| /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB. |
| |
| Copyright (C) 2004, 2006-2012 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "gdbcore.h" |
| #include "osabi.h" |
| #include "target.h" |
| #include "objfiles.h" |
| #include "solib-svr4.h" |
| #include "glibc-tdep.h" |
| #include "frame-unwind.h" |
| #include "trad-frame.h" |
| #include "dwarf2-frame.h" |
| #include "value.h" |
| #include "regset.h" |
| #include "regcache.h" |
| #include "hppa-tdep.h" |
| #include "linux-tdep.h" |
| #include "elf/common.h" |
| |
| /* Map DWARF DBX register numbers to GDB register numbers. */ |
| static int |
| hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
| { |
| /* The general registers and the sar are the same in both sets. */ |
| if (reg <= 32) |
| return reg; |
| |
| /* fr4-fr31 (left and right halves) are mapped from 72. */ |
| if (reg >= 72 && reg <= 72 + 28 * 2) |
| return HPPA_FP4_REGNUM + (reg - 72); |
| |
| warning (_("Unmapped DWARF DBX Register #%d encountered."), reg); |
| return -1; |
| } |
| |
| static void |
| hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v) |
| { |
| /* Probably this should be done by the kernel, but it isn't. */ |
| regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3); |
| regcache_cooked_write_unsigned (regcache, |
| HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3); |
| } |
| |
| /* An instruction to match. */ |
| struct insn_pattern |
| { |
| unsigned int data; /* See if it matches this.... */ |
| unsigned int mask; /* ... with this mask. */ |
| }; |
| |
| static struct insn_pattern hppa_sigtramp[] = { |
| /* ldi 0, %r25 or ldi 1, %r25 */ |
| { 0x34190000, 0xfffffffd }, |
| /* ldi __NR_rt_sigreturn, %r20 */ |
| { 0x3414015a, 0xffffffff }, |
| /* be,l 0x100(%sr2, %r0), %sr0, %r31 */ |
| { 0xe4008200, 0xffffffff }, |
| /* nop */ |
| { 0x08000240, 0xffffffff }, |
| { 0, 0 } |
| }; |
| |
| #define HPPA_MAX_INSN_PATTERN_LEN (4) |
| |
| /* Return non-zero if the instructions at PC match the series |
| described in PATTERN, or zero otherwise. PATTERN is an array of |
| 'struct insn_pattern' objects, terminated by an entry whose mask is |
| zero. |
| |
| When the match is successful, fill INSN[i] with what PATTERN[i] |
| matched. */ |
| static int |
| insns_match_pattern (struct gdbarch *gdbarch, CORE_ADDR pc, |
| struct insn_pattern *pattern, |
| unsigned int *insn) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int i; |
| CORE_ADDR npc = pc; |
| |
| for (i = 0; pattern[i].mask; i++) |
| { |
| char buf[4]; |
| |
| target_read_memory (npc, buf, 4); |
| insn[i] = extract_unsigned_integer (buf, 4, byte_order); |
| if ((insn[i] & pattern[i].mask) == pattern[i].data) |
| npc += 4; |
| else |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* Signal frames. */ |
| |
| /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.) |
| |
| Unfortunately, because of various bugs and changes to the kernel, |
| we have several cases to deal with. |
| |
| In 2.4, the signal trampoline is 4 bytes, and pc should point directly at |
| the beginning of the trampoline and struct rt_sigframe. |
| |
| In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at |
| the 4th word in the trampoline structure. This is wrong, it should point |
| at the 5th word. This is fixed in 2.6.5-rc2-pa4. |
| |
| To detect these cases, we first take pc, align it to 64-bytes |
| to get the beginning of the signal frame, and then check offsets 0, 4 |
| and 5 to see if we found the beginning of the trampoline. This will |
| tell us how to locate the sigcontext structure. |
| |
| Note that with a 2.4 64-bit kernel, the signal context is not properly |
| passed back to userspace so the unwind will not work correctly. */ |
| static CORE_ADDR |
| hppa_linux_sigtramp_find_sigcontext (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN]; |
| int offs = 0; |
| int try; |
| /* offsets to try to find the trampoline */ |
| static int pcoffs[] = { 0, 4*4, 5*4 }; |
| /* offsets to the rt_sigframe structure */ |
| static int sfoffs[] = { 4*4, 10*4, 10*4 }; |
| CORE_ADDR sp; |
| |
