| //===- Writer.cpp ---------------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Writer.h" |
| #include "Config.h" |
| #include "Filesystem.h" |
| #include "LinkerScript.h" |
| #include "MapFile.h" |
| #include "Memory.h" |
| #include "OutputSections.h" |
| #include "Relocations.h" |
| #include "Strings.h" |
| #include "SymbolTable.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "Threads.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Support/FileOutputBuffer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <climits> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| namespace { |
| // The writer writes a SymbolTable result to a file. |
| template <class ELFT> class Writer { |
| public: |
| typedef typename ELFT::Shdr Elf_Shdr; |
| typedef typename ELFT::Ehdr Elf_Ehdr; |
| typedef typename ELFT::Phdr Elf_Phdr; |
| |
| void run(); |
| |
| private: |
| void clearOutputSections(); |
| void createSyntheticSections(); |
| void copyLocalSymbols(); |
| void addSectionSymbols(); |
| void addReservedSymbols(); |
| void createSections(); |
| void forEachRelSec(std::function<void(InputSectionBase &)> Fn); |
| void sortSections(); |
| void finalizeSections(); |
| void addPredefinedSections(); |
| |
| std::vector<PhdrEntry> createPhdrs(); |
| void removeEmptyPTLoad(); |
| void addPtArmExid(std::vector<PhdrEntry> &Phdrs); |
| void assignFileOffsets(); |
| void assignFileOffsetsBinary(); |
| void setPhdrs(); |
| void fixSectionAlignments(); |
| void fixPredefinedSymbols(); |
| void openFile(); |
| void writeHeader(); |
| void writeSections(); |
| void writeSectionsBinary(); |
| void writeBuildId(); |
| |
| std::unique_ptr<FileOutputBuffer> Buffer; |
| |
| OutputSectionFactory Factory; |
| |
| void addRelIpltSymbols(); |
| void addStartEndSymbols(); |
| void addStartStopSymbols(OutputSection *Sec); |
| uint64_t getEntryAddr(); |
| OutputSection *findSectionInScript(StringRef Name); |
| OutputSectionCommand *findSectionCommand(StringRef Name); |
| |
| std::vector<PhdrEntry> Phdrs; |
| |
| uint64_t FileSize; |
| uint64_t SectionHeaderOff; |
| |
| bool HasGotBaseSym = false; |
| }; |
| } // anonymous namespace |
| |
| StringRef elf::getOutputSectionName(StringRef Name) { |
| // ".zdebug_" is a prefix for ZLIB-compressed sections. |
| // Because we decompressed input sections, we want to remove 'z'. |
| if (Name.startswith(".zdebug_")) |
| return Saver.save("." + Name.substr(2)); |
| |
| if (Config->Relocatable) |
| return Name; |
| |
| for (StringRef V : |
| {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", |
| ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", |
| ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) { |
| StringRef Prefix = V.drop_back(); |
| if (Name.startswith(V) || Name == Prefix) |
| return Prefix; |
| } |
| |
| // CommonSection is identified as "COMMON" in linker scripts. |
| // By default, it should go to .bss section. |
| if (Name == "COMMON") |
| return ".bss"; |
| |
| return Name; |
| } |
| |
| template <class ELFT> static bool needsInterpSection() { |
| return !Symtab<ELFT>::X->getSharedFiles().empty() && |
| !Config->DynamicLinker.empty() && !Script->ignoreInterpSection(); |
| } |
| |
| template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } |
| |
| template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() { |
| auto I = std::remove_if(Phdrs.begin(), Phdrs.end(), [&](const PhdrEntry &P) { |
| if (P.p_type != PT_LOAD) |
| return false; |
| if (!P.First) |
| return true; |
| uint64_t Size = P.Last->Addr + P.Last->Size - P.First->Addr; |
| return Size == 0; |
| }); |
| Phdrs.erase(I, Phdrs.end()); |
| } |
| |
| template <class ELFT> static void combineEhFrameSections() { |
| for (InputSectionBase *&S : InputSections) { |
| EhInputSection *ES = dyn_cast<EhInputSection>(S); |
| if (!ES || !ES->Live) |
| continue; |
| |
| In<ELFT>::EhFrame->addSection(ES); |
| S = nullptr; |
| } |
| |
| std::vector<InputSectionBase *> &V = InputSections; |
| V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::clearOutputSections() { |
| // Clear the OutputSections to make sure it is not used anymore. Any |
| // code from this point on should be using the linker script |
| // commands. |
| for (OutputSection *Sec : OutputSections) |
| Sec->Sections.clear(); |
| OutputSections.clear(); |
| } |
| |
| // The main function of the writer. |
| template <class ELFT> void Writer<ELFT>::run() { |
| // Create linker-synthesized sections such as .got or .plt. |
| // Such sections are of type input section. |
| createSyntheticSections(); |
| |
| if (!Config->Relocatable) |
| combineEhFrameSections<ELFT>(); |
| |
| // We need to create some reserved symbols such as _end. Create them. |
| if (!Config->Relocatable) |
| addReservedSymbols(); |
| |
| // Create output sections. |
| if (Script->Opt.HasSections) { |
| // If linker script contains SECTIONS commands, let it create sections. |
| Script->processCommands(Factory); |
| |
| // Linker scripts may have left some input sections unassigned. |
| // Assign such sections using the default rule. |
| Script->addOrphanSections(Factory); |
| } else { |
| // If linker script does not contain SECTIONS commands, create |
| // output sections by default rules. We still need to give the |
| // linker script a chance to run, because it might contain |
| // non-SECTIONS commands such as ASSERT. |
| Script->processCommands(Factory); |
| createSections(); |
| } |
| clearOutputSections(); |
| |
| if (Config->Discard != DiscardPolicy::All) |
| copyLocalSymbols(); |
| |
| if (Config->CopyRelocs) |
| addSectionSymbols(); |
| |
| // Now that we have a complete set of output sections. This function |
| // completes section contents. For example, we need to add strings |
| // to the string table, and add entries to .got and .plt. |
| // finalizeSections does that. |
| finalizeSections(); |
| if (ErrorCount) |
| return; |
| |
| if (!Script->Opt.HasSections && !Config->Relocatable) |
| fixSectionAlignments(); |
| |
| // If -compressed-debug-sections is specified, we need to compress |
| // .debug_* sections. Do it right now because it changes the size of |
| // output sections. |
| parallelForEach( |
| OutputSectionCommands.begin(), OutputSectionCommands.end(), |
| [](OutputSectionCommand *Cmd) { Cmd->maybeCompress<ELFT>(); }); |
| |
| Script->assignAddresses(); |
| Script->allocateHeaders(Phdrs); |
| |
| // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a |
| // 0 sized region. This has to be done late since only after assignAddresses |
| // we know the size of the sections. |
| removeEmptyPTLoad(); |
| |
| if (!Config->OFormatBinary) |
| assignFileOffsets(); |
| else |
| assignFileOffsetsBinary(); |
| |
| setPhdrs(); |
| |
| if (Config->Relocatable) { |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) |
| Cmd->Sec->Addr = 0; |
| } else { |
| fixPredefinedSymbols(); |
| } |
| |
| // It does not make sense try to open the file if we have error already. |
| if (ErrorCount) |
| return; |
| // Write the result down to a file. |
| openFile(); |
| if (ErrorCount) |
| return; |
| |
| if (!Config->OFormatBinary) { |
| writeHeader(); |
| writeSections(); |
| } else { |
| writeSectionsBinary(); |
| } |
| |
| // Backfill .note.gnu.build-id section content. This is done at last |
| // because the content is usually a hash value of the entire output file. |
| writeBuildId(); |
| if (ErrorCount) |
| return; |
| |
| // Handle -Map option. |
| writeMapFile<ELFT>(OutputSectionCommands); |
| if (ErrorCount) |
| return; |
| |
| if (auto EC = Buffer->commit()) |
| error("failed to write to the output file: " + EC.message()); |
| |
| // Flush the output streams and exit immediately. A full shutdown |
| // is a good test that we are keeping track of all allocated memory, |
| // but actually freeing it is a waste of time in a regular linker run. |
| if (Config->ExitEarly) |
| exitLld(0); |
| } |
| |
| // Initialize Out members. |
| template <class ELFT> void Writer<ELFT>::createSyntheticSections() { |
| // Initialize all pointers with NULL. This is needed because |
| // you can call lld::elf::main more than once as a library. |
| memset(&Out::First, 0, sizeof(Out)); |
| |
| auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; |
| |
| InX::DynStrTab = make<StringTableSection>(".dynstr", true); |
| InX::Dynamic = make<DynamicSection<ELFT>>(); |
| In<ELFT>::RelaDyn = make<RelocationSection<ELFT>>( |
| Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); |
| InX::ShStrTab = make<StringTableSection>(".shstrtab", false); |
| |
| Out::ElfHeader = make<OutputSection>("", 0, SHF_ALLOC); |
