr >= TRACE_ENTRIES) GC_trace_buf_ptr = 0;
}
void GC_print_trace(word gc_no, GC_bool lock)
{
int i;
struct trace_entry *p;
if (lock) LOCK();
for (i = GC_trace_buf_ptr-1; i != GC_trace_buf_ptr; i--) {
if (i < 0) i = TRACE_ENTRIES-1;
p = GC_trace_buf + i;
if (p -> gc_no < gc_no || p -> kind == 0) return;
printf("Trace:%s (gc:%d,words:%d) 0x%X, 0x%X\n",
p -> kind, p -> gc_no, p -> words_allocd,
(p -> arg1) ^ 0x80000000, (p -> arg2) ^ 0x80000000);
}
printf("Trace incomplete\n");
if (lock) UNLOCK();
}
# endif /* TRACE_BUF */
/*
* A version of GC_push_all that treats all interior pointers as valid
* and scans the entire region immediately, in case the contents
* change.
*/
void GC_push_all_eager(bottom, top)
ptr_t bottom;
ptr_t top;
{
word * b = (word *)(((long) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
word * t = (word *)(((long) top) & ~(ALIGNMENT-1));
register word *p;
register word q;
register word *lim;
register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
register ptr_t least_ha = GC_least_plausible_heap_addr;
# define GC_greatest_plausible_heap_addr greatest_ha
# define GC_least_plausible_heap_addr least_ha
if (top == 0) return;
/* check all pointers in range and push if they appear */
/* to be valid. */
lim = t - 1 /* longword */;
for (p = b; p <= lim; p = (word *)(((char *)p) + ALIGNMENT)) {
q = *p;
GC_PUSH_ONE_STACK(q, p);
}
# undef GC_greatest_plausible_heap_addr
# undef GC_least_plausible_heap_addr
}
#ifndef THREADS
/*
* A version of GC_push_all that treats all interior pointers as valid
* and scans part of the area immediately, to make sure that saved
* register values are not lost.
* Cold_gc_frame delimits the stack section that must be scanned
* eagerly. A zero value indicates that no eager scanning is needed.
*/
void GC_push_all_stack_partially_eager(bottom, top, cold_gc_frame)
ptr_t bottom;
ptr_t top;
ptr_t cold_gc_frame;
{
if (!NEED_FIXUP_POINTER && GC_all_interior_pointers) {
# define EAGER_BYTES 1024
/* Push the hot end of the stack eagerly, so that register values */
/* saved inside GC frames are marked before they disappear. */
/* The rest of the marking can be deferred until later. */
if (0 == cold_gc_frame) {
GC_push_all_stack(bottom, top);
return;
}
GC_ASSERT(bottom <= cold_gc_frame && cold_gc_frame <= top);
# ifdef STACK_GROWS_DOWN
GC_push_all(cold_gc_frame - sizeof(ptr_t), top);
GC_push_all_eager(bottom, cold_gc_frame);
# else /* STACK_GROWS_UP */
GC_push_all(bottom, cold_gc_frame + sizeof(ptr_t));
GC_push_all_eager(cold_gc_frame, top);
# endif /* STACK_GROWS_UP */
} else {
GC_push_all_eager(bottom, top);
}
# ifdef TRACE_BUF
GC_add_trace_entry("GC_push_all_stack", bottom, top);
# endif
}
#endif /* !THREADS */
void GC_push_all_stack(bottom, top)
ptr_t bottom;
ptr_t top;
{
if (!NEED_FIXUP_POINTER && GC_all_interior_pointers) {
GC_push_all(bottom, top);
} else {
GC_push_all_eager(bottom, top);
}
}
#if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
/* Push all objects reachable from marked objects in the given block */
/* of size 1 objects. */
void GC_push_marked1(h, hhdr)
struct hblk *h;
register hdr * hhdr;
{
word * mark_word_addr = &(hhdr->hb_marks[0]);
register word *p;
word *plim;
register int i;
register word q;
register word mark_word;
register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
register ptr_t least_ha = GC_least_plausible_heap_addr;