| /* Most of the time, this will be correct. The one case when this will |
| fail is if the user defined an alternate stack, in which case the |
| beginning of the stack will not be align_down (pc, 64). */ |
| sp = align_down (pc, 64); |
| |
| /* rt_sigreturn trampoline: |
| 3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2) |
| 3414015a ldi __NR_rt_sigreturn, %r20 |
| e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31 |
| 08000240 nop */ |
| |
| for (try = 0; try < ARRAY_SIZE (pcoffs); try++) |
| { |
| if (insns_match_pattern (gdbarch, sp + pcoffs[try], |
| hppa_sigtramp, dummy)) |
| { |
| offs = sfoffs[try]; |
| break; |
| } |
| } |
| |
| if (offs == 0) |
| { |
| if (insns_match_pattern (gdbarch, pc, hppa_sigtramp, dummy)) |
| { |
| /* sigaltstack case: we have no way of knowing which offset to |
| use in this case; default to new kernel handling. If this is |
| wrong the unwinding will fail. */ |
| try = 2; |
| sp = pc - pcoffs[try]; |
| } |
| else |
| { |
| return 0; |
| } |
| } |
| |
| /* sp + sfoffs[try] points to a struct rt_sigframe, which contains |
| a struct siginfo and a struct ucontext. struct ucontext contains |
| a struct sigcontext. Return an offset to this sigcontext here. Too |
| bad we cannot include system specific headers :-(. |
| sizeof(struct siginfo) == 128 |
| offsetof(struct ucontext, uc_mcontext) == 24. */ |
| return sp + sfoffs[try] + 128 + 24; |
| } |
| |
| struct hppa_linux_sigtramp_unwind_cache |
| { |
| CORE_ADDR base; |
| struct trad_frame_saved_reg *saved_regs; |
| }; |
| |
| static struct hppa_linux_sigtramp_unwind_cache * |
| hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *this_frame, |
| void **this_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct hppa_linux_sigtramp_unwind_cache *info; |
| CORE_ADDR pc, scptr; |
| int i; |
| |
| if (*this_cache) |
| return *this_cache; |
| |
| info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache); |
| *this_cache = info; |
| info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| pc = get_frame_pc (this_frame); |
| scptr = hppa_linux_sigtramp_find_sigcontext (gdbarch, pc); |
| |
| /* structure of struct sigcontext: |
| |
| struct sigcontext { |
| unsigned long sc_flags; |
| unsigned long sc_gr[32]; |
| unsigned long long sc_fr[32]; |
| unsigned long sc_iasq[2]; |
| unsigned long sc_iaoq[2]; |
| unsigned long sc_sar; */ |
| |
| /* Skip sc_flags. */ |
| scptr += 4; |
| |
| /* GR[0] is the psw. */ |
| info->saved_regs[HPPA_IPSW_REGNUM].addr = scptr; |
| scptr += 4; |
| |
| /* General registers. */ |
| for (i = 1; i < 32; i++) |
| { |
| info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr; |
| scptr += 4; |
| } |
| |
| /* Pad to long long boundary. */ |
| scptr += 4; |
| |
| /* FP regs; FP0-3 are not restored. */ |
| scptr += (8 * 4); |
| |
| for (i = 4; i < 32; i++) |
| { |
| info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr; |
| scptr += 4; |
| info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr; |
| scptr += 4; |
| } |
| |
| /* IASQ/IAOQ. */ |
| info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr; |
| scptr += 4; |
| info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr; |
| scptr += 4; |
| |
| info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr; |
| scptr += 4; |
| info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr; |
| scptr += 4; |
| |
| info->saved_regs[HPPA_SAR_REGNUM].addr = scptr; |
| |
| info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
| |
| return info; |
| } |
| |
| static void |
| hppa_linux_sigtramp_frame_this_id (struct frame_info *this_frame, |
| void **this_prologue_cache, |
| struct frame_id *this_id) |
| { |
| struct hppa_linux_sigtramp_unwind_cache *info |
| = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); |
| *this_id = frame_id_build (info->base, get_frame_pc (this_frame)); |
| } |
| |
| static struct value * |
| hppa_linux_sigtramp_frame_prev_register (struct frame_info *this_frame, |
| void **this_prologue_cache, |
| int regnum) |
| { |
| struct hppa_linux_sigtramp_unwind_cache *info |
| = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); |
