| //===- InputSection.cpp ---------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputSection.h" |
| #include "Config.h" |
| #include "EhFrame.h" |
| #include "InputFiles.h" |
| #include "LinkerScript.h" |
| #include "OutputSections.h" |
| #include "Relocations.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "Thunks.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "lld/Common/Memory.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Compression.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/Threading.h" |
| #include "llvm/Support/xxhash.h" |
| #include <algorithm> |
| #include <mutex> |
| #include <set> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| using namespace llvm::sys; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| std::vector<InputSectionBase *> elf::InputSections; |
| |
| // Returns a string to construct an error message. |
| std::string lld::toString(const InputSectionBase *Sec) { |
| return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); |
| } |
| |
| template <class ELFT> |
| static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File, |
| const typename ELFT::Shdr &Hdr) { |
| if (Hdr.sh_type == SHT_NOBITS) |
| return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size); |
| return check(File.getObj().getSectionContents(&Hdr)); |
| } |
| |
| InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, |
| uint32_t Type, uint64_t Entsize, |
| uint32_t Link, uint32_t Info, |
| uint32_t Alignment, ArrayRef<uint8_t> Data, |
| StringRef Name, Kind SectionKind) |
| : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, |
| Link), |
| File(File), RawData(Data) { |
| // In order to reduce memory allocation, we assume that mergeable |
| // sections are smaller than 4 GiB, which is not an unreasonable |
| // assumption as of 2017. |
| if (SectionKind == SectionBase::Merge && RawData.size() > UINT32_MAX) |
| error(toString(this) + ": section too large"); |
| |
| NumRelocations = 0; |
| AreRelocsRela = false; |
| |
| // The ELF spec states that a value of 0 means the section has |
| // no alignment constraits. |
| uint32_t V = std::max<uint64_t>(Alignment, 1); |
| if (!isPowerOf2_64(V)) |
| fatal(toString(File) + ": section sh_addralign is not a power of 2"); |
| this->Alignment = V; |
| |
| // In ELF, each section can be compressed by zlib, and if compressed, |
| // section name may be mangled by appending "z" (e.g. ".zdebug_info"). |
| // If that's the case, demangle section name so that we can handle a |
| // section as if it weren't compressed. |
| if ((Flags & SHF_COMPRESSED) || Name.startswith(".zdebug")) { |
| if (!zlib::isAvailable()) |
| error(toString(File) + ": contains a compressed section, " + |
| "but zlib is not available"); |
| parseCompressedHeader(); |
| } |
| } |
| |
| // Drop SHF_GROUP bit unless we are producing a re-linkable object file. |
| // SHF_GROUP is a marker that a section belongs to some comdat group. |
| // That flag doesn't make sense in an executable. |
| static uint64_t getFlags(uint64_t Flags) { |
| Flags &= ~(uint64_t)SHF_INFO_LINK; |
| if (!Config->Relocatable) |
| Flags &= ~(uint64_t)SHF_GROUP; |
| return Flags; |
| } |
| |
| // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of |
| // March 2017) fail to infer section types for sections starting with |
| // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of |
| // SHF_INIT_ARRAY. As a result, the following assembler directive |
| // creates ".init_array.100" with SHT_PROGBITS, for example. |
| // |
| // .section .init_array.100, "aw" |
| // |
| // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle |
| // incorrect inputs as if they were correct from the beginning. |
| static uint64_t getType(uint64_t Type, StringRef Name) { |
| if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) |
| return SHT_INIT_ARRAY; |
| if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) |
| return SHT_FINI_ARRAY; |
| return Type; |
| } |
| |
| template <class ELFT> |
| InputSectionBase::InputSectionBase(ObjFile<ELFT> &File, |
| const typename ELFT::Shdr &Hdr, |
| StringRef Name, Kind SectionKind) |
| : InputSectionBase(&File, getFlags(Hdr.sh_flags), |
| getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link, |
| Hdr.sh_info, Hdr.sh_addralign, |
| getSectionContents(File, Hdr), Name, SectionKind) { |
| // We reject object files having insanely large alignments even though |
| // they are allowed by the spec. I think 4GB is a reasonable limitation. |
| // We might want to relax this in the future. |
| if (Hdr.sh_addralign > UINT32_MAX) |
| fatal(toString(&File) + ": section sh_addralign is too large"); |
| } |
| |
| size_t InputSectionBase::getSize() const { |
| if (auto *S = dyn_cast<SyntheticSection>(this)) |
| return S->getSize(); |
| if (UncompressedSize >= 0) |
| return UncompressedSize; |
| return RawData.size(); |
| } |
| |
| void InputSectionBase::uncompress() const { |
| size_t Size = UncompressedSize; |
| UncompressedBuf.reset(new char[Size]); |
| |
| if (Error E = |
| zlib::uncompress(toStringRef(RawData), UncompressedBuf.get(), Size)) |
| fatal(toString(this) + |
| ": uncompress failed: " + llvm::toString(std::move(E))); |
| RawData = makeArrayRef((uint8_t *)UncompressedBuf.get(), Size); |
| } |
| |
| uint64_t InputSectionBase::getOffsetInFile() const { |
| const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); |
| const uint8_t *SecStart = data().begin(); |
| return SecStart - FileStart; |
| } |
| |
| uint64_t SectionBase::getOffset(uint64_t Offset) const { |
| switch (kind()) { |
| case Output: { |
| auto *OS = cast<OutputSection>(this); |
| // For output sections we treat offset -1 as the end of the section. |
| return Offset == uint64_t(-1) ? OS->Size : Offset; |
| } |
| case Regular: |
| case Synthetic: |
| return cast<InputSection>(this)->getOffset(Offset); |
| case EHFrame: |