register mse * mark_stack_top = GC_mark_stack_top;
register mse * mark_stack_limit = GC_mark_stack_limit;
# define GC_mark_stack_top mark_stack_top
# define GC_mark_stack_limit mark_stack_limit
# define GC_greatest_plausible_heap_addr greatest_ha
# define GC_least_plausible_heap_addr least_ha
p = (word *)(h->hb_body);
plim = (word *)(((word)h) + HBLKSIZE);
/* go through all words in block */
while( p < plim ) {
mark_word = *mark_word_addr++;
i = 0;
while(mark_word != 0) {
if (mark_word & 1) {
q = p[i];
GC_PUSH_ONE_HEAP(q, p + i);
}
i++;
mark_word >>= 1;
}
p += WORDSZ;
}
# undef GC_greatest_plausible_heap_addr
# undef GC_least_plausible_heap_addr
# undef GC_mark_stack_top
# undef GC_mark_stack_limit
GC_mark_stack_top = mark_stack_top;
}
#ifndef UNALIGNED
/* Push all objects reachable from marked objects in the given block */
/* of size 2 objects. */
void GC_push_marked2(h, hhdr)
struct hblk *h;
register hdr * hhdr;
{
word * mark_word_addr = &(hhdr->hb_marks[0]);
register word *p;
word *plim;
register int i;
register word q;
register word mark_word;
register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
register ptr_t least_ha = GC_least_plausible_heap_addr;
register mse * mark_stack_top = GC_mark_stack_top;
register mse * mark_stack_limit = GC_mark_stack_limit;
# define GC_mark_stack_top mark_stack_top
# define GC_mark_stack_limit mark_stack_limit
# define GC_greatest_plausible_heap_addr greatest_ha
# define GC_least_plausible_heap_addr least_ha
p = (word *)(h->hb_body);
plim = (word *)(((word)h) + HBLKSIZE);
/* go through all words in block */
while( p < plim ) {
mark_word = *mark_word_addr++;
i = 0;
while(mark_word != 0) {
if (mark_word & 1) {
q = p[i];
GC_PUSH_ONE_HEAP(q, p + i);
q = p[i+1];
GC_PUSH_ONE_HEAP(q, p + i);
}
i += 2;
mark_word >>= 2;
}
p += WORDSZ;
}
# undef GC_greatest_plausible_heap_addr
# undef GC_least_plausible_heap_addr
# undef GC_mark_stack_top
# undef GC_mark_stack_limit
GC_mark_stack_top = mark_stack_top;
}
/* Push all objects reachable from marked objects in the given block */
/* of size 4 objects. */
/* There is a risk of mark stack overflow here. But we handle that. */
/* And only unmarked objects get pushed, so it's not very likely. */
void GC_push_marked4(h, hhdr)
struct hblk *h;
register hdr * hhdr;
{
word * mark_word_addr = &(hhdr->hb_marks[0]);
register word *p;
word *plim;
register int i;
register word q;
register word mark_word;
register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
register ptr_t least_ha = GC_least_plausible_heap_addr;
register mse * mark_stack_top = GC_mark_stack_top;
register mse * mark_stack_limit = GC_mark_stack_limit;
# define GC_mark_stack_top mark_stack_top
# define GC_mark_stack_limit mark_stack_limit
# define GC_greatest_plausible_heap_addr greatest_ha
# define GC_least_plausible_heap_addr least_ha
p = (word *)(h->hb_body);
plim = (word *)(((word)h) + HBLKSIZE);
/* go through all words in block */
while( p < plim ) {
mark_word = *mark_word_addr++;
i = 0;
while(mark_word != 0) {
if (mark_word & 1) {
q = p[i];
GC_PUSH_ONE_HEAP(q, p + i);
q = p[i+1];
GC_PUSH_ONE_HEAP(q, p + i + 1);
q = p[i+2];
GC_PUSH_ONE_HEAP(q, p + i + 2);
q = p[i+3];
GC_PUSH_ONE_HEAP(q, p + i + 3);
}
i += 4;
mark_word >>= 4;
}
p += WORDSZ;
}
# undef GC_greatest_plausible_heap_addr
# undef GC_least_plausible_heap_addr
# undef GC_mark_stack_top
# undef GC_mark_stack_limit
GC_mark_stack_top = mark_stack_top;