| Out::ElfHeader->Size = sizeof(Elf_Ehdr); |
| Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); |
| Out::ProgramHeaders->updateAlignment(Config->Wordsize); |
| |
| if (needsInterpSection<ELFT>()) { |
| InX::Interp = createInterpSection(); |
| Add(InX::Interp); |
| } else { |
| InX::Interp = nullptr; |
| } |
| |
| if (Config->Strip != StripPolicy::All) { |
| InX::StrTab = make<StringTableSection>(".strtab", false); |
| InX::SymTab = make<SymbolTableSection<ELFT>>(*InX::StrTab); |
| } |
| |
| if (Config->BuildId != BuildIdKind::None) { |
| InX::BuildId = make<BuildIdSection>(); |
| Add(InX::BuildId); |
| } |
| |
| InX::Common = createCommonSection<ELFT>(); |
| if (InX::Common) |
| Add(InX::Common); |
| |
| InX::Bss = make<BssSection>(".bss"); |
| Add(InX::Bss); |
| InX::BssRelRo = make<BssSection>(".bss.rel.ro"); |
| Add(InX::BssRelRo); |
| |
| // Add MIPS-specific sections. |
| bool HasDynSymTab = !Symtab<ELFT>::X->getSharedFiles().empty() || |
| Config->Pic || Config->ExportDynamic; |
| if (Config->EMachine == EM_MIPS) { |
| if (!Config->Shared && HasDynSymTab) { |
| InX::MipsRldMap = make<MipsRldMapSection>(); |
| Add(InX::MipsRldMap); |
| } |
| if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) |
| Add(Sec); |
| if (auto *Sec = MipsOptionsSection<ELFT>::create()) |
| Add(Sec); |
| if (auto *Sec = MipsReginfoSection<ELFT>::create()) |
| Add(Sec); |
| } |
| |
| if (HasDynSymTab) { |
| InX::DynSymTab = make<SymbolTableSection<ELFT>>(*InX::DynStrTab); |
| Add(InX::DynSymTab); |
| |
| In<ELFT>::VerSym = make<VersionTableSection<ELFT>>(); |
| Add(In<ELFT>::VerSym); |
| |
| if (!Config->VersionDefinitions.empty()) { |
| In<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>(); |
| Add(In<ELFT>::VerDef); |
| } |
| |
| In<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>(); |
| Add(In<ELFT>::VerNeed); |
| |
| if (Config->GnuHash) { |
| InX::GnuHashTab = make<GnuHashTableSection>(); |
| Add(InX::GnuHashTab); |
| } |
| |
| if (Config->SysvHash) { |
| In<ELFT>::HashTab = make<HashTableSection<ELFT>>(); |
| Add(In<ELFT>::HashTab); |
| } |
| |
| Add(InX::Dynamic); |
| Add(InX::DynStrTab); |
| Add(In<ELFT>::RelaDyn); |
| } |
| |
| // Add .got. MIPS' .got is so different from the other archs, |
| // it has its own class. |
| if (Config->EMachine == EM_MIPS) { |
| InX::MipsGot = make<MipsGotSection>(); |
| Add(InX::MipsGot); |
| } else { |
| InX::Got = make<GotSection>(); |
| Add(InX::Got); |
| } |
| |
| InX::GotPlt = make<GotPltSection>(); |
| Add(InX::GotPlt); |
| InX::IgotPlt = make<IgotPltSection>(); |
| Add(InX::IgotPlt); |
| |
| if (Config->GdbIndex) { |
| InX::GdbIndex = createGdbIndex<ELFT>(); |
| Add(InX::GdbIndex); |
| } |
| |
| // We always need to add rel[a].plt to output if it has entries. |
| // Even for static linking it can contain R_[*]_IRELATIVE relocations. |
| In<ELFT>::RelaPlt = make<RelocationSection<ELFT>>( |
| Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); |
| Add(In<ELFT>::RelaPlt); |
| |
| // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure |
| // that the IRelative relocations are processed last by the dynamic loader |
| In<ELFT>::RelaIplt = make<RelocationSection<ELFT>>( |
| (Config->EMachine == EM_ARM) ? ".rel.dyn" : In<ELFT>::RelaPlt->Name, |
| false /*Sort*/); |
| Add(In<ELFT>::RelaIplt); |
| |
| InX::Plt = make<PltSection>(Target->PltHeaderSize); |
| Add(InX::Plt); |
| InX::Iplt = make<PltSection>(0); |
| Add(InX::Iplt); |
| |
| if (!Config->Relocatable) { |
| if (Config->EhFrameHdr) { |
| In<ELFT>::EhFrameHdr = make<EhFrameHeader<ELFT>>(); |
| Add(In<ELFT>::EhFrameHdr); |
| } |
| In<ELFT>::EhFrame = make<EhFrameSection<ELFT>>(); |
| Add(In<ELFT>::EhFrame); |
| } |
| |
| if (InX::SymTab) |
| Add(InX::SymTab); |
| Add(InX::ShStrTab); |
| if (InX::StrTab) |
| Add(InX::StrTab); |
| } |
| |
| static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName, |
| const SymbolBody &B) { |
| if (B.isFile() || B.isSection()) |
| return false; |
| |
| // If sym references a section in a discarded group, don't keep it. |
| if (Sec == &InputSection::Discarded) |
| return false; |
| |
| if (Config->Discard == DiscardPolicy::None) |
| return true; |
| |
| // In ELF assembly .L symbols are normally discarded by the assembler. |
| // If the assembler fails to do so, the linker discards them if |
| // * --discard-locals is used. |
| // * The symbol is in a SHF_MERGE section, which is normally the reason for |
| // the assembler keeping the .L symbol. |
| if (!SymName.startswith(".L") && !SymName.empty()) |
| return true; |
| |
| if (Config->Discard == DiscardPolicy::Locals) |
| return false; |
| |
| return !Sec || !(Sec->Flags & SHF_MERGE); |
| } |
| |
| static bool includeInSymtab(const SymbolBody &B) { |
| if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj) |
| return false; |
| |
| if (auto *D = dyn_cast<DefinedRegular>(&B)) { |
| // Always include absolute symbols. |
| SectionBase *Sec = D->Section; |
| if (!Sec) |
| return true; |
| if (auto *IS = dyn_cast<InputSectionBase>(Sec)) { |
| Sec = IS->Repl; |
| IS = cast<InputSectionBase>(Sec); |
| // Exclude symbols pointing to garbage-collected sections. |
| if (!IS->Live) |
| return false; |
| } |
| if (auto *S = dyn_cast<MergeInputSection>(Sec)) |
| if (!S->getSectionPiece(D->Value)->Live) |
| return false; |
| } |
| return true; |
| } |
| |
| // Local symbols are not in the linker's symbol table. This function scans |
| // each object file's symbol table to copy local symbols to the output. |
| template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { |
| if (!InX::SymTab) |
| return; |
| for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { |
| for (SymbolBody *B : F->getLocalSymbols()) { |
| if (!B->IsLocal) |
| fatal(toString(F) + |
| ": broken object: getLocalSymbols returns a non-local symbol"); |
| auto *DR = dyn_cast<DefinedRegular>(B); |
| |
| // No reason to keep local undefined symbol in symtab. |
| if (!DR) |
| continue; |
| if (!includeInSymtab(*B)) |
| continue; |
| |
| SectionBase *Sec = DR->Section; |
| if (!shouldKeepInSymtab(Sec, B->getName(), *B)) |
| continue; |
| InX::SymTab->addSymbol(B); |
| } |
| } |
| } |
| |
| template <class ELFT> void Writer<ELFT>::addSectionSymbols() { |
| // Create one STT_SECTION symbol for each output section we might |
| // have a relocation with. |
| for (BaseCommand *Base : Script->Opt.Commands) { |
| auto *Cmd = dyn_cast<OutputSectionCommand>(Base); |
| if (!Cmd) |
| continue; |
| auto I = llvm::find_if(Cmd->Commands, [](BaseCommand *Base) { |
| if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) |
| return !ISD->Sections.empty(); |
| return false; |
| }); |
| if (I == Cmd->Commands.end()) |
| continue; |
| InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; |
| if (isa<SyntheticSection>(IS) || IS->Type == SHT_REL || |
| IS->Type == SHT_RELA) |
| continue; |
| |
| auto *Sym = |
| make<DefinedRegular>("", /*IsLocal=*/true, /*StOther=*/0, STT_SECTION, |
| /*Value=*/0, /*Size=*/0, IS, nullptr); |
| InX::SymTab->addSymbol(Sym); |
| } |
| } |
| |
| // Today's loaders have a feature to make segments read-only after |
| // processing dynamic relocations to enhance security. PT_GNU_RELRO |
| // is defined for that. |
| // |
| // This function returns true if a section needs to be put into a |
| // PT_GNU_RELRO segment. |
| bool elf::isRelroSection(const OutputSection *Sec) { |
| if (!Config->ZRelro) |
| return false; |
| |
| uint64_t Flags = Sec->Flags; |
| |
| // Non-allocatable or non-writable sections don't need RELRO because |
| // they are not writable or not even mapped to memory in the first place. |
| // RELRO is for sections that are essentially read-only but need to |
| // be writable only at process startup to allow dynamic linker to |
| // apply relocations. |
| if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) |
| return false; |
| |
| // Once initialized, TLS data segments are used as data templates |
| // for a thread-local storage. For each new thread, runtime |
| // allocates memory for a TLS and copy templates there. No thread |
| // are supposed to use templates directly. Thus, it can be in RELRO. |
| if (Flags & SHF_TLS) |
| return true; |
| |
| // .init_array, .preinit_array and .fini_array contain pointers to |
| // functions that are executed on process startup or exit. These |
| // pointers are set by the static linker, and they are not expected |
| // to change at runtime. But if you are an attacker, you could do |
| // interesting things by manipulating pointers in .fini_array, for |
| // example. So they are put into RELRO. |