| // The file crtbeginT.o has relocations pointing to the start of an empty |
| // .eh_frame that is known to be the first in the link. It does that to |
| // identify the start of the output .eh_frame. |
| return Offset; |
| case Merge: |
| const MergeInputSection *MS = cast<MergeInputSection>(this); |
| if (InputSection *IS = MS->getParent()) |
| return IS->getOffset(MS->getParentOffset(Offset)); |
| return MS->getParentOffset(Offset); |
| } |
| llvm_unreachable("invalid section kind"); |
| } |
| |
| uint64_t SectionBase::getVA(uint64_t Offset) const { |
| const OutputSection *Out = getOutputSection(); |
| return (Out ? Out->Addr : 0) + getOffset(Offset); |
| } |
| |
| OutputSection *SectionBase::getOutputSection() { |
| InputSection *Sec; |
| if (auto *IS = dyn_cast<InputSection>(this)) |
| Sec = IS; |
| else if (auto *MS = dyn_cast<MergeInputSection>(this)) |
| Sec = MS->getParent(); |
| else if (auto *EH = dyn_cast<EhInputSection>(this)) |
| Sec = EH->getParent(); |
| else |
| return cast<OutputSection>(this); |
| return Sec ? Sec->getParent() : nullptr; |
| } |
| |
| // When a section is compressed, `RawData` consists with a header followed |
| // by zlib-compressed data. This function parses a header to initialize |
| // `UncompressedSize` member and remove the header from `RawData`. |
| void InputSectionBase::parseCompressedHeader() { |
| typedef typename ELF64LE::Chdr Chdr64; |
| typedef typename ELF32LE::Chdr Chdr32; |
| |
| // Old-style header |
| if (Name.startswith(".zdebug")) { |
| if (!toStringRef(RawData).startswith("ZLIB")) { |
| error(toString(this) + ": corrupted compressed section header"); |
| return; |
| } |
| RawData = RawData.slice(4); |
| |
| if (RawData.size() < 8) { |
| error(toString(this) + ": corrupted compressed section header"); |
| return; |
| } |
| |
| UncompressedSize = read64be(RawData.data()); |
| RawData = RawData.slice(8); |
| |
| // Restore the original section name. |
| // (e.g. ".zdebug_info" -> ".debug_info") |
| Name = Saver.save("." + Name.substr(2)); |
| return; |
| } |
| |
| assert(Flags & SHF_COMPRESSED); |
| Flags &= ~(uint64_t)SHF_COMPRESSED; |
| |
| // New-style 64-bit header |
| if (Config->Is64) { |
| if (RawData.size() < sizeof(Chdr64)) { |
| error(toString(this) + ": corrupted compressed section"); |
| return; |
| } |
| |
| auto *Hdr = reinterpret_cast<const Chdr64 *>(RawData.data()); |
| if (Hdr->ch_type != ELFCOMPRESS_ZLIB) { |
| error(toString(this) + ": unsupported compression type"); |
| return; |
| } |
| |
| UncompressedSize = Hdr->ch_size; |
| Alignment = std::max<uint64_t>(Hdr->ch_addralign, 1); |
| RawData = RawData.slice(sizeof(*Hdr)); |
| return; |
| } |
| |
| // New-style 32-bit header |
| if (RawData.size() < sizeof(Chdr32)) { |
| error(toString(this) + ": corrupted compressed section"); |
| return; |
| } |
| |
| auto *Hdr = reinterpret_cast<const Chdr32 *>(RawData.data()); |
| if (Hdr->ch_type != ELFCOMPRESS_ZLIB) { |
| error(toString(this) + ": unsupported compression type"); |
| return; |
| } |
| |
| UncompressedSize = Hdr->ch_size; |
| Alignment = std::max<uint64_t>(Hdr->ch_addralign, 1); |
| RawData = RawData.slice(sizeof(*Hdr)); |
| } |
| |
| InputSection *InputSectionBase::getLinkOrderDep() const { |
| assert(Link); |
| assert(Flags & SHF_LINK_ORDER); |
| return cast<InputSection>(File->getSections()[Link]); |
| } |
| |
| // Find a function symbol that encloses a given location. |
| template <class ELFT> |
| Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) { |
| for (Symbol *B : File->getSymbols()) |
| if (Defined *D = dyn_cast<Defined>(B)) |
| if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset && |
| Offset < D->Value + D->Size) |
| return D; |
| return nullptr; |
| } |
| |
| // Returns a source location string. Used to construct an error message. |
| template <class ELFT> |
| std::string InputSectionBase::getLocation(uint64_t Offset) { |
| std::string SecAndOffset = (Name + "+0x" + utohexstr(Offset)).str(); |
| |
| // We don't have file for synthetic sections. |
| if (getFile<ELFT>() == nullptr) |
| return (Config->OutputFile + ":(" + SecAndOffset + ")") |
| .str(); |
| |
| // First check if we can get desired values from debugging information. |
| if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset)) |
| return Info->FileName + ":" + std::to_string(Info->Line) + ":(" + |
| SecAndOffset + ")"; |
| |
| // File->SourceFile contains STT_FILE symbol that contains a |
| // source file name. If it's missing, we use an object file name. |
| std::string SrcFile = getFile<ELFT>()->SourceFile; |
| if (SrcFile.empty()) |
| SrcFile = toString(File); |
| |
| if (Defined *D = getEnclosingFunction<ELFT>(Offset)) |
| return SrcFile + ":(function " + toString(*D) + ": " + SecAndOffset + ")"; |
| |
| // If there's no symbol, print out the offset in the section. |
| return (SrcFile + ":(" + SecAndOffset + ")"); |
| } |
| |
| // This function is intended to be used for constructing an error message. |
| // The returned message looks like this: |
| // |
| // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) |
| // |
| // Returns an empty string if there's no way to get line info. |
| std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) { |
| return File->getSrcMsg(Sym, *this, Offset); |
| } |
| |
| // Returns a filename string along with an optional section name. This |
| // function is intended to be used for constructing an error |
| // message. The returned message looks like this: |
| // |
| // path/to/foo.o:(function bar) |
| // |
| // or |
| // |
| // path/to/foo.o:(function bar) in archive path/to/bar.a |
| std::string InputSectionBase::getObjMsg(uint64_t Off) { |
| std::string Filename = File->getName(); |
| |
| std::string Archive; |
| if (!File->ArchiveName.empty()) |
| Archive = " in archive " + File->ArchiveName; |
| |
| // Find a symbol that encloses a given location. |
| for (Symbol *B : File->getSymbols()) |