| return hppa_frame_prev_register_helper (this_frame, |
| info->saved_regs, regnum); |
| } |
| |
| /* hppa-linux always uses "new-style" rt-signals. The signal handler's return |
| address should point to a signal trampoline on the stack. The signal |
| trampoline is embedded in a rt_sigframe structure that is aligned on |
| the stack. We take advantage of the fact that sp must be 64-byte aligned, |
| and the trampoline is small, so by rounding down the trampoline address |
| we can find the beginning of the struct rt_sigframe. */ |
| static int |
| hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_prologue_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| CORE_ADDR pc = get_frame_pc (this_frame); |
| |
| if (hppa_linux_sigtramp_find_sigcontext (gdbarch, pc)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = { |
| SIGTRAMP_FRAME, |
| default_frame_unwind_stop_reason, |
| hppa_linux_sigtramp_frame_this_id, |
| hppa_linux_sigtramp_frame_prev_register, |
| NULL, |
| hppa_linux_sigtramp_frame_sniffer |
| }; |
| |
| /* Attempt to find (and return) the global pointer for the given |
| function. |
| |
| This is a rather nasty bit of code searchs for the .dynamic section |
| in the objfile corresponding to the pc of the function we're trying |
| to call. Once it finds the addresses at which the .dynamic section |
| lives in the child process, it scans the Elf32_Dyn entries for a |
| DT_PLTGOT tag. If it finds one of these, the corresponding |
| d_un.d_ptr value is the global pointer. */ |
| |
| static CORE_ADDR |
| hppa_linux_find_global_pointer (struct gdbarch *gdbarch, |
| struct value *function) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct obj_section *faddr_sect; |
| CORE_ADDR faddr; |
| |
| faddr = value_as_address (function); |
| |
| /* Is this a plabel? If so, dereference it to get the gp value. */ |
| if (faddr & 2) |
| { |
| int status; |
| char buf[4]; |
| |
| faddr &= ~3; |
| |
| status = target_read_memory (faddr + 4, buf, sizeof (buf)); |
| if (status == 0) |
| return extract_unsigned_integer (buf, sizeof (buf), byte_order); |
| } |
| |
| /* If the address is in the plt section, then the real function hasn't |
| yet been fixed up by the linker so we cannot determine the gp of |
| that function. */ |
| if (in_plt_section (faddr, NULL)) |
| return 0; |
| |
| faddr_sect = find_pc_section (faddr); |
| if (faddr_sect != NULL) |
| { |
| struct obj_section *osect; |
| |
| ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) |
| { |
| if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) |
| break; |
| } |
| |
| if (osect < faddr_sect->objfile->sections_end) |
| { |
| CORE_ADDR addr, endaddr; |
| |
| addr = obj_section_addr (osect); |
| endaddr = obj_section_endaddr (osect); |
| |
| while (addr < endaddr) |
| { |
| int status; |
| LONGEST tag; |
| char buf[4]; |
| |
| status = target_read_memory (addr, buf, sizeof (buf)); |
| if (status != 0) |
| break; |
| tag = extract_signed_integer (buf, sizeof (buf), byte_order); |
| |
| if (tag == DT_PLTGOT) |
| { |
| CORE_ADDR global_pointer; |
| |
| status = target_read_memory (addr + 4, buf, sizeof (buf)); |
| if (status != 0) |
| break; |
| global_pointer = extract_unsigned_integer (buf, sizeof (buf), |
| byte_order); |
| /* The payoff... */ |
| return global_pointer; |
| } |
| |
| if (tag == DT_NULL) |
| break; |
| |
| addr += 8; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Registers saved in a coredump: |
| * gr0..gr31 |
| * sr0..sr7 |
| * iaoq0..iaoq1 |
| * iasq0..iasq1 |
| * sar, iir, isr, ior, ipsw |
| * cr0, cr24..cr31 |
| * cr8,9,12,13 |
| * cr10, cr15 |
| */ |
| |
| #define GR_REGNUM(_n) (HPPA_R0_REGNUM+_n) |
| #define TR_REGNUM(_n) (HPPA_TR0_REGNUM+_n) |
| static const int greg_map[] = |
| { |
| GR_REGNUM(0), GR_REGNUM(1), GR_REGNUM(2), GR_REGNUM(3), |
| GR_REGNUM(4), GR_REGNUM(5), GR_REGNUM(6), GR_REGNUM(7), |
| GR_REGNUM(8), GR_REGNUM(9), GR_REGNUM(10), GR_REGNUM(11), |
| GR_REGNUM(12), GR_REGNUM(13), GR_REGNUM(14), GR_REGNUM(15), |
| GR_REGNUM(16), GR_REGNUM(17), GR_REGNUM(18), GR_REGNUM(19), |