| uint32_t Type = Sec->Type; |
| if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || |
| Type == SHT_PREINIT_ARRAY) |
| return true; |
| |
| // .got contains pointers to external symbols. They are resolved by |
| // the dynamic linker when a module is loaded into memory, and after |
| // that they are not expected to change. So, it can be in RELRO. |
| if (InX::Got && Sec == InX::Got->getParent()) |
| return true; |
| |
| // .got.plt contains pointers to external function symbols. They are |
| // by default resolved lazily, so we usually cannot put it into RELRO. |
| // However, if "-z now" is given, the lazy symbol resolution is |
| // disabled, which enables us to put it into RELRO. |
| if (Sec == InX::GotPlt->getParent()) |
| return Config->ZNow; |
| |
| // .dynamic section contains data for the dynamic linker, and |
| // there's no need to write to it at runtime, so it's better to put |
| // it into RELRO. |
| if (Sec == InX::Dynamic->getParent()) |
| return true; |
| |
| // .bss.rel.ro is used for copy relocations for read-only symbols. |
| // Since the dynamic linker needs to process copy relocations, the |
| // section cannot be read-only, but once initialized, they shouldn't |
| // change. |
| if (Sec == InX::BssRelRo->getParent()) |
| return true; |
| |
| // Sections with some special names are put into RELRO. This is a |
| // bit unfortunate because section names shouldn't be significant in |
| // ELF in spirit. But in reality many linker features depend on |
| // magic section names. |
| StringRef S = Sec->Name; |
| return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || |
| S == ".eh_frame" || S == ".openbsd.randomdata"; |
| } |
| |
| // We compute a rank for each section. The rank indicates where the |
| // section should be placed in the file. Instead of using simple |
| // numbers (0,1,2...), we use a series of flags. One for each decision |
| // point when placing the section. |
| // Using flags has two key properties: |
| // * It is easy to check if a give branch was taken. |
| // * It is easy two see how similar two ranks are (see getRankProximity). |
| enum RankFlags { |
| RF_NOT_ADDR_SET = 1 << 16, |
| RF_NOT_INTERP = 1 << 15, |
| RF_NOT_ALLOC = 1 << 14, |
| RF_WRITE = 1 << 13, |
| RF_EXEC_WRITE = 1 << 12, |
| RF_EXEC = 1 << 11, |
| RF_NON_TLS_BSS = 1 << 10, |
| RF_NON_TLS_BSS_RO = 1 << 9, |
| RF_NOT_TLS = 1 << 8, |
| RF_BSS = 1 << 7, |
| RF_PPC_NOT_TOCBSS = 1 << 6, |
| RF_PPC_OPD = 1 << 5, |
| RF_PPC_TOCL = 1 << 4, |
| RF_PPC_TOC = 1 << 3, |
| RF_PPC_BRANCH_LT = 1 << 2, |
| RF_MIPS_GPREL = 1 << 1, |
| RF_MIPS_NOT_GOT = 1 << 0 |
| }; |
| |
| static unsigned getSectionRank(const OutputSection *Sec) { |
| unsigned Rank = 0; |
| |
| // We want to put section specified by -T option first, so we |
| // can start assigning VA starting from them later. |
| if (Config->SectionStartMap.count(Sec->Name)) |
| return Rank; |
| Rank |= RF_NOT_ADDR_SET; |
| |
| // Put .interp first because some loaders want to see that section |
| // on the first page of the executable file when loaded into memory. |
| if (Sec->Name == ".interp") |
| return Rank; |
| Rank |= RF_NOT_INTERP; |
| |
| // Allocatable sections go first to reduce the total PT_LOAD size and |
| // so debug info doesn't change addresses in actual code. |
| if (!(Sec->Flags & SHF_ALLOC)) |
| return Rank | RF_NOT_ALLOC; |
| |
| // Sort sections based on their access permission in the following |
| // order: R, RX, RWX, RW. This order is based on the following |
| // considerations: |
| // * Read-only sections come first such that they go in the |
| // PT_LOAD covering the program headers at the start of the file. |
| // * Read-only, executable sections come next, unless the |
| // -no-rosegment option is used. |
| // * Writable, executable sections follow such that .plt on |
| // architectures where it needs to be writable will be placed |
| // between .text and .data. |
| // * Writable sections come last, such that .bss lands at the very |
| // end of the last PT_LOAD. |
| bool IsExec = Sec->Flags & SHF_EXECINSTR; |
| bool IsWrite = Sec->Flags & SHF_WRITE; |
| |
| if (IsExec) { |
| if (IsWrite) |
| Rank |= RF_EXEC_WRITE; |
| else if (!Config->SingleRoRx) |
| Rank |= RF_EXEC; |
| } else { |
| if (IsWrite) |
| Rank |= RF_WRITE; |
| } |
| |
| // If we got here we know that both A and B are in the same PT_LOAD. |
| |
| bool IsTls = Sec->Flags & SHF_TLS; |
| bool IsNoBits = Sec->Type == SHT_NOBITS; |
| |
| // The first requirement we have is to put (non-TLS) nobits sections last. The |
| // reason is that the only thing the dynamic linker will see about them is a |
| // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the |
| // PT_LOAD, so that has to correspond to the nobits sections. |
| bool IsNonTlsNoBits = IsNoBits && !IsTls; |
| if (IsNonTlsNoBits) |
| Rank |= RF_NON_TLS_BSS; |
| |
| // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo |
| // sections after r/w ones, so that the RelRo sections are contiguous. |
| bool IsRelRo = isRelroSection(Sec); |
| if (IsNonTlsNoBits && !IsRelRo) |
| Rank |= RF_NON_TLS_BSS_RO; |
| if (!IsNonTlsNoBits && IsRelRo) |
| Rank |= RF_NON_TLS_BSS_RO; |
| |
| // The TLS initialization block needs to be a single contiguous block in a R/W |
| // PT_LOAD, so stick TLS sections directly before the other RelRo R/W |
| // sections. The TLS NOBITS sections are placed here as they don't take up |
| // virtual address space in the PT_LOAD. |
| if (!IsTls) |
| Rank |= RF_NOT_TLS; |
| |
| // Within the TLS initialization block, the non-nobits sections need to appear |
| // first. |
| if (IsNoBits) |
| Rank |= RF_BSS; |
| |
| // // Some architectures have additional ordering restrictions for sections |
| // // within the same PT_LOAD. |
| if (Config->EMachine == EM_PPC64) { |
| // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections |
| // that we would like to make sure appear is a specific order to maximize |
| // their coverage by a single signed 16-bit offset from the TOC base |
| // pointer. Conversely, the special .tocbss section should be first among |
| // all SHT_NOBITS sections. This will put it next to the loaded special |
| // PPC64 sections (and, thus, within reach of the TOC base pointer). |
| StringRef Name = Sec->Name; |
| if (Name != ".tocbss") |
| Rank |= RF_PPC_NOT_TOCBSS; |
| |
| if (Name == ".opd") |
| Rank |= RF_PPC_OPD; |
| |
| if (Name == ".toc1") |
| Rank |= RF_PPC_TOCL; |
| |
| if (Name == ".toc") |
| Rank |= RF_PPC_TOC; |
| |
| if (Name == ".branch_lt") |
| Rank |= RF_PPC_BRANCH_LT; |
| } |
| if (Config->EMachine == EM_MIPS) { |
| // All sections with SHF_MIPS_GPREL flag should be grouped together |
| // because data in these sections is addressable with a gp relative address. |
| if (Sec->Flags & SHF_MIPS_GPREL) |
| Rank |= RF_MIPS_GPREL; |
| |
| if (Sec->Name != ".got") |
| Rank |= RF_MIPS_NOT_GOT; |
| } |
| |
| return Rank; |
| } |
| |
| static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { |
| const OutputSection *A = cast<OutputSectionCommand>(ACmd)->Sec; |
| const OutputSection *B = cast<OutputSectionCommand>(BCmd)->Sec; |
| if (A->SortRank != B->SortRank) |
| return A->SortRank < B->SortRank; |
| if (!(A->SortRank & RF_NOT_ADDR_SET)) |
| return Config->SectionStartMap.lookup(A->Name) < |
| Config->SectionStartMap.lookup(B->Name); |
| return false; |
| } |
| |
| void PhdrEntry::add(OutputSection *Sec) { |
| Last = Sec; |
| if (!First) |
| First = Sec; |
| p_align = std::max(p_align, Sec->Alignment); |
| if (p_type == PT_LOAD) |
| Sec->FirstInPtLoad = First; |
| } |
| |
| template <class ELFT> |
| static Symbol *addRegular(StringRef Name, SectionBase *Sec, uint64_t Value, |
| uint8_t StOther = STV_HIDDEN, |
| uint8_t Binding = STB_WEAK) { |
| // The linker generated symbols are added as STB_WEAK to allow user defined |
| // ones to override them. |
| return Symtab<ELFT>::X->addRegular(Name, StOther, STT_NOTYPE, Value, |
| /*Size=*/0, Binding, Sec, |
| /*File=*/nullptr); |
| } |
| |
| template <class ELFT> |
| static DefinedRegular * |
| addOptionalRegular(StringRef Name, SectionBase *Sec, uint64_t Val, |
| uint8_t StOther = STV_HIDDEN, uint8_t Binding = STB_GLOBAL) { |
| SymbolBody *S = Symtab<ELFT>::X->find(Name); |
| if (!S) |
| return nullptr; |
| if (S->isInCurrentDSO()) |
| return nullptr; |
| return cast<DefinedRegular>( |
| addRegular<ELFT>(Name, Sec, Val, StOther, Binding)->body()); |
| } |
| |
| // The beginning and the ending of .rel[a].plt section are marked |
| // with __rel[a]_iplt_{start,end} symbols if it is a statically linked |