| if (auto *D = dyn_cast<Defined>(B)) |
| if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) |
| return Filename + ":(" + toString(*D) + ")" + Archive; |
| |
| // If there's no symbol, print out the offset in the section. |
| return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) |
| .str(); |
| } |
| |
| InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); |
| |
| InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type, |
| uint32_t Alignment, ArrayRef<uint8_t> Data, |
| StringRef Name, Kind K) |
| : InputSectionBase(F, Flags, Type, |
| /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, |
| Name, K) {} |
| |
| template <class ELFT> |
| InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header, |
| StringRef Name) |
| : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} |
| |
| bool InputSection::classof(const SectionBase *S) { |
| return S->kind() == SectionBase::Regular || |
| S->kind() == SectionBase::Synthetic; |
| } |
| |
| OutputSection *InputSection::getParent() const { |
| return cast_or_null<OutputSection>(Parent); |
| } |
| |
| // Copy SHT_GROUP section contents. Used only for the -r option. |
| template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { |
| // ELFT::Word is the 32-bit integral type in the target endianness. |
| typedef typename ELFT::Word u32; |
| ArrayRef<u32> From = getDataAs<u32>(); |
| auto *To = reinterpret_cast<u32 *>(Buf); |
| |
| // The first entry is not a section number but a flag. |
| *To++ = From[0]; |
| |
| // Adjust section numbers because section numbers in an input object |
| // files are different in the output. |
| ArrayRef<InputSectionBase *> Sections = File->getSections(); |
| for (uint32_t Idx : From.slice(1)) |
| *To++ = Sections[Idx]->getOutputSection()->SectionIndex; |
| } |
| |
| InputSectionBase *InputSection::getRelocatedSection() const { |
| if (!File || (Type != SHT_RELA && Type != SHT_REL)) |
| return nullptr; |
| ArrayRef<InputSectionBase *> Sections = File->getSections(); |
| return Sections[Info]; |
| } |
| |
| // This is used for -r and --emit-relocs. We can't use memcpy to copy |
| // relocations because we need to update symbol table offset and section index |
| // for each relocation. So we copy relocations one by one. |
| template <class ELFT, class RelTy> |
| void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { |
| InputSectionBase *Sec = getRelocatedSection(); |
| |
| for (const RelTy &Rel : Rels) { |
| RelType Type = Rel.getType(Config->IsMips64EL); |
| Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); |
| |
| auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); |
| Buf += sizeof(RelTy); |
| |
| if (RelTy::IsRela) |
| P->r_addend = getAddend<ELFT>(Rel); |
| |
| // Output section VA is zero for -r, so r_offset is an offset within the |
| // section, but for --emit-relocs it is an virtual address. |
| P->r_offset = Sec->getVA(Rel.r_offset); |
| P->setSymbolAndType(In.SymTab->getSymbolIndex(&Sym), Type, |
| Config->IsMips64EL); |
| |
| if (Sym.Type == STT_SECTION) { |
| // We combine multiple section symbols into only one per |
| // section. This means we have to update the addend. That is |
| // trivial for Elf_Rela, but for Elf_Rel we have to write to the |
| // section data. We do that by adding to the Relocation vector. |
| |
| // .eh_frame is horribly special and can reference discarded sections. To |
| // avoid having to parse and recreate .eh_frame, we just replace any |
| // relocation in it pointing to discarded sections with R_*_NONE, which |
| // hopefully creates a frame that is ignored at runtime. |
| auto *D = dyn_cast<Defined>(&Sym); |
| if (!D) { |
| error("STT_SECTION symbol should be defined"); |
| continue; |
| } |
| SectionBase *Section = D->Section->Repl; |
| if (!Section->Live) { |
| P->setSymbolAndType(0, 0, false); |
| continue; |
| } |
| |
| int64_t Addend = getAddend<ELFT>(Rel); |
| const uint8_t *BufLoc = Sec->data().begin() + Rel.r_offset; |
| if (!RelTy::IsRela) |
| Addend = Target->getImplicitAddend(BufLoc, Type); |
| |
| if (Config->EMachine == EM_MIPS && Config->Relocatable && |
| Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) { |
| // Some MIPS relocations depend on "gp" value. By default, |
| // this value has 0x7ff0 offset from a .got section. But |
| // relocatable files produced by a complier or a linker |
| // might redefine this default value and we must use it |
| // for a calculation of the relocation result. When we |
| // generate EXE or DSO it's trivial. Generating a relocatable |
| // output is more difficult case because the linker does |
| // not calculate relocations in this mode and loses |
| // individual "gp" values used by each input object file. |
| // As a workaround we add the "gp" value to the relocation |
| // addend and save it back to the file. |
| Addend += Sec->getFile<ELFT>()->MipsGp0; |
| } |
| |
| if (RelTy::IsRela) |
| P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr; |
| else if (Config->Relocatable) |
| Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym}); |
| } |
| } |
| } |
| |
| // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak |
| // references specially. The general rule is that the value of the symbol in |
| // this context is the address of the place P. A further special case is that |
| // branch relocations to an undefined weak reference resolve to the next |
| // instruction. |
| static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A, |
| uint32_t P) { |
| switch (Type) { |
| // Unresolved branch relocations to weak references resolve to next |
| // instruction, this will be either 2 or 4 bytes on from P. |
| case R_ARM_THM_JUMP11: |
| return P + 2 + A; |
| case R_ARM_CALL: |
| case R_ARM_JUMP24: |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| case R_ARM_PREL31: |
| case R_ARM_THM_JUMP19: |
| case R_ARM_THM_JUMP24: |
