| //===- SyntheticSections.cpp ----------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains linker-synthesized sections. Currently, |
| // synthetic sections are created either output sections or input sections, |
| // but we are rewriting code so that all synthetic sections are created as |
| // input sections. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SyntheticSections.h" |
| #include "Config.h" |
| #include "Error.h" |
| #include "InputFiles.h" |
| #include "LinkerScript.h" |
| #include "Memory.h" |
| #include "OutputSections.h" |
| #include "Strings.h" |
| #include "SymbolTable.h" |
| #include "Target.h" |
| #include "Threads.h" |
| #include "Writer.h" |
| #include "lld/Config/Version.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" |
| #include "llvm/Object/Decompressor.h" |
| #include "llvm/Object/ELFObjectFile.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/MD5.h" |
| #include "llvm/Support/RandomNumberGenerator.h" |
| #include "llvm/Support/SHA1.h" |
| #include "llvm/Support/xxhash.h" |
| #include <cstdlib> |
| |
| using namespace llvm; |
| using namespace llvm::dwarf; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| uint64_t SyntheticSection::getVA() const { |
| if (OutputSection *Sec = getParent()) |
| return Sec->Addr + OutSecOff; |
| return 0; |
| } |
| |
| template <class ELFT> static std::vector<DefinedCommon *> getCommonSymbols() { |
| std::vector<DefinedCommon *> V; |
| for (Symbol *S : Symtab<ELFT>::X->getSymbols()) |
| if (auto *B = dyn_cast<DefinedCommon>(S->body())) |
| V.push_back(B); |
| return V; |
| } |
| |
| // Find all common symbols and allocate space for them. |
| template <class ELFT> InputSection *elf::createCommonSection() { |
| if (!Config->DefineCommon) |
| return nullptr; |
| |
| // Sort the common symbols by alignment as an heuristic to pack them better. |
| std::vector<DefinedCommon *> Syms = getCommonSymbols<ELFT>(); |
| if (Syms.empty()) |
| return nullptr; |
| |
| std::stable_sort(Syms.begin(), Syms.end(), |
| [](const DefinedCommon *A, const DefinedCommon *B) { |
| return A->Alignment > B->Alignment; |
| }); |
| |
| BssSection *Sec = make<BssSection>("COMMON"); |
| for (DefinedCommon *Sym : Syms) |
| Sym->Offset = Sec->reserveSpace(Sym->Size, Sym->Alignment); |
| return Sec; |
| } |
| |
| // Returns an LLD version string. |
| static ArrayRef<uint8_t> getVersion() { |
| // Check LLD_VERSION first for ease of testing. |
| // You can get consitent output by using the environment variable. |
| // This is only for testing. |
| StringRef S = getenv("LLD_VERSION"); |
| if (S.empty()) |
| S = Saver.save(Twine("Linker: ") + getLLDVersion()); |
| |
| // +1 to include the terminating '\0'. |
| return {(const uint8_t *)S.data(), S.size() + 1}; |
| } |
| |
| // Creates a .comment section containing LLD version info. |
| // With this feature, you can identify LLD-generated binaries easily |
| // by "readelf --string-dump .comment <file>". |
| // The returned object is a mergeable string section. |
| template <class ELFT> MergeInputSection *elf::createCommentSection() { |
| typename ELFT::Shdr Hdr = {}; |
| Hdr.sh_flags = SHF_MERGE | SHF_STRINGS; |
| Hdr.sh_type = SHT_PROGBITS; |
| Hdr.sh_entsize = 1; |
| Hdr.sh_addralign = 1; |
| |
| auto *Ret = |
| make<MergeInputSection>((ObjectFile<ELFT> *)nullptr, &Hdr, ".comment"); |
| Ret->Data = getVersion(); |
| Ret->splitIntoPieces(); |
| return Ret; |
| } |
| |
| // .MIPS.abiflags section. |
| template <class ELFT> |
| MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags Flags) |
| : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), |
| Flags(Flags) { |