| // executable. The runtime needs these symbols in order to resolve |
| // all IRELATIVE relocs on startup. For dynamic executables, we don't |
| // need these symbols, since IRELATIVE relocs are resolved through GOT |
| // and PLT. For details, see http://www.airs.com/blog/archives/403. |
| template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { |
| if (InX::DynSymTab) |
| return; |
| StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; |
| addOptionalRegular<ELFT>(S, In<ELFT>::RelaIplt, 0, STV_HIDDEN, STB_WEAK); |
| |
| S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; |
| addOptionalRegular<ELFT>(S, In<ELFT>::RelaIplt, -1, STV_HIDDEN, STB_WEAK); |
| } |
| |
| // The linker is expected to define some symbols depending on |
| // the linking result. This function defines such symbols. |
| template <class ELFT> void Writer<ELFT>::addReservedSymbols() { |
| if (Config->EMachine == EM_MIPS) { |
| // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer |
| // so that it points to an absolute address which by default is relative |
| // to GOT. Default offset is 0x7ff0. |
| // See "Global Data Symbols" in Chapter 6 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| ElfSym::MipsGp = Symtab<ELFT>::X->addAbsolute("_gp", STV_HIDDEN, STB_LOCAL); |
| |
| // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between |
| // start of function and 'gp' pointer into GOT. |
| if (Symtab<ELFT>::X->find("_gp_disp")) |
| ElfSym::MipsGpDisp = |
| Symtab<ELFT>::X->addAbsolute("_gp_disp", STV_HIDDEN, STB_LOCAL); |
| |
| // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' |
| // pointer. This symbol is used in the code generated by .cpload pseudo-op |
| // in case of using -mno-shared option. |
| // https://sourceware.org/ml/binutils/2004-12/msg00094.html |
| if (Symtab<ELFT>::X->find("__gnu_local_gp")) |
| ElfSym::MipsLocalGp = |
| Symtab<ELFT>::X->addAbsolute("__gnu_local_gp", STV_HIDDEN, STB_LOCAL); |
| } |
| |
| // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to |
| // be at some offset from the base of the .got section, usually 0 or the end |
| // of the .got |
| InputSection *GotSection = InX::MipsGot ? cast<InputSection>(InX::MipsGot) |
| : cast<InputSection>(InX::Got); |
| ElfSym::GlobalOffsetTable = addOptionalRegular<ELFT>( |
| "_GLOBAL_OFFSET_TABLE_", GotSection, Target->GotBaseSymOff); |
| |
| // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For |
| // static linking the linker is required to optimize away any references to |
| // __tls_get_addr, so it's not defined anywhere. Create a hidden definition |
| // to avoid the undefined symbol error. |
| if (!InX::DynSymTab) |
| Symtab<ELFT>::X->addIgnored("__tls_get_addr"); |
| |
| // __ehdr_start is the location of ELF file headers. Note that we define |
| // this symbol unconditionally even when using a linker script, which |
| // differs from the behavior implemented by GNU linker which only define |
| // this symbol if ELF headers are in the memory mapped segment. |
| // __executable_start is not documented, but the expectation of at |
| // least the android libc is that it points to the elf header too. |
| // __dso_handle symbol is passed to cxa_finalize as a marker to identify |
| // each DSO. The address of the symbol doesn't matter as long as they are |
| // different in different DSOs, so we chose the start address of the DSO. |
| for (const char *Name : |
| {"__ehdr_start", "__executable_start", "__dso_handle"}) |
| addOptionalRegular<ELFT>(Name, Out::ElfHeader, 0, STV_HIDDEN); |
| |
| // If linker script do layout we do not need to create any standart symbols. |
| if (Script->Opt.HasSections) |
| return; |
| |
| auto Add = [](StringRef S) { |
| return addOptionalRegular<ELFT>(S, Out::ElfHeader, 0, STV_DEFAULT); |
| }; |
| |
| ElfSym::Bss = Add("__bss_start"); |
| ElfSym::End1 = Add("end"); |
| ElfSym::End2 = Add("_end"); |
| ElfSym::Etext1 = Add("etext"); |
| ElfSym::Etext2 = Add("_etext"); |
| ElfSym::Edata1 = Add("edata"); |
| ElfSym::Edata2 = Add("_edata"); |
| } |
| |
| // Sort input sections by section name suffixes for |
| // __attribute__((init_priority(N))). |
| static void sortInitFini(OutputSectionCommand *Cmd) { |
| if (Cmd) |
| Cmd->sortInitFini(); |
| } |
| |
| // Sort input sections by the special rule for .ctors and .dtors. |
| static void sortCtorsDtors(OutputSectionCommand *Cmd) { |
| if (Cmd) |
| Cmd->sortCtorsDtors(); |
| } |
| |
| // Sort input sections using the list provided by --symbol-ordering-file. |
| template <class ELFT> static void sortBySymbolsOrder() { |
| if (Config->SymbolOrderingFile.empty()) |
| return; |
| |
| // Build a map from symbols to their priorities. Symbols that didn't |
| // appear in the symbol ordering file have the lowest priority 0. |
| // All explicitly mentioned symbols have negative (higher) priorities. |
| DenseMap<StringRef, int> SymbolOrder; |
| int Priority = -Config->SymbolOrderingFile.size(); |
| for (StringRef S : Config->SymbolOrderingFile) |
| SymbolOrder.insert({S, Priority++}); |
| |
| // Build a map from sections to their priorities. |
| DenseMap<SectionBase *, int> SectionOrder; |
| for (elf::ObjectFile<ELFT> *File : Symtab<ELFT>::X->getObjectFiles()) { |
| for (SymbolBody *Body : File->getSymbols()) { |
| auto *D = dyn_cast<DefinedRegular>(Body); |
| if (!D || !D->Section) |
| continue; |
| int &Priority = SectionOrder[D->Section]; |
| Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); |
| } |
| } |
| |
| // Sort sections by priority. |
| for (BaseCommand *Base : Script->Opt.Commands) |
| if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base)) |
| Cmd->sort([&](InputSectionBase *S) { return SectionOrder.lookup(S); }); |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::forEachRelSec(std::function<void(InputSectionBase &)> Fn) { |
| for (InputSectionBase *IS : InputSections) { |
| if (!IS->Live) |
| continue; |
| // Scan all relocations. Each relocation goes through a series |
| // of tests to determine if it needs special treatment, such as |
| // creating GOT, PLT, copy relocations, etc. |
| // Note that relocations for non-alloc sections are directly |
| // processed by InputSection::relocateNonAlloc. |
| if (!(IS->Flags & SHF_ALLOC)) |
| continue; |
| if (isa<InputSection>(IS) || isa<EhInputSection>(IS)) |
| Fn(*IS); |
| } |
| |
| if (!Config->Relocatable) { |
| for (EhInputSection *ES : In<ELFT>::EhFrame->Sections) |
| Fn(*ES); |
| } |
| } |
| |
| template <class ELFT> void Writer<ELFT>::createSections() { |
| for (InputSectionBase *IS : InputSections) |
| if (IS) |
| Factory.addInputSec(IS, getOutputSectionName(IS->Name)); |
| |
| Script->fabricateDefaultCommands(); |
| sortBySymbolsOrder<ELFT>(); |
| sortInitFini(findSectionCommand(".init_array")); |
| sortInitFini(findSectionCommand(".fini_array")); |
| sortCtorsDtors(findSectionCommand(".ctors")); |
| sortCtorsDtors(findSectionCommand(".dtors")); |
| } |
| |
| // We want to find how similar two ranks are. |
| // The more branches in getSectionRank that match, the more similar they are. |
| // Since each branch corresponds to a bit flag, we can just use |
| // countLeadingZeros. |
| static int getRankProximity(OutputSection *A, OutputSection *B) { |
| return countLeadingZeros(A->SortRank ^ B->SortRank); |
| } |
| |
| static int getRankProximity(OutputSection *A, BaseCommand *B) { |
| if (auto *Cmd = dyn_cast<OutputSectionCommand>(B)) |
| if (Cmd->Sec) |
| return getRankProximity(A, Cmd->Sec); |
| return -1; |
| } |
| |
| // When placing orphan sections, we want to place them after symbol assignments |
| // so that an orphan after |
| // begin_foo = .; |
| // foo : { *(foo) } |
| // end_foo = .; |
| // doesn't break the intended meaning of the begin/end symbols. |
| // We don't want to go over sections since findOrphanPos is the |
| // one in charge of deciding the order of the sections. |
| // We don't want to go over changes to '.', since doing so in |
| // rx_sec : { *(rx_sec) } |
| // . = ALIGN(0x1000); |
| // /* The RW PT_LOAD starts here*/ |
| // rw_sec : { *(rw_sec) } |
| // would mean that the RW PT_LOAD would become unaligned. |
| static bool shouldSkip(BaseCommand *Cmd) { |
| if (isa<OutputSectionCommand>(Cmd)) |
| return false; |
| if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) |
| return Assign->Name != "."; |
| return true; |
| } |
| |
| // We want to place orphan sections so that they share as much |
| // characteristics with their neighbors as possible. For example, if |
| // both are rw, or both are tls. |
| template <typename ELFT> |
| static std::vector<BaseCommand *>::iterator |