| return P + 4 + A; |
| case R_ARM_THM_CALL: |
| // We don't want an interworking BLX to ARM |
| return P + 5 + A; |
| // Unresolved non branch pc-relative relocations |
| // R_ARM_TARGET2 which can be resolved relatively is not present as it never |
| // targets a weak-reference. |
| case R_ARM_MOVW_PREL_NC: |
| case R_ARM_MOVT_PREL: |
| case R_ARM_REL32: |
| case R_ARM_THM_MOVW_PREL_NC: |
| case R_ARM_THM_MOVT_PREL: |
| return P + A; |
| } |
| llvm_unreachable("ARM pc-relative relocation expected\n"); |
| } |
| |
| // The comment above getARMUndefinedRelativeWeakVA applies to this function. |
| static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, |
| uint64_t P) { |
| switch (Type) { |
| // Unresolved branch relocations to weak references resolve to next |
| // instruction, this is 4 bytes on from P. |
| case R_AARCH64_CALL26: |
| case R_AARCH64_CONDBR19: |
| case R_AARCH64_JUMP26: |
| case R_AARCH64_TSTBR14: |
| return P + 4 + A; |
| // Unresolved non branch pc-relative relocations |
| case R_AARCH64_PREL16: |
| case R_AARCH64_PREL32: |
| case R_AARCH64_PREL64: |
| case R_AARCH64_ADR_PREL_LO21: |
| case R_AARCH64_LD_PREL_LO19: |
| return P + A; |
| } |
| llvm_unreachable("AArch64 pc-relative relocation expected\n"); |
| } |
| |
| // ARM SBREL relocations are of the form S + A - B where B is the static base |
| // The ARM ABI defines base to be "addressing origin of the output segment |
| // defining the symbol S". We defined the "addressing origin"/static base to be |
| // the base of the PT_LOAD segment containing the Sym. |
| // The procedure call standard only defines a Read Write Position Independent |
| // RWPI variant so in practice we should expect the static base to be the base |
| // of the RW segment. |
| static uint64_t getARMStaticBase(const Symbol &Sym) { |
| OutputSection *OS = Sym.getOutputSection(); |
| if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) |
| fatal("SBREL relocation to " + Sym.getName() + " without static base"); |
| return OS->PtLoad->FirstSec->Addr; |
| } |
| |
| // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually |
| // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA |
| // is calculated using PCREL_HI20's symbol. |
| // |
| // This function returns the R_RISCV_PCREL_HI20 relocation from |
| // R_RISCV_PCREL_LO12's symbol and addend. |
| static Relocation *getRISCVPCRelHi20(const Symbol *Sym, uint64_t Addend) { |
| const Defined *D = cast<Defined>(Sym); |
| InputSection *IS = cast<InputSection>(D->Section); |
| |
| if (Addend != 0) |
| warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + |
| IS->getObjMsg(D->Value) + " is ignored"); |
| |
| // Relocations are sorted by offset, so we can use std::equal_range to do |
| // binary search. |
| auto Range = std::equal_range(IS->Relocations.begin(), IS->Relocations.end(), |
| D->Value, RelocationOffsetComparator{}); |
| for (auto It = std::get<0>(Range); It != std::get<1>(Range); ++It) |
| if (isRelExprOneOf<R_PC>(It->Expr)) |
| return &*It; |
| |
| error("R_RISCV_PCREL_LO12 relocation points to " + IS->getObjMsg(D->Value) + |
| " without an associated R_RISCV_PCREL_HI20 relocation"); |
| return nullptr; |
| } |
| |
| // A TLS symbol's virtual address is relative to the TLS segment. Add a |
| // target-specific adjustment to produce a thread-pointer-relative offset. |
| static int64_t getTlsTpOffset() { |
| switch (Config->EMachine) { |
| case EM_ARM: |
| case EM_AARCH64: |
| // Variant 1. The thread pointer points to a TCB with a fixed 2-word size, |
| // followed by a variable amount of alignment padding, followed by the TLS |
| // segment. |
| return alignTo(Config->Wordsize * 2, Out::TlsPhdr->p_align); |
| case EM_386: |
| case EM_X86_64: |
| // Variant 2. The TLS segment is located just before the thread pointer. |
| return -Out::TlsPhdr->p_memsz; |
| case EM_PPC64: |
| // The thread pointer points to a fixed offset from the start of the |
| // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit |
| // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the |
| // program's TLS segment. |
| return -0x7000; |
| default: |
| llvm_unreachable("unhandled Config->EMachine"); |
| } |
| } |
| |
| static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A, |
| uint64_t P, const Symbol &Sym, RelExpr Expr) { |
| switch (Expr) { |
| case R_INVALID: |
| return 0; |
| case R_ABS: |
| case R_RELAX_TLS_LD_TO_LE_ABS: |
| case R_RELAX_GOT_PC_NOPIC: |
| return Sym.getVA(A); |
| case R_ADDEND: |
| return A; |
| case R_ARM_SBREL: |
| return Sym.getVA(A) - getARMStaticBase(Sym); |
| case R_GOT: |
| case R_GOT_PLT: |
| case R_RELAX_TLS_GD_TO_IE_ABS: |
| return Sym.getGotVA() + A; |
| case R_GOTONLY_PC: |
| return In.Got->getVA() + A - P; |
| case R_GOTONLY_PC_FROM_END: |
| return In.Got->getVA() + A - P + In.Got->getSize(); |
| case R_GOTREL: |
| return Sym.getVA(A) - In.Got->getVA(); |
| case R_GOTREL_FROM_END: |
| return Sym.getVA(A) - In.Got->getVA() - In.Got->getSize(); |
| case R_GOT_FROM_END: |
| case R_RELAX_TLS_GD_TO_IE_END: |
| return Sym.getGotOffset() + A - In.Got->getSize(); |
| case R_TLSLD_GOT_OFF: |
| case R_GOT_OFF: |
| case R_RELAX_TLS_GD_TO_IE_GOT_OFF: |
| return Sym.getGotOffset() + A; |
| case R_AARCH64_GOT_PAGE_PC: |
| case R_AARCH64_GOT_PAGE_PC_PLT: |
| case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: |
| return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P); |
| case R_GOT_PC: |
| case R_RELAX_TLS_GD_TO_IE: |
| return Sym.getGotVA() + A - P; |
| case R_HEXAGON_GOT: |
| return Sym.getGotVA() - In.GotPlt->getVA(); |
| case R_MIPS_GOTREL: |
| return Sym.getVA(A) - In.MipsGot->getGp(File); |
| case R_MIPS_GOT_GP: |
| return In.MipsGot->getGp(File) + A; |
| case R_MIPS_GOT_GP_PC: { |
| // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target |
| // is _gp_disp symbol. In that case we should use the following |
| // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| // microMIPS variants of these relocations use slightly different |
| // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() |
| // to correctly handle less-sugnificant bit of the microMIPS symbol. |
| uint64_t V = In.MipsGot->getGp(File) + A - P; |
| if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) |
| V += 4; |
| if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16) |
| V -= 1; |
| return V; |
| } |
| case R_MIPS_GOT_LOCAL_PAGE: |
| // If relocation against MIPS local symbol requires GOT entry, this entry |
| // should be initialized by 'page address'. This address is high 16-bits |
| // of sum the symbol's value and the addend. |
| return In.MipsGot->getVA() + In.MipsGot->getPageEntryOffset(File, Sym, A) - |
| In.MipsGot->getGp(File); |
| case R_MIPS_GOT_OFF: |
| case R_MIPS_GOT_OFF32: |
| // In case of MIPS if a GOT relocation has non-zero addend this addend |
| // should be applied to the GOT entry content not to the GOT entry offset. |
| // That is why we use separate expression type. |
| return In.MipsGot->getVA() + In.MipsGot->getSymEntryOffset(File, Sym, A) - |
| In.MipsGot->getGp(File); |
| case R_MIPS_TLSGD: |
| return In.MipsGot->getVA() + In.MipsGot->getGlobalDynOffset(File, Sym) - |
| In.MipsGot->getGp(File); |
| case R_MIPS_TLSLD: |
| return In.MipsGot->getVA() + In.MipsGot->getTlsIndexOffset(File) - |
| In.MipsGot->getGp(File); |
| case R_AARCH64_PAGE_PC: { |
| uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getVA(A); |
| return getAArch64Page(Val) - getAArch64Page(P); |
| } |
| case R_AARCH64_PLT_PAGE_PC: { |
| uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getPltVA() + A; |
| return getAArch64Page(Val) - getAArch64Page(P); |
| } |
| case R_RISCV_PC_INDIRECT: { |
| if (const Relocation *HiRel = getRISCVPCRelHi20(&Sym, A)) |
| return getRelocTargetVA(File, HiRel->Type, HiRel->Addend, Sym.getVA(), |
| *HiRel->Sym, HiRel->Expr); |
| return 0; |
| } |
| case R_PC: { |
| uint64_t Dest; |
| if (Sym.isUndefWeak()) { |
| // On ARM and AArch64 a branch to an undefined weak resolves to the |
| // next instruction, otherwise the place. |
| if (Config->EMachine == EM_ARM) |
| Dest = getARMUndefinedRelativeWeakVA(Type, A, P); |
| else if (Config->EMachine == EM_AARCH64) |
| Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); |
| else |
| Dest = Sym.getVA(A); |
| } else { |
| Dest = Sym.getVA(A); |
| } |
| return Dest - P; |
| } |
| case R_PLT: |
| return Sym.getPltVA() + A; |
| case R_PLT_PC: |
| case R_PPC_CALL_PLT: |
| return Sym.getPltVA() + A - P; |
| case R_PPC_CALL: { |
| uint64_t SymVA = Sym.getVA(A); |
| // If we have an undefined weak symbol, we might get here with a symbol |
| // address of zero. That could overflow, but the code must be unreachable, |
| // so don't bother doing anything at all. |
| if (!SymVA) |
| return 0; |
| |
| // PPC64 V2 ABI describes two entry points to a function. The global entry |
| // point is used for calls where the caller and callee (may) have different |
| // TOC base pointers and r2 needs to be modified to hold the TOC base for |
| // the callee. For local calls the caller and callee share the same |
| // TOC base and so the TOC pointer initialization code should be skipped by |
| // branching to the local entry point. |
| return SymVA - P + getPPC64GlobalEntryToLocalEntryOffset(Sym.StOther); |
| } |
| case R_PPC_TOC: |
| return getPPC64TocBase() + A; |
| case R_RELAX_GOT_PC: |
| return Sym.getVA(A) - P; |
| case R_RELAX_TLS_GD_TO_LE: |
| case R_RELAX_TLS_IE_TO_LE: |
| case R_RELAX_TLS_LD_TO_LE: |
| case R_TLS: |
| // A weak undefined TLS symbol resolves to the base of the TLS |
| // block, i.e. gets a value of zero. If we pass --gc-sections to |
| // lld and .tbss is not referenced, it gets reclaimed and we don't |
| // create a TLS program header. Therefore, we resolve this |
| // statically to zero. |
| if (Sym.isTls() && Sym.isUndefWeak()) |
| return 0; |
| return Sym.getVA(A) + getTlsTpOffset(); |
| case R_RELAX_TLS_GD_TO_LE_NEG: |
| case R_NEG_TLS: |
| return Out::TlsPhdr->p_memsz - Sym.getVA(A); |
| case R_SIZE: |
| return Sym.getSize() + A; |
| case R_TLSDESC: |
| return In.Got->getGlobalDynAddr(Sym) + A; |
| case R_AARCH64_TLSDESC_PAGE: |
| return getAArch64Page(In.Got->getGlobalDynAddr(Sym) + A) - |
| getAArch64Page(P); |
| case R_TLSGD_GOT: |
| return In.Got->getGlobalDynOffset(Sym) + A; |
| case R_TLSGD_GOT_FROM_END: |
| return In.Got->getGlobalDynOffset(Sym) + A - In.Got->getSize(); |
| case R_TLSGD_PC: |
| return In.Got->getGlobalDynAddr(Sym) + A - P; |
| case R_TLSLD_GOT_FROM_END: |
| return In.Got->getTlsIndexOff() + A - In.Got->getSize(); |
| case R_TLSLD_GOT: |
| return In.Got->getTlsIndexOff() + A; |
| case R_TLSLD_PC: |
| return In.Got->getTlsIndexVA() + A - P; |
| default: |
| llvm_unreachable("invalid expression"); |
| } |
| } |
| |
| // This function applies relocations to sections without SHF_ALLOC bit. |
| // Such sections are never mapped to memory at runtime. Debug sections are |
| // an example. Relocations in non-alloc sections are much easier to |
| // handle than in allocated sections because it will never need complex |
| // treatement such as GOT or PLT (because at runtime no one refers them). |
| // So, we handle relocations for non-alloc sections directly in this |
| // function as a performance optimization. |
| template <class ELFT, class RelTy> |
| void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { |
| const unsigned Bits = sizeof(typename ELFT::uint) * 8; |
| |
| for (const RelTy &Rel : Rels) { |
| RelType Type = Rel.getType(Config->IsMips64EL); |
| |
| // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations |
| // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed |
| // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we |
| // need to keep this bug-compatible code for a while. |