}
#endif /* UNALIGNED */
#endif /* SMALL_CONFIG */
/* Push all objects reachable from marked objects in the given block */
void GC_push_marked(h, hhdr)
struct hblk *h;
register hdr * hhdr;
{
register int sz = hhdr -> hb_sz;
register int descr = hhdr -> hb_descr;
register word * p;
register int word_no;
register word * lim;
register mse * GC_mark_stack_top_reg;
register mse * mark_stack_limit = GC_mark_stack_limit;
/* Some quick shortcuts: */
if ((0 | GC_DS_LENGTH) == descr) return;
if (GC_block_empty(hhdr)/* nothing marked */) return;
GC_n_rescuing_pages++;
GC_objects_are_marked = TRUE;
if (sz > MAXOBJSZ) {
lim = (word *)h;
} else {
lim = (word *)(h + 1) - sz;
}
switch(sz) {
# if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
case 1:
GC_push_marked1(h, hhdr);
break;
# endif
# if !defined(SMALL_CONFIG) && !defined(UNALIGNED) && \
!defined(USE_MARK_BYTES)
case 2:
GC_push_marked2(h, hhdr);
break;
case 4:
GC_push_marked4(h, hhdr);
break;
# endif
default:
GC_mark_stack_top_reg = GC_mark_stack_top;
for (p = (word *)h, word_no = 0; p <= lim; p += sz, word_no += sz) {
if (mark_bit_from_hdr(hhdr, word_no)) {
/* Mark from fields inside the object */
PUSH_OBJ((word *)p, hhdr, GC_mark_stack_top_reg, mark_stack_limit);
# ifdef GATHERSTATS
/* Subtract this object from total, since it was */
/* added in twice. */
GC_composite_in_use -= sz;
# endif
}
}
GC_mark_stack_top = GC_mark_stack_top_reg;
}
}
#ifndef SMALL_CONFIG
/* Test whether any page in the given block is dirty */
GC_bool GC_block_was_dirty(h, hhdr)
struct hblk *h;
register hdr * hhdr;
{
register int sz = hhdr -> hb_sz;
if (sz <= MAXOBJSZ) {
return(GC_page_was_dirty(h));
} else {
register ptr_t p = (ptr_t)h;
sz = WORDS_TO_BYTES(sz);
while (p < (ptr_t)h + sz) {
if (GC_page_was_dirty((struct hblk *)p)) return(TRUE);
p += HBLKSIZE;
}
return(FALSE);
}
}
#endif /* SMALL_CONFIG */
/* Similar to GC_push_next_marked, but return address of next block */
struct hblk * GC_push_next_marked(h)
struct hblk *h;
{
register hdr * hhdr;
h = GC_next_used_block(h);
if (h == 0) return(0);
hhdr = HDR(h);
GC_push_marked(h, hhdr);
return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
}
#ifndef SMALL_CONFIG
/* Identical to above, but mark only from dirty pages */
struct hblk * GC_push_next_marked_dirty(h)
struct hblk *h;
{
register hdr * hhdr;
if (!GC_dirty_maintained) { ABORT("dirty bits not set up"); }
for (;;) {
h = GC_next_used_block(h);
if (h == 0) return(0);
hhdr = HDR(h);
# ifdef STUBBORN_ALLOC
if (hhdr -> hb_obj_kind == STUBBORN) {
if (GC_page_was_changed(h) && GC_block_was_dirty(h, hhdr)) {
break;
}
} else {
if (GC_block_was_dirty(h, hhdr)) break;
}
# else
if (GC_block_was_dirty(h, hhdr)) break;
# endif
h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
}
GC_push_marked(h, hhdr);
return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
}
#endif
/* Similar to above, but for uncollectable pages. Needed since we */
/* do not clear marks for such pages, even for full collections. */
struct hblk * GC_push_next_marked_uncollectable(h)
struct hblk *h;
{
register hdr * hhdr = HDR(h);
for (;;) {
h = GC_next_used_block(h);
if (h == 0) return(0);
hhdr = HDR(h);
if (hhdr -> hb_obj_kind == UNCOLLECTABLE) break;
h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
}
GC_push_marked(h, hhdr);
return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
}