| findOrphanPos(std::vector<BaseCommand *>::iterator B, |
| std::vector<BaseCommand *>::iterator E) { |
| OutputSection *Sec = cast<OutputSectionCommand>(*E)->Sec; |
| |
| // Find the first element that has as close a rank as possible. |
| auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { |
| return getRankProximity(Sec, A) < getRankProximity(Sec, B); |
| }); |
| if (I == E) |
| return E; |
| |
| // Consider all existing sections with the same proximity. |
| int Proximity = getRankProximity(Sec, *I); |
| for (; I != E; ++I) { |
| auto *Cmd = dyn_cast<OutputSectionCommand>(*I); |
| if (!Cmd || !Cmd->Sec) |
| continue; |
| if (getRankProximity(Sec, Cmd->Sec) != Proximity || |
| Sec->SortRank < Cmd->Sec->SortRank) |
| break; |
| } |
| auto J = std::find_if( |
| llvm::make_reverse_iterator(I), llvm::make_reverse_iterator(B), |
| [](BaseCommand *Cmd) { return isa<OutputSectionCommand>(Cmd); }); |
| I = J.base(); |
| while (I != E && shouldSkip(*I)) |
| ++I; |
| return I; |
| } |
| |
| template <class ELFT> void Writer<ELFT>::sortSections() { |
| if (Script->Opt.HasSections) |
| Script->adjustSectionsBeforeSorting(); |
| |
| // Don't sort if using -r. It is not necessary and we want to preserve the |
| // relative order for SHF_LINK_ORDER sections. |
| if (Config->Relocatable) |
| return; |
| |
| for (BaseCommand *Base : Script->Opt.Commands) |
| if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base)) |
| if (OutputSection *Sec = Cmd->Sec) |
| Sec->SortRank = getSectionRank(Sec); |
| |
| if (!Script->Opt.HasSections) { |
| // We know that all the OutputSectionCommands are contiguous in |
| // this case. |
| auto E = Script->Opt.Commands.end(); |
| auto I = Script->Opt.Commands.begin(); |
| auto IsSection = [](BaseCommand *Base) { |
| return isa<OutputSectionCommand>(Base); |
| }; |
| I = std::find_if(I, E, IsSection); |
| E = std::find_if(llvm::make_reverse_iterator(E), |
| llvm::make_reverse_iterator(I), IsSection) |
| .base(); |
| std::stable_sort(I, E, compareSections); |
| return; |
| } |
| |
| // Orphan sections are sections present in the input files which are |
| // not explicitly placed into the output file by the linker script. |
| // |
| // The sections in the linker script are already in the correct |
| // order. We have to figuere out where to insert the orphan |
| // sections. |
| // |
| // The order of the sections in the script is arbitrary and may not agree with |
| // compareSections. This means that we cannot easily define a strict weak |
| // ordering. To see why, consider a comparison of a section in the script and |
| // one not in the script. We have a two simple options: |
| // * Make them equivalent (a is not less than b, and b is not less than a). |
| // The problem is then that equivalence has to be transitive and we can |
| // have sections a, b and c with only b in a script and a less than c |
| // which breaks this property. |
| // * Use compareSectionsNonScript. Given that the script order doesn't have |
| // to match, we can end up with sections a, b, c, d where b and c are in the |
| // script and c is compareSectionsNonScript less than b. In which case d |
| // can be equivalent to c, a to b and d < a. As a concrete example: |
| // .a (rx) # not in script |
| // .b (rx) # in script |
| // .c (ro) # in script |
| // .d (ro) # not in script |
| // |
| // The way we define an order then is: |
| // * Sort only the orphan sections. They are in the end right now. |
| // * Move each orphan section to its preferred position. We try |
| // to put each section in the last position where it it can share |
| // a PT_LOAD. |
| // |
| // There is some ambiguity as to where exactly a new entry should be |
| // inserted, because Opt.Commands contains not only output section |
| // commands but also other types of commands such as symbol assignment |
| // expressions. There's no correct answer here due to the lack of the |
| // formal specification of the linker script. We use heuristics to |
| // determine whether a new output command should be added before or |
| // after another commands. For the details, look at shouldSkip |
| // function. |
| |
| auto I = Script->Opt.Commands.begin(); |
| auto E = Script->Opt.Commands.end(); |
| auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { |
| if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base)) |
| return Cmd->Sec && Cmd->Sec->SectionIndex == INT_MAX; |
| return false; |
| }); |
| |
| // Sort the orphan sections. |
| std::stable_sort(NonScriptI, E, compareSections); |
| |
| // As a horrible special case, skip the first . assignment if it is before any |
| // section. We do this because it is common to set a load address by starting |
| // the script with ". = 0xabcd" and the expectation is that every section is |
| // after that. |
| auto FirstSectionOrDotAssignment = |
| std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); |
| if (FirstSectionOrDotAssignment != E && |
| isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) |
| ++FirstSectionOrDotAssignment; |
| I = FirstSectionOrDotAssignment; |
| |
| while (NonScriptI != E) { |
| auto Pos = findOrphanPos<ELFT>(I, NonScriptI); |
| OutputSection *Orphan = cast<OutputSectionCommand>(*NonScriptI)->Sec; |
| |
| // As an optimization, find all sections with the same sort rank |
| // and insert them with one rotate. |
| unsigned Rank = Orphan->SortRank; |
| auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { |
| return cast<OutputSectionCommand>(Cmd)->Sec->SortRank != Rank; |
| }); |
| std::rotate(Pos, NonScriptI, End); |
| NonScriptI = End; |
| } |
| |
| Script->adjustSectionsAfterSorting(); |
| } |
| |
| static void applySynthetic(const std::vector<SyntheticSection *> &Sections, |
| std::function<void(SyntheticSection *)> Fn) { |
| for (SyntheticSection *SS : Sections) |
| if (SS && SS->getParent() && !SS->empty()) |
| Fn(SS); |
| } |
| |
| // We need to add input synthetic sections early in createSyntheticSections() |
| // to make them visible from linkescript side. But not all sections are always |
| // required to be in output. For example we don't need dynamic section content |
| // sometimes. This function filters out such unused sections from the output. |
| static void removeUnusedSyntheticSections() { |
| // All input synthetic sections that can be empty are placed after |
| // all regular ones. We iterate over them all and exit at first |
| // non-synthetic. |
| for (InputSectionBase *S : llvm::reverse(InputSections)) { |
| SyntheticSection *SS = dyn_cast<SyntheticSection>(S); |
| if (!SS) |
| return; |
| OutputSection *OS = SS->getParent(); |
| if (!SS->empty() || !OS) |
| continue; |
| if ((SS == InX::Got || SS == InX::MipsGot) && ElfSym::GlobalOffsetTable) |
| continue; |
| |
| OutputSectionCommand *Cmd = Script->getCmd(OS); |
| std::vector<BaseCommand *>::iterator Empty = Cmd->Commands.end(); |
| for (auto I = Cmd->Commands.begin(), E = Cmd->Commands.end(); I != E; ++I) { |
| BaseCommand *B = *I; |
| if (auto *ISD = dyn_cast<InputSectionDescription>(B)) { |
| auto P = std::find(ISD->Sections.begin(), ISD->Sections.end(), SS); |
| if (P != ISD->Sections.end()) |
| ISD->Sections.erase(P); |
| if (ISD->Sections.empty()) |
| Empty = I; |
| } |
| } |
| if (Empty != Cmd->Commands.end()) |
| Cmd->Commands.erase(Empty); |
| |
| // If there are no other sections in the output section, remove it from the |
| // output. |
| if (Cmd->Commands.empty()) { |
| // Also remove script commands matching the output section. |
| auto &Cmds = Script->Opt.Commands; |
| auto I = std::remove_if(Cmds.begin(), Cmds.end(), [&](BaseCommand *Cmd) { |
| if (auto *OSCmd = dyn_cast<OutputSectionCommand>(Cmd)) |
| return OSCmd->Sec == OS; |
| return false; |
| }); |
| Cmds.erase(I, Cmds.end()); |
| } |
| } |
| } |
| |
| // Create output section objects and add them to OutputSections. |
| template <class ELFT> void Writer<ELFT>::finalizeSections() { |
| Out::DebugInfo = findSectionInScript(".debug_info"); |
| Out::PreinitArray = findSectionInScript(".preinit_array"); |
| Out::InitArray = findSectionInScript(".init_array"); |
| Out::FiniArray = findSectionInScript(".fini_array"); |
| |
| // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop |
| // symbols for sections, so that the runtime can get the start and end |
| // addresses of each section by section name. Add such symbols. |
| if (!Config->Relocatable) { |
| addStartEndSymbols(); |
| for (BaseCommand *Base : Script->Opt.Commands) |
| if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base)) |
| if (Cmd->Sec) |