| GR_REGNUM(20), GR_REGNUM(21), GR_REGNUM(22), GR_REGNUM(23), |
| GR_REGNUM(24), GR_REGNUM(25), GR_REGNUM(26), GR_REGNUM(27), |
| GR_REGNUM(28), GR_REGNUM(29), GR_REGNUM(30), GR_REGNUM(31), |
| |
| HPPA_SR4_REGNUM+1, HPPA_SR4_REGNUM+2, HPPA_SR4_REGNUM+3, HPPA_SR4_REGNUM+4, |
| HPPA_SR4_REGNUM, HPPA_SR4_REGNUM+5, HPPA_SR4_REGNUM+6, HPPA_SR4_REGNUM+7, |
| |
| HPPA_PCOQ_HEAD_REGNUM, HPPA_PCOQ_TAIL_REGNUM, |
| HPPA_PCSQ_HEAD_REGNUM, HPPA_PCSQ_TAIL_REGNUM, |
| |
| HPPA_SAR_REGNUM, HPPA_IIR_REGNUM, HPPA_ISR_REGNUM, HPPA_IOR_REGNUM, |
| HPPA_IPSW_REGNUM, HPPA_RCR_REGNUM, |
| |
| TR_REGNUM(0), TR_REGNUM(1), TR_REGNUM(2), TR_REGNUM(3), |
| TR_REGNUM(4), TR_REGNUM(5), TR_REGNUM(6), TR_REGNUM(7), |
| |
| HPPA_PID0_REGNUM, HPPA_PID1_REGNUM, HPPA_PID2_REGNUM, HPPA_PID3_REGNUM, |
| HPPA_CCR_REGNUM, HPPA_EIEM_REGNUM, |
| }; |
| |
| static void |
| hppa_linux_supply_regset (const struct regset *regset, |
| struct regcache *regcache, |
| int regnum, const void *regs, size_t len) |
| { |
| struct gdbarch *arch = get_regcache_arch (regcache); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (arch); |
| const char *buf = regs; |
| int i, offset; |
| |
| offset = 0; |
| for (i = 0; i < ARRAY_SIZE (greg_map); i++) |
| { |
| if (regnum == greg_map[i] || regnum == -1) |
| regcache_raw_supply (regcache, greg_map[i], buf + offset); |
| |
| offset += tdep->bytes_per_address; |
| } |
| } |
| |
| static void |
| hppa_linux_supply_fpregset (const struct regset *regset, |
| struct regcache *regcache, |
| int regnum, const void *regs, size_t len) |
| { |
| const char *buf = regs; |
| int i, offset; |
| |
| offset = 0; |
| for (i = 0; i < 64; i++) |
| { |
| if (regnum == HPPA_FP0_REGNUM + i || regnum == -1) |
| regcache_raw_supply (regcache, HPPA_FP0_REGNUM + i, |
| buf + offset); |
| offset += 4; |
| } |
| } |
| |
| /* HPPA Linux kernel register set. */ |
| static struct regset hppa_linux_regset = |
| { |
| NULL, |
| hppa_linux_supply_regset |
| }; |
| |
| static struct regset hppa_linux_fpregset = |
| { |
| NULL, |
| hppa_linux_supply_fpregset |
| }; |
| |
| static const struct regset * |
| hppa_linux_regset_from_core_section (struct gdbarch *gdbarch, |
| const char *sect_name, |
| size_t sect_size) |
| { |
| if (strcmp (sect_name, ".reg") == 0) |
| return &hppa_linux_regset; |
| else if (strcmp (sect_name, ".reg2") == 0) |
| return &hppa_linux_fpregset; |
| |
| return NULL; |
| } |
| |
| |
| /* Forward declarations. */ |
| extern initialize_file_ftype _initialize_hppa_linux_tdep; |
| |
| static void |
| hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| linux_init_abi (info, gdbarch); |
| |
| /* GNU/Linux is always ELF. */ |
| tdep->is_elf = 1; |
| |
| tdep->find_global_pointer = hppa_linux_find_global_pointer; |
| |
| set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc); |
| |
| frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind); |
| |
| /* GNU/Linux uses SVR4-style shared libraries. */ |
| set_solib_svr4_fetch_link_map_offsets |
| (gdbarch, svr4_ilp32_fetch_link_map_offsets); |
| |
| tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline; |
| set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code); |
| |
| /* GNU/Linux uses the dynamic linker included in the GNU C Library. */ |
| set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver); |
| |
| /* On hppa-linux, currently, sizeof(long double) == 8. There has been |
| some discussions to support 128-bit long double, but it requires some |
| more work in gcc and glibc first. */ |
| set_gdbarch_long_double_bit (gdbarch, 64); |
| |
| set_gdbarch_regset_from_core_section |
| (gdbarch, hppa_linux_regset_from_core_section); |
| |
| set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum); |
| |
| /* Enable TLS support. */ |
| set_gdbarch_fetch_tls_load_module_address (gdbarch, |
| svr4_fetch_objfile_link_map); |
| } |
| |
| void |
| _initialize_hppa_linux_tdep (void) |
| { |
| gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX, |
| hppa_linux_init_abi); |
| gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, |
| GDB_OSABI_LINUX, hppa_linux_init_abi); |
| } |