| if (Config->EMachine == EM_386 && Type == R_386_GOTPC) |
| continue; |
| |
| uint64_t Offset = getOffset(Rel.r_offset); |
| uint8_t *BufLoc = Buf + Offset; |
| int64_t Addend = getAddend<ELFT>(Rel); |
| if (!RelTy::IsRela) |
| Addend += Target->getImplicitAddend(BufLoc, Type); |
| |
| Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); |
| RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); |
| if (Expr == R_NONE) |
| continue; |
| |
| if (Expr != R_ABS) { |
| std::string Msg = getLocation<ELFT>(Offset) + |
| ": has non-ABS relocation " + toString(Type) + |
| " against symbol '" + toString(Sym) + "'"; |
| if (Expr != R_PC) { |
| error(Msg); |
| return; |
| } |
| |
| // If the control reaches here, we found a PC-relative relocation in a |
| // non-ALLOC section. Since non-ALLOC section is not loaded into memory |
| // at runtime, the notion of PC-relative doesn't make sense here. So, |
| // this is a usage error. However, GNU linkers historically accept such |
| // relocations without any errors and relocate them as if they were at |
| // address 0. For bug-compatibilty, we accept them with warnings. We |
| // know Steel Bank Common Lisp as of 2018 have this bug. |
| warn(Msg); |
| Target->relocateOne(BufLoc, Type, |
| SignExtend64<Bits>(Sym.getVA(Addend - Offset))); |
| continue; |
| } |
| |
| if (Sym.isTls() && !Out::TlsPhdr) |
| Target->relocateOne(BufLoc, Type, 0); |
| else |
| Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend))); |
| } |
| } |
| |
| // This is used when '-r' is given. |
| // For REL targets, InputSection::copyRelocations() may store artificial |
| // relocations aimed to update addends. They are handled in relocateAlloc() |
| // for allocatable sections, and this function does the same for |
| // non-allocatable sections, such as sections with debug information. |
| static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) { |
| const unsigned Bits = Config->Is64 ? 64 : 32; |
| |
| for (const Relocation &Rel : Sec->Relocations) { |
| // InputSection::copyRelocations() adds only R_ABS relocations. |
| assert(Rel.Expr == R_ABS); |
| uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff; |
| uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits); |
| Target->relocateOne(BufLoc, Rel.Type, TargetVA); |
| } |
| } |
| |
| template <class ELFT> |
| void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { |
| if (Flags & SHF_EXECINSTR) |
| adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd); |
| |
| if (Flags & SHF_ALLOC) { |
| relocateAlloc(Buf, BufEnd); |
| return; |
| } |
| |
| auto *Sec = cast<InputSection>(this); |
| if (Config->Relocatable) |
| relocateNonAllocForRelocatable(Sec, Buf); |
| else if (Sec->AreRelocsRela) |
| Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>()); |
| else |
| Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>()); |
| } |
| |
| void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { |
| assert(Flags & SHF_ALLOC); |
| const unsigned Bits = Config->Wordsize * 8; |
| |
| for (const Relocation &Rel : Relocations) { |
| uint64_t Offset = Rel.Offset; |
| if (auto *Sec = dyn_cast<InputSection>(this)) |
| Offset += Sec->OutSecOff; |
| uint8_t *BufLoc = Buf + Offset; |
| RelType Type = Rel.Type; |
| |
| uint64_t AddrLoc = getOutputSection()->Addr + Offset; |
| RelExpr Expr = Rel.Expr; |
| uint64_t TargetVA = SignExtend64( |
| getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), |
| Bits); |
| |
| switch (Expr) { |
| case R_RELAX_GOT_PC: |
| case R_RELAX_GOT_PC_NOPIC: |
| Target->relaxGot(BufLoc, TargetVA); |
| break; |
| case R_RELAX_TLS_IE_TO_LE: |
| Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); |
| break; |
| case R_RELAX_TLS_LD_TO_LE: |
| case R_RELAX_TLS_LD_TO_LE_ABS: |
| Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); |
| break; |
| case R_RELAX_TLS_GD_TO_LE: |
| case R_RELAX_TLS_GD_TO_LE_NEG: |
| Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); |
| break; |
| case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: |
| case R_RELAX_TLS_GD_TO_IE: |
| case R_RELAX_TLS_GD_TO_IE_ABS: |
| case R_RELAX_TLS_GD_TO_IE_GOT_OFF: |
| case R_RELAX_TLS_GD_TO_IE_END: |
| Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); |
| break; |
| case R_PPC_CALL: |
| // If this is a call to __tls_get_addr, it may be part of a TLS |
| // sequence that has been relaxed and turned into a nop. In this |
| // case, we don't want to handle it as a call. |
| if (read32(BufLoc) == 0x60000000) // nop |
| break; |
| |
| // Patch a nop (0x60000000) to a ld. |
| if (Rel.Sym->NeedsTocRestore) { |
| if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) { |
| error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc"); |
| break; |
| } |
| write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) |
| } |
| Target->relocateOne(BufLoc, Type, TargetVA); |
| break; |
| default: |
| Target->relocateOne(BufLoc, Type, TargetVA); |
| break; |
| } |
| } |
| } |
| |
| // For each function-defining prologue, find any calls to __morestack, |
| // and replace them with calls to __morestack_non_split. |
| static void switchMorestackCallsToMorestackNonSplit( |
| DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) { |
| |
| // If the target adjusted a function's prologue, all calls to |
| // __morestack inside that function should be switched to |
| // __morestack_non_split. |
| Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split"); |
| if (!MoreStackNonSplit) { |
| error("Mixing split-stack objects requires a definition of " |
| "__morestack_non_split"); |
| return; |
| } |
| |
| // Sort both collections to compare addresses efficiently. |
| llvm::sort(MorestackCalls, [](const Relocation *L, const Relocation *R) { |
| return L->Offset < R->Offset; |
| }); |
| std::vector<Defined *> Functions(Prologues.begin(), Prologues.end()); |
| llvm::sort(Functions, [](const Defined *L, const Defined *R) { |