| addStartStopSymbols(Cmd->Sec); |
| } |
| |
| // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. |
| // It should be okay as no one seems to care about the type. |
| // Even the author of gold doesn't remember why gold behaves that way. |
| // https://sourceware.org/ml/binutils/2002-03/msg00360.html |
| if (InX::DynSymTab) |
| addRegular<ELFT>("_DYNAMIC", InX::Dynamic, 0); |
| |
| // Define __rel[a]_iplt_{start,end} symbols if needed. |
| addRelIpltSymbols(); |
| |
| // This responsible for splitting up .eh_frame section into |
| // pieces. The relocation scan uses those pieces, so this has to be |
| // earlier. |
| applySynthetic({In<ELFT>::EhFrame}, |
| [](SyntheticSection *SS) { SS->finalizeContents(); }); |
| |
| // Scan relocations. This must be done after every symbol is declared so that |
| // we can correctly decide if a dynamic relocation is needed. |
| forEachRelSec(scanRelocations<ELFT>); |
| |
| if (InX::Plt && !InX::Plt->empty()) |
| InX::Plt->addSymbols(); |
| if (InX::Iplt && !InX::Iplt->empty()) |
| InX::Iplt->addSymbols(); |
| |
| // Now that we have defined all possible global symbols including linker- |
| // synthesized ones. Visit all symbols to give the finishing touches. |
| for (Symbol *S : Symtab<ELFT>::X->getSymbols()) { |
| SymbolBody *Body = S->body(); |
| |
| if (!includeInSymtab(*Body)) |
| continue; |
| if (InX::SymTab) |
| InX::SymTab->addSymbol(Body); |
| |
| if (InX::DynSymTab && S->includeInDynsym()) { |
| InX::DynSymTab->addSymbol(Body); |
| if (auto *SS = dyn_cast<SharedSymbol>(Body)) |
| if (cast<SharedFile<ELFT>>(SS->File)->isNeeded()) |
| In<ELFT>::VerNeed->addSymbol(SS); |
| } |
| } |
| |
| // Do not proceed if there was an undefined symbol. |
| if (ErrorCount) |
| return; |
| |
| addPredefinedSections(); |
| removeUnusedSyntheticSections(); |
| |
| sortSections(); |
| |
| // Now that we have the final list, create a list of all the |
| // OutputSectionCommands for convenience. |
| for (BaseCommand *Base : Script->Opt.Commands) |
| if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base)) |
| OutputSectionCommands.push_back(Cmd); |
| |
| // Prefer command line supplied address over other constraints. |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| auto I = Config->SectionStartMap.find(Cmd->Name); |
| if (I != Config->SectionStartMap.end()) |
| Cmd->AddrExpr = [=] { return I->second; }; |
| } |
| |
| // This is a bit of a hack. A value of 0 means undef, so we set it |
| // to 1 t make __ehdr_start defined. The section number is not |
| // particularly relevant. |
| Out::ElfHeader->SectionIndex = 1; |
| |
| unsigned I = 1; |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *Sec = Cmd->Sec; |
| Sec->SectionIndex = I++; |
| Sec->ShName = InX::ShStrTab->addString(Sec->Name); |
| } |
| |
| // Binary and relocatable output does not have PHDRS. |
| // The headers have to be created before finalize as that can influence the |
| // image base and the dynamic section on mips includes the image base. |
| if (!Config->Relocatable && !Config->OFormatBinary) { |
| Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); |
| addPtArmExid(Phdrs); |
| Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); |
| } |
| |
| // Dynamic section must be the last one in this list and dynamic |
| // symbol table section (DynSymTab) must be the first one. |
| applySynthetic({InX::DynSymTab, InX::Bss, InX::BssRelRo, |
| InX::GnuHashTab, In<ELFT>::HashTab, InX::SymTab, |
| InX::ShStrTab, InX::StrTab, In<ELFT>::VerDef, |
| InX::DynStrTab, InX::GdbIndex, InX::Got, |
| InX::MipsGot, InX::IgotPlt, InX::GotPlt, |
| In<ELFT>::RelaDyn, In<ELFT>::RelaIplt, In<ELFT>::RelaPlt, |
| InX::Plt, InX::Iplt, In<ELFT>::EhFrameHdr, |
| In<ELFT>::VerSym, In<ELFT>::VerNeed, InX::Dynamic}, |
| [](SyntheticSection *SS) { SS->finalizeContents(); }); |
| |
| // Some architectures use small displacements for jump instructions. |
| // It is linker's responsibility to create thunks containing long |
| // jump instructions if jump targets are too far. Create thunks. |
| if (Target->NeedsThunks) { |
| // FIXME: only ARM Interworking and Mips LA25 Thunks are implemented, |
| // these |
| // do not require address information. To support range extension Thunks |
| // we need to assign addresses so that we can tell if jump instructions |
| // are out of range. This will need to turn into a loop that converges |
| // when no more Thunks are added |
| ThunkCreator TC; |
| Script->assignAddresses(); |
| if (TC.createThunks(OutputSectionCommands)) { |
| applySynthetic({InX::MipsGot}, |
| [](SyntheticSection *SS) { SS->updateAllocSize(); }); |
| if (TC.createThunks(OutputSectionCommands)) |
| fatal("All non-range thunks should be created in first call"); |
| } |
| } |
| |
| // Fill other section headers. The dynamic table is finalized |
| // at the end because some tags like RELSZ depend on result |
| // of finalizing other sections. |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) |
| Cmd->finalize<ELFT>(); |
| |
| // createThunks may have added local symbols to the static symbol table |
| applySynthetic({InX::SymTab, InX::ShStrTab, InX::StrTab}, |
| [](SyntheticSection *SS) { SS->postThunkContents(); }); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::addPredefinedSections() { |
| // ARM ABI requires .ARM.exidx to be terminated by some piece of data. |
| // We have the terminater synthetic section class. Add that at the end. |
| OutputSectionCommand *Cmd = findSectionCommand(".ARM.exidx"); |
| if (!Cmd || !Cmd->Sec || Config->Relocatable) |
| return; |
| |
| auto *Sentinel = make<ARMExidxSentinelSection>(); |
| Cmd->Sec->addSection(Sentinel); |
| // Add the sentinel to the last of these too. |
| auto ISD = std::find_if(Cmd->Commands.rbegin(), Cmd->Commands.rend(), |
| [](const BaseCommand *Base) { |
| return isa<InputSectionDescription>(Base); |
| }); |
| cast<InputSectionDescription>(*ISD)->Sections.push_back(Sentinel); |
| } |
| |
| // The linker is expected to define SECNAME_start and SECNAME_end |
| // symbols for a few sections. This function defines them. |
| template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { |
| auto Define = [&](StringRef Start, StringRef End, OutputSection *OS) { |
| // These symbols resolve to the image base if the section does not exist. |
| // A special value -1 indicates end of the section. |
| if (OS) { |
| addOptionalRegular<ELFT>(Start, OS, 0); |
| addOptionalRegular<ELFT>(End, OS, -1); |
| } else { |
| if (Config->Pic) |
| OS = Out::ElfHeader; |
| addOptionalRegular<ELFT>(Start, OS, 0); |
| addOptionalRegular<ELFT>(End, OS, 0); |
| } |
| }; |
| |
| Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); |
| Define("__init_array_start", "__init_array_end", Out::InitArray); |
| Define("__fini_array_start", "__fini_array_end", Out::FiniArray); |
| |
| if (OutputSection *Sec = findSectionInScript(".ARM.exidx")) |
| Define("__exidx_start", "__exidx_end", Sec); |
| } |
| |
| // If a section name is valid as a C identifier (which is rare because of |
| // the leading '.'), linkers are expected to define __start_<secname> and |
| // __stop_<secname> symbols. They are at beginning and end of the section, |
| // respectively. This is not requested by the ELF standard, but GNU ld and |
| // gold provide the feature, and used by many programs. |
| template <class ELFT> |
| void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { |
| StringRef S = Sec->Name; |
| if (!isValidCIdentifier(S)) |
| return; |
| addOptionalRegular<ELFT>(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT); |
| addOptionalRegular<ELFT>(Saver.save("__stop_" + S), Sec, -1, STV_DEFAULT); |
| } |
| |
| template <class ELFT> |
| OutputSectionCommand *Writer<ELFT>::findSectionCommand(StringRef Name) { |
| for (BaseCommand *Base : Script->Opt.Commands) |
| if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base)) |
| if (Cmd->Name == Name) |
| return Cmd; |
| return nullptr; |
| } |
| |
| template <class ELFT> |
| OutputSection *Writer<ELFT>::findSectionInScript(StringRef Name) { |
| if (OutputSectionCommand *Cmd = findSectionCommand(Name)) |
| return Cmd->Sec; |
| return nullptr; |
| } |
| |
| static bool needsPtLoad(OutputSection *Sec) { |
| if (!(Sec->Flags & SHF_ALLOC)) |
| return false; |
| |
| // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is |
| // responsible for allocating space for them, not the PT_LOAD that |
| // contains the TLS initialization image. |
| if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) |
| return false; |
| return true; |
| } |
| |
| // Linker scripts are responsible for aligning addresses. Unfortunately, most |
| // linker scripts are designed for creating two PT_LOADs only, one RX and one |
| // RW. This means that there is no alignment in the RO to RX transition and we |
| // cannot create a PT_LOAD there. |
| static uint64_t computeFlags(uint64_t Flags) { |
| if (Config->Omagic) |
| return PF_R | PF_W | PF_X; |
| if (Config->SingleRoRx && !(Flags & PF_W)) |
| return Flags | PF_X; |
| return Flags; |
| } |
| |
| // Decide which program headers to create and which sections to include in each |
| // one. |
| template <class ELFT> std::vector<PhdrEntry> Writer<ELFT>::createPhdrs() { |
| std::vector<PhdrEntry> Ret; |
| auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { |
| Ret.emplace_back(Type, Flags); |
| return &Ret.back(); |
| }; |
| |
| // The first phdr entry is PT_PHDR which describes the program header itself. |
| AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); |
| |
| // PT_INTERP must be the second entry if exists. |
| if (OutputSection *Sec = findSectionInScript(".interp")) |
| AddHdr(PT_INTERP, Sec->getPhdrFlags())->add(Sec); |
| |
| // Add the first PT_LOAD segment for regular output sections. |
| uint64_t Flags = computeFlags(PF_R); |
| PhdrEntry *Load = AddHdr(PT_LOAD, Flags); |
| |
| // Add the headers. We will remove them if they don't fit. |
| Load->add(Out::ElfHeader); |
| Load->add(Out::ProgramHeaders); |
| |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *Sec = Cmd->Sec; |
| if (!(Sec->Flags & SHF_ALLOC)) |
| break; |
| if (!needsPtLoad(Sec)) |
| continue; |
| |
| // Segments are contiguous memory regions that has the same attributes |
| // (e.g. executable or writable). There is one phdr for each segment. |
| // Therefore, we need to create a new phdr when the next section has |
| // different flags or is loaded at a discontiguous address using AT linker |
| // script command. |
| uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); |
| if (Cmd->LMAExpr || Flags != NewFlags) { |
| Load = AddHdr(PT_LOAD, NewFlags); |
| Flags = NewFlags; |
| } |
| |
| Load->add(Sec); |
| } |
| |
| // Add a TLS segment if any. |
| PhdrEntry TlsHdr(PT_TLS, PF_R); |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *Sec = Cmd->Sec; |
| if (Sec->Flags & SHF_TLS) |
| TlsHdr.add(Sec); |
| } |
| if (TlsHdr.First) |
| Ret.push_back(std::move(TlsHdr)); |
| |
| // Add an entry for .dynamic. |
| if (InX::DynSymTab) |
| AddHdr(PT_DYNAMIC, InX::Dynamic->getParent()->getPhdrFlags()) |
| ->add(InX::Dynamic->getParent()); |
| |
| // PT_GNU_RELRO includes all sections that should be marked as |
| // read-only by dynamic linker after proccessing relocations. |
| PhdrEntry RelRo(PT_GNU_RELRO, PF_R); |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *Sec = Cmd->Sec; |
| if (needsPtLoad(Sec) && isRelroSection(Sec)) |
| RelRo.add(Sec); |
| } |
| if (RelRo.First) |
| Ret.push_back(std::move(RelRo)); |
| |
| // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. |
| if (!In<ELFT>::EhFrame->empty() && In<ELFT>::EhFrameHdr && |
| In<ELFT>::EhFrame->getParent() && In<ELFT>::EhFrameHdr->getParent()) |
| AddHdr(PT_GNU_EH_FRAME, In<ELFT>::EhFrameHdr->getParent()->getPhdrFlags()) |
| ->add(In<ELFT>::EhFrameHdr->getParent()); |
| |
| // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes |
| // the dynamic linker fill the segment with random data. |
| if (OutputSection *Sec = findSectionInScript(".openbsd.randomdata")) |
| AddHdr(PT_OPENBSD_RANDOMIZE, Sec->getPhdrFlags())->add(Sec); |
| |
| // PT_GNU_STACK is a special section to tell the loader to make the |
| // pages for the stack non-executable. If you really want an executable |
| // stack, you can pass -z execstack, but that's not recommended for |
| // security reasons. |
| unsigned Perm; |
| if (Config->ZExecstack) |
| Perm = PF_R | PF_W | PF_X; |
| else |
| Perm = PF_R | PF_W; |
| AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; |
| |
| // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable |
| // is expected to perform W^X violations, such as calling mprotect(2) or |
| // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on |
| // OpenBSD. |
| if (Config->ZWxneeded) |
| AddHdr(PT_OPENBSD_WXNEEDED, PF_X); |
| |
| // Create one PT_NOTE per a group of contiguous .note sections. |
| PhdrEntry *Note = nullptr; |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *Sec = Cmd->Sec; |
| if (Sec->Type == SHT_NOTE) { |
| if (!Note || Cmd->LMAExpr) |
| Note = AddHdr(PT_NOTE, PF_R); |
| Note->add(Sec); |
| } else { |
| Note = nullptr; |
| } |
| } |
| return Ret; |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry> &Phdrs) { |
| if (Config->EMachine != EM_ARM) |
| return; |
| auto I = llvm::find_if(OutputSectionCommands, [](OutputSectionCommand *Cmd) { |
| return Cmd->Sec->Type == SHT_ARM_EXIDX; |
| }); |
| if (I == OutputSectionCommands.end()) |
| return; |
| |
| // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME |
| PhdrEntry ARMExidx(PT_ARM_EXIDX, PF_R); |
| ARMExidx.add((*I)->Sec); |
| Phdrs.push_back(ARMExidx); |
| } |
| |
| // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the |
| // first section after PT_GNU_RELRO have to be page aligned so that the dynamic |
| // linker can set the permissions. |
| template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { |
| auto PageAlign = [](OutputSection *Sec) { |
| OutputSectionCommand *Cmd = Script->getCmd(Sec); |
| if (Cmd && !Cmd->AddrExpr) |
| Cmd->AddrExpr = [=] { |
| return alignTo(Script->getDot(), Config->MaxPageSize); |
| }; |
| }; |
| |
| for (const PhdrEntry &P : Phdrs) |
| if (P.p_type == PT_LOAD && P.First) |
| PageAlign(P.First); |
| |
| for (const PhdrEntry &P : Phdrs) { |
| if (P.p_type != PT_GNU_RELRO) |
| continue; |
| if (P.First) |
| PageAlign(P.First); |
| // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we |
| // have to align it to a page. |
| auto End = OutputSectionCommands.end(); |
| auto I = |
| std::find(OutputSectionCommands.begin(), End, Script->getCmd(P.Last)); |
| if (I == End || (I + 1) == End) |
| continue; |
| OutputSection *Sec = (*(I + 1))->Sec; |
| if (needsPtLoad(Sec)) |
| PageAlign(Sec); |
| } |
| } |
| |
| // Adjusts the file alignment for a given output section and returns |
| // its new file offset. The file offset must be the same with its |
| // virtual address (modulo the page size) so that the loader can load |
| // executables without any address adjustment. |
| static uint64_t getFileAlignment(uint64_t Off, OutputSection *Sec) { |
| OutputSection *First = Sec->FirstInPtLoad; |
| // If the section is not in a PT_LOAD, we just have to align it. |
| if (!First) |
| return alignTo(Off, Sec->Alignment); |
| |
| // The first section in a PT_LOAD has to have congruent offset and address |
| // module the page size. |
| if (Sec == First) |
| return alignTo(Off, Config->MaxPageSize, Sec->Addr); |
| |
| // If two sections share the same PT_LOAD the file offset is calculated |
| // using this formula: Off2 = Off1 + (VA2 - VA1). |
| return First->Offset + Sec->Addr - First->Addr; |
| } |
| |
| static uint64_t setOffset(OutputSection *Sec, uint64_t Off) { |
| if (Sec->Type == SHT_NOBITS) { |
| Sec->Offset = Off; |
| return Off; |
| } |
| |
| Off = getFileAlignment(Off, Sec); |
| Sec->Offset = Off; |
| return Off + Sec->Size; |
| } |
| |
| template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { |
| uint64_t Off = 0; |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *Sec = Cmd->Sec; |
| if (Sec->Flags & SHF_ALLOC) |
| Off = setOffset(Sec, Off); |
| } |
| FileSize = alignTo(Off, Config->Wordsize); |
| } |
| |
| // Assign file offsets to output sections. |
| template <class ELFT> void Writer<ELFT>::assignFileOffsets() { |
| uint64_t Off = 0; |
| Off = setOffset(Out::ElfHeader, Off); |
| Off = setOffset(Out::ProgramHeaders, Off); |
| |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) |
| Off = setOffset(Cmd->Sec, Off); |
| |
| SectionHeaderOff = alignTo(Off, Config->Wordsize); |
| FileSize = |
| SectionHeaderOff + (OutputSectionCommands.size() + 1) * sizeof(Elf_Shdr); |
| } |
| |
| // Finalize the program headers. We call this function after we assign |
| // file offsets and VAs to all sections. |
| template <class ELFT> void Writer<ELFT>::setPhdrs() { |
| for (PhdrEntry &P : Phdrs) { |
| OutputSection *First = P.First; |
| OutputSection *Last = P.Last; |
| if (First) { |
| P.p_filesz = Last->Offset - First->Offset; |
| if (Last->Type != SHT_NOBITS) |
| P.p_filesz += Last->Size; |
| P.p_memsz = Last->Addr + Last->Size - First->Addr; |
| P.p_offset = First->Offset; |
| P.p_vaddr = First->Addr; |