| return L->Value < R->Value; |
| }); |
| |
| auto It = MorestackCalls.begin(); |
| for (Defined *F : Functions) { |
| // Find the first call to __morestack within the function. |
| while (It != MorestackCalls.end() && (*It)->Offset < F->Value) |
| ++It; |
| // Adjust all calls inside the function. |
| while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) { |
| (*It)->Sym = MoreStackNonSplit; |
| ++It; |
| } |
| } |
| } |
| |
| static bool enclosingPrologueAttempted(uint64_t Offset, |
| const DenseSet<Defined *> &Prologues) { |
| for (Defined *F : Prologues) |
| if (F->Value <= Offset && Offset < F->Value + F->Size) |
| return true; |
| return false; |
| } |
| |
| // If a function compiled for split stack calls a function not |
| // compiled for split stack, then the caller needs its prologue |
| // adjusted to ensure that the called function will have enough stack |
| // available. Find those functions, and adjust their prologues. |
| template <class ELFT> |
| void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf, |
| uint8_t *End) { |
| if (!getFile<ELFT>()->SplitStack) |
| return; |
| DenseSet<Defined *> Prologues; |
| std::vector<Relocation *> MorestackCalls; |
| |
| for (Relocation &Rel : Relocations) { |
| // Local symbols can't possibly be cross-calls, and should have been |
| // resolved long before this line. |
| if (Rel.Sym->isLocal()) |
| continue; |
| |
| // Ignore calls into the split-stack api. |
| if (Rel.Sym->getName().startswith("__morestack")) { |
| if (Rel.Sym->getName().equals("__morestack")) |
| MorestackCalls.push_back(&Rel); |
| continue; |
| } |
| |
| // A relocation to non-function isn't relevant. Sometimes |
| // __morestack is not marked as a function, so this check comes |
| // after the name check. |
| if (Rel.Sym->Type != STT_FUNC) |
| continue; |
| |
| // If the callee's-file was compiled with split stack, nothing to do. In |
| // this context, a "Defined" symbol is one "defined by the binary currently |
| // being produced". So an "undefined" symbol might be provided by a shared |
| // library. It is not possible to tell how such symbols were compiled, so be |
| // conservative. |
| if (Defined *D = dyn_cast<Defined>(Rel.Sym)) |
| if (InputSection *IS = cast_or_null<InputSection>(D->Section)) |
| if (!IS || !IS->getFile<ELFT>() || IS->getFile<ELFT>()->SplitStack) |
| continue; |
| |
| if (enclosingPrologueAttempted(Rel.Offset, Prologues)) |
| continue; |
| |
| if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) { |
| Prologues.insert(F); |
| if (Target->adjustPrologueForCrossSplitStack(Buf + getOffset(F->Value), |
| End, F->StOther)) |
| continue; |
| if (!getFile<ELFT>()->SomeNoSplitStack) |
| error(lld::toString(this) + ": " + F->getName() + |
| " (with -fsplit-stack) calls " + Rel.Sym->getName() + |
| " (without -fsplit-stack), but couldn't adjust its prologue"); |
| } |
| } |
| |
| if (Target->NeedsMoreStackNonSplit) |
| switchMorestackCallsToMorestackNonSplit(Prologues, MorestackCalls); |
| } |
| |
| template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { |
| if (Type == SHT_NOBITS) |
| return; |
| |
| if (auto *S = dyn_cast<SyntheticSection>(this)) { |
| S->writeTo(Buf + OutSecOff); |
| return; |
| } |
| |
| // If -r or --emit-relocs is given, then an InputSection |
| // may be a relocation section. |
| if (Type == SHT_RELA) { |
| copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>()); |
| return; |
| } |
| if (Type == SHT_REL) { |
| copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>()); |
| return; |
| } |
| |
| // If -r is given, we may have a SHT_GROUP section. |
| if (Type == SHT_GROUP) { |
| copyShtGroup<ELFT>(Buf + OutSecOff); |
| return; |
| } |
| |
| // If this is a compressed section, uncompress section contents directly |
| // to the buffer. |
| if (UncompressedSize >= 0 && !UncompressedBuf) { |
| size_t Size = UncompressedSize; |
| if (Error E = zlib::uncompress(toStringRef(RawData), |
| (char *)(Buf + OutSecOff), Size)) |
| fatal(toString(this) + |
| ": uncompress failed: " + llvm::toString(std::move(E))); |
| uint8_t *BufEnd = Buf + OutSecOff + Size; |
| relocate<ELFT>(Buf, BufEnd); |
| return; |
| } |
| |
| // Copy section contents from source object file to output file |
| // and then apply relocations. |
| memcpy(Buf + OutSecOff, data().data(), data().size()); |
| uint8_t *BufEnd = Buf + OutSecOff + data().size(); |
| relocate<ELFT>(Buf, BufEnd); |
| } |
| |
| void InputSection::replace(InputSection *Other) { |
| Alignment = std::max(Alignment, Other->Alignment); |
| Other->Repl = Repl; |
| Other->Live = false; |
| } |
| |
| template <class ELFT> |
| EhInputSection::EhInputSection(ObjFile<ELFT> &F, |
| const typename ELFT::Shdr &Header, |
| StringRef Name) |
| : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {} |
| |
| SyntheticSection *EhInputSection::getParent() const { |
| return cast_or_null<SyntheticSection>(Parent); |
| } |
| |
| // Returns the index of the first relocation that points to a region between |
| // Begin and Begin+Size. |
| template <class IntTy, class RelTy> |
| static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, |
| unsigned &RelocI) { |
| // Start search from RelocI for fast access. That works because the |
| // relocations are sorted in .eh_frame. |
| for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { |
| const RelTy &Rel = Rels[RelocI]; |
| if (Rel.r_offset < Begin) |
| continue; |
| |
| if (Rel.r_offset < Begin + Size) |
| return RelocI; |
| return -1; |
| } |
| return -1; |
| } |
| |
| // .eh_frame is a sequence of CIE or FDE records. |
| // This function splits an input section into records and returns them. |
| template <class ELFT> void EhInputSection::split() { |
| if (AreRelocsRela) |
| split<ELFT>(relas<ELFT>()); |
| else |
| split<ELFT>(rels<ELFT>()); |
| } |
| |
| template <class ELFT, class RelTy> |