| if (!P.HasLMA) |
| P.p_paddr = First->getLMA(); |
| } |
| if (P.p_type == PT_LOAD) |
| P.p_align = Config->MaxPageSize; |
| else if (P.p_type == PT_GNU_RELRO) { |
| P.p_align = 1; |
| // The glibc dynamic loader rounds the size down, so we need to round up |
| // to protect the last page. This is a no-op on FreeBSD which always |
| // rounds up. |
| P.p_memsz = alignTo(P.p_memsz, Target->PageSize); |
| } |
| |
| // The TLS pointer goes after PT_TLS. At least glibc will align it, |
| // so round up the size to make sure the offsets are correct. |
| if (P.p_type == PT_TLS) { |
| Out::TlsPhdr = &P; |
| if (P.p_memsz) |
| P.p_memsz = alignTo(P.p_memsz, P.p_align); |
| } |
| } |
| } |
| |
| // The entry point address is chosen in the following ways. |
| // |
| // 1. the '-e' entry command-line option; |
| // 2. the ENTRY(symbol) command in a linker control script; |
| // 3. the value of the symbol start, if present; |
| // 4. the address of the first byte of the .text section, if present; |
| // 5. the address 0. |
| template <class ELFT> uint64_t Writer<ELFT>::getEntryAddr() { |
| // Case 1, 2 or 3. As a special case, if the symbol is actually |
| // a number, we'll use that number as an address. |
| if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Entry)) |
| return B->getVA(); |
| uint64_t Addr; |
| if (to_integer(Config->Entry, Addr)) |
| return Addr; |
| |
| // Case 4 |
| if (OutputSection *Sec = findSectionInScript(".text")) { |
| if (Config->WarnMissingEntry) |
| warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + |
| utohexstr(Sec->Addr)); |
| return Sec->Addr; |
| } |
| |
| // Case 5 |
| if (Config->WarnMissingEntry) |
| warn("cannot find entry symbol " + Config->Entry + |
| "; not setting start address"); |
| return 0; |
| } |
| |
| static uint16_t getELFType() { |
| if (Config->Pic) |
| return ET_DYN; |
| if (Config->Relocatable) |
| return ET_REL; |
| return ET_EXEC; |
| } |
| |
| // This function is called after we have assigned address and size |
| // to each section. This function fixes some predefined |
| // symbol values that depend on section address and size. |
| template <class ELFT> void Writer<ELFT>::fixPredefinedSymbols() { |
| // _etext is the first location after the last read-only loadable segment. |
| // _edata is the first location after the last read-write loadable segment. |
| // _end is the first location after the uninitialized data region. |
| PhdrEntry *Last = nullptr; |
| PhdrEntry *LastRO = nullptr; |
| PhdrEntry *LastRW = nullptr; |
| for (PhdrEntry &P : Phdrs) { |
| if (P.p_type != PT_LOAD) |
| continue; |
| Last = &P; |
| if (P.p_flags & PF_W) |
| LastRW = &P; |
| else |
| LastRO = &P; |
| } |
| |
| auto Set = [](DefinedRegular *S, OutputSection *Sec, uint64_t Value) { |
| if (S) { |
| S->Section = Sec; |
| S->Value = Value; |
| } |
| }; |
| |
| if (Last) { |
| Set(ElfSym::End1, Last->First, Last->p_memsz); |
| Set(ElfSym::End2, Last->First, Last->p_memsz); |
| } |
| if (LastRO) { |
| Set(ElfSym::Etext1, LastRO->First, LastRO->p_filesz); |
| Set(ElfSym::Etext2, LastRO->First, LastRO->p_filesz); |
| } |
| if (LastRW) { |
| Set(ElfSym::Edata1, LastRW->First, LastRW->p_filesz); |
| Set(ElfSym::Edata2, LastRW->First, LastRW->p_filesz); |
| } |
| |
| if (ElfSym::Bss) |
| ElfSym::Bss->Section = findSectionInScript(".bss"); |
| |
| // Setup MIPS _gp_disp/__gnu_local_gp symbols which should |
| // be equal to the _gp symbol's value. |
| if (Config->EMachine == EM_MIPS && !ElfSym::MipsGp->Value) { |
| // Find GP-relative section with the lowest address |
| // and use this address to calculate default _gp value. |
| for (const OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *OS = Cmd->Sec; |
| if (OS->Flags & SHF_MIPS_GPREL) { |
| ElfSym::MipsGp->Value = OS->Addr + 0x7ff0; |
| break; |
| } |
| } |
| } |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeHeader() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| memcpy(Buf, "\177ELF", 4); |
| |
| // Write the ELF header. |
| auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); |
| EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; |
| EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; |
| EHdr->e_ident[EI_VERSION] = EV_CURRENT; |
| EHdr->e_ident[EI_OSABI] = Config->OSABI; |
| EHdr->e_type = getELFType(); |
| EHdr->e_machine = Config->EMachine; |
| EHdr->e_version = EV_CURRENT; |
| EHdr->e_entry = getEntryAddr(); |
| EHdr->e_shoff = SectionHeaderOff; |
| EHdr->e_ehsize = sizeof(Elf_Ehdr); |
| EHdr->e_phnum = Phdrs.size(); |
| EHdr->e_shentsize = sizeof(Elf_Shdr); |
| EHdr->e_shnum = OutputSectionCommands.size() + 1; |
| EHdr->e_shstrndx = InX::ShStrTab->getParent()->SectionIndex; |
| |
| if (Config->EMachine == EM_ARM) |
| // We don't currently use any features incompatible with EF_ARM_EABI_VER5, |
| // but we don't have any firm guarantees of conformance. Linux AArch64 |
| // kernels (as of 2016) require an EABI version to be set. |
| EHdr->e_flags = EF_ARM_EABI_VER5; |
| else if (Config->EMachine == EM_MIPS) |
| EHdr->e_flags = getMipsEFlags<ELFT>(); |
| |
| if (!Config->Relocatable) { |
| EHdr->e_phoff = sizeof(Elf_Ehdr); |
| EHdr->e_phentsize = sizeof(Elf_Phdr); |
| } |
| |
| // Write the program header table. |
| auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); |
| for (PhdrEntry &P : Phdrs) { |
| HBuf->p_type = P.p_type; |
| HBuf->p_flags = P.p_flags; |
| HBuf->p_offset = P.p_offset; |
| HBuf->p_vaddr = P.p_vaddr; |
| HBuf->p_paddr = P.p_paddr; |
| HBuf->p_filesz = P.p_filesz; |
| HBuf->p_memsz = P.p_memsz; |
| HBuf->p_align = P.p_align; |
| ++HBuf; |
| } |
| |
| // Write the section header table. Note that the first table entry is null. |
| auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) |
| Cmd->Sec->writeHeaderTo<ELFT>(++SHdrs); |
| } |
| |
| // Open a result file. |
| template <class ELFT> void Writer<ELFT>::openFile() { |
| if (!Config->Is64 && FileSize > UINT32_MAX) { |
| error("output file too large: " + Twine(FileSize) + " bytes"); |
| return; |
| } |
| |
| unlinkAsync(Config->OutputFile); |
| ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = |
| FileOutputBuffer::create(Config->OutputFile, FileSize, |
| FileOutputBuffer::F_executable); |
| |
| if (auto EC = BufferOrErr.getError()) |
| error("failed to open " + Config->OutputFile + ": " + EC.message()); |
| else |
| Buffer = std::move(*BufferOrErr); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *Sec = Cmd->Sec; |
| if (Sec->Flags & SHF_ALLOC) |
| Cmd->writeTo<ELFT>(Buf + Sec->Offset); |
| } |
| } |
| |
| // Write section contents to a mmap'ed file. |
| template <class ELFT> void Writer<ELFT>::writeSections() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| |
| // PPC64 needs to process relocations in the .opd section |
| // before processing relocations in code-containing sections. |
| if (auto *OpdCmd = findSectionCommand(".opd")) { |
| Out::Opd = OpdCmd->Sec; |
| Out::OpdBuf = Buf + Out::Opd->Offset; |
| OpdCmd->template writeTo<ELFT>(Buf + Out::Opd->Offset); |
| } |
| |
| OutputSection *EhFrameHdr = |
| (In<ELFT>::EhFrameHdr && !In<ELFT>::EhFrameHdr->empty()) |
| ? In<ELFT>::EhFrameHdr->getParent() |
| : nullptr; |
| |
| // In -r or -emit-relocs mode, write the relocation sections first as in |
| // ELf_Rel targets we might find out that we need to modify the relocated |
| // section while doing it. |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *Sec = Cmd->Sec; |
| if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) |
| Cmd->writeTo<ELFT>(Buf + Sec->Offset); |
| } |
| |
| for (OutputSectionCommand *Cmd : OutputSectionCommands) { |
| OutputSection *Sec = Cmd->Sec; |
| if (Sec != Out::Opd && Sec != EhFrameHdr && Sec->Type != SHT_REL && |
| Sec->Type != SHT_RELA) |
| Cmd->writeTo<ELFT>(Buf + Sec->Offset); |
| } |
| |
| // The .eh_frame_hdr depends on .eh_frame section contents, therefore |
| // it should be written after .eh_frame is written. |
| if (EhFrameHdr) { |
| OutputSectionCommand *Cmd = Script->getCmd(EhFrameHdr); |
| Cmd->writeTo<ELFT>(Buf + EhFrameHdr->Offset); |
| } |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeBuildId() { |
| if (!InX::BuildId || !InX::BuildId->getParent()) |
| return; |
| |
| // Compute a hash of all sections of the output file. |
| uint8_t *Start = Buffer->getBufferStart(); |
| uint8_t *End = Start + FileSize; |
| InX::BuildId->writeBuildId({Start, End}); |
| } |
| |
| template void elf::writeResult<ELF32LE>(); |
| template void elf::writeResult<ELF32BE>(); |
| template void elf::writeResult<ELF64LE>(); |
| template void elf::writeResult<ELF64BE>(); |