| void EhInputSection::split(ArrayRef<RelTy> Rels) { |
| unsigned RelI = 0; |
| for (size_t Off = 0, End = data().size(); Off != End;) { |
| size_t Size = readEhRecordSize(this, Off); |
| Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); |
| // The empty record is the end marker. |
| if (Size == 4) |
| break; |
| Off += Size; |
| } |
| } |
| |
| static size_t findNull(StringRef S, size_t EntSize) { |
| // Optimize the common case. |
| if (EntSize == 1) |
| return S.find(0); |
| |
| for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { |
| const char *B = S.begin() + I; |
| if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) |
| return I; |
| } |
| return StringRef::npos; |
| } |
| |
| SyntheticSection *MergeInputSection::getParent() const { |
| return cast_or_null<SyntheticSection>(Parent); |
| } |
| |
| // Split SHF_STRINGS section. Such section is a sequence of |
| // null-terminated strings. |
| void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { |
| size_t Off = 0; |
| bool IsAlloc = Flags & SHF_ALLOC; |
| StringRef S = toStringRef(Data); |
| |
| while (!S.empty()) { |
| size_t End = findNull(S, EntSize); |
| if (End == StringRef::npos) |
| fatal(toString(this) + ": string is not null terminated"); |
| size_t Size = End + EntSize; |
| |
| Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc); |
| S = S.substr(Size); |
| Off += Size; |
| } |
| } |
| |
| // Split non-SHF_STRINGS section. Such section is a sequence of |
| // fixed size records. |
| void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, |
| size_t EntSize) { |
| size_t Size = Data.size(); |
| assert((Size % EntSize) == 0); |
| bool IsAlloc = Flags & SHF_ALLOC; |
| |
| for (size_t I = 0; I != Size; I += EntSize) |
| Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc); |
| } |
| |
| template <class ELFT> |
| MergeInputSection::MergeInputSection(ObjFile<ELFT> &F, |
| const typename ELFT::Shdr &Header, |
| StringRef Name) |
| : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} |
| |
| MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type, |
| uint64_t Entsize, ArrayRef<uint8_t> Data, |
| StringRef Name) |
| : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0, |
| /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {} |
| |
| // This function is called after we obtain a complete list of input sections |
| // that need to be linked. This is responsible to split section contents |
| // into small chunks for further processing. |
| // |
| // Note that this function is called from parallelForEach. This must be |
| // thread-safe (i.e. no memory allocation from the pools). |
| void MergeInputSection::splitIntoPieces() { |
| assert(Pieces.empty()); |
| |
| if (Flags & SHF_STRINGS) |
| splitStrings(data(), Entsize); |
| else |
| splitNonStrings(data(), Entsize); |
| } |
| |
| SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { |
| if (this->data().size() <= Offset) |
| fatal(toString(this) + ": offset is outside the section"); |
| |
| // If Offset is not at beginning of a section piece, it is not in the map. |
| // In that case we need to do a binary search of the original section piece vector. |
| auto It2 = |
| llvm::upper_bound(Pieces, Offset, [](uint64_t Offset, SectionPiece P) { |
| return Offset < P.InputOff; |
| }); |
| return &It2[-1]; |
| } |
| |
| // Returns the offset in an output section for a given input offset. |
| // Because contents of a mergeable section is not contiguous in output, |
| // it is not just an addition to a base output offset. |
| uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const { |
| // If Offset is not at beginning of a section piece, it is not in the map. |
| // In that case we need to search from the original section piece vector. |
| const SectionPiece &Piece = |
| *(const_cast<MergeInputSection *>(this)->getSectionPiece (Offset)); |
| uint64_t Addend = Offset - Piece.InputOff; |
| return Piece.OutputOff + Addend; |
| } |
| |
| template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, |
| StringRef); |
| template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, |
| StringRef); |
| template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, |
| StringRef); |
| template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, |
| StringRef); |
| |
| template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); |
| template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); |
| template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); |
| template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); |
| |
| template void InputSection::writeTo<ELF32LE>(uint8_t *); |
| template void InputSection::writeTo<ELF32BE>(uint8_t *); |
| template void InputSection::writeTo<ELF64LE>(uint8_t *); |
| template void InputSection::writeTo<ELF64BE>(uint8_t *); |
| |
| template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, |
| const ELF32LE::Shdr &, StringRef); |
| template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, |
| const ELF32BE::Shdr &, StringRef); |
| template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, |
| const ELF64LE::Shdr &, StringRef); |
| template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, |
| const ELF64BE::Shdr &, StringRef); |
| |
| template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, |
| const ELF32LE::Shdr &, StringRef); |
| template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, |
| const ELF32BE::Shdr &, StringRef); |
| template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, |
| const ELF64LE::Shdr &, StringRef); |
| template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, |
| const ELF64BE::Shdr &, StringRef); |
| |
| template void EhInputSection::split<ELF32LE>(); |
| template void EhInputSection::split<ELF32BE>(); |
| template void EhInputSection::split<ELF64LE>(); |
| template void EhInputSection::split<ELF64BE>(); |