| this->Entsize = sizeof(Elf_Mips_ABIFlags); |
| } |
| |
| template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *Buf) { |
| memcpy(Buf, &Flags, sizeof(Flags)); |
| } |
| |
| template <class ELFT> |
| MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() { |
| Elf_Mips_ABIFlags Flags = {}; |
| bool Create = false; |
| |
| for (InputSectionBase *Sec : InputSections) { |
| if (Sec->Type != SHT_MIPS_ABIFLAGS) |
| continue; |
| Sec->Live = false; |
| Create = true; |
| |
| std::string Filename = toString(Sec->getFile<ELFT>()); |
| const size_t Size = Sec->Data.size(); |
| // Older version of BFD (such as the default FreeBSD linker) concatenate |
| // .MIPS.abiflags instead of merging. To allow for this case (or potential |
| // zero padding) we ignore everything after the first Elf_Mips_ABIFlags |
| if (Size < sizeof(Elf_Mips_ABIFlags)) { |
| error(Filename + ": invalid size of .MIPS.abiflags section: got " + |
| Twine(Size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); |
| return nullptr; |
| } |
| auto *S = reinterpret_cast<const Elf_Mips_ABIFlags *>(Sec->Data.data()); |
| if (S->version != 0) { |
| error(Filename + ": unexpected .MIPS.abiflags version " + |
| Twine(S->version)); |
| return nullptr; |
| } |
| |
| // LLD checks ISA compatibility in getMipsEFlags(). Here we just |
| // select the highest number of ISA/Rev/Ext. |
| Flags.isa_level = std::max(Flags.isa_level, S->isa_level); |
| Flags.isa_rev = std::max(Flags.isa_rev, S->isa_rev); |
| Flags.isa_ext = std::max(Flags.isa_ext, S->isa_ext); |
| Flags.gpr_size = std::max(Flags.gpr_size, S->gpr_size); |
| Flags.cpr1_size = std::max(Flags.cpr1_size, S->cpr1_size); |
| Flags.cpr2_size = std::max(Flags.cpr2_size, S->cpr2_size); |
| Flags.ases |= S->ases; |
| Flags.flags1 |= S->flags1; |
| Flags.flags2 |= S->flags2; |
| Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->fp_abi, Filename); |
| }; |
| |
| if (Create) |
| return make<MipsAbiFlagsSection<ELFT>>(Flags); |
| return nullptr; |
| } |
| |
| // .MIPS.options section. |
| template <class ELFT> |
| MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo Reginfo) |
| : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), |
| Reginfo(Reginfo) { |
| this->Entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); |
| } |
| |
| template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *Buf) { |
| auto *Options = reinterpret_cast<Elf_Mips_Options *>(Buf); |
| Options->kind = ODK_REGINFO; |
| Options->size = getSize(); |
| |
| if (!Config->Relocatable) |
| Reginfo.ri_gp_value = InX::MipsGot->getGp(); |
| memcpy(Buf + sizeof(Elf_Mips_Options), &Reginfo, sizeof(Reginfo)); |
| } |
| |
| template <class ELFT> |
| MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() { |
| // N64 ABI only. |
| if (!ELFT::Is64Bits) |
| return nullptr; |
| |
| Elf_Mips_RegInfo Reginfo = {}; |
| bool Create = false; |
| |
| for (InputSectionBase *Sec : InputSections) { |
| if (Sec->Type != SHT_MIPS_OPTIONS) |
| continue; |
| Sec->Live = false; |
| Create = true; |
| |
| std::string Filename = toString(Sec->getFile<ELFT>()); |
| ArrayRef<uint8_t> D = Sec->Data; |
| |
| while (!D.empty()) { |
| if (D.size() < sizeof(Elf_Mips_Options)) { |
| error(Filename + ": invalid size of .MIPS.options section"); |
| break; |
| } |
| |
| auto *Opt = reinterpret_cast<const Elf_Mips_Options *>(D.data()); |
| if (Opt->kind == ODK_REGINFO) { |
| if (Config->Relocatable && Opt->getRegInfo().ri_gp_value) |
| error(Filename + ": unsupported non-zero ri_gp_value"); |
| Reginfo.ri_gprmask |= Opt->getRegInfo().ri_gprmask; |
| Sec->getFile<ELFT>()->MipsGp0 = Opt->getRegInfo().ri_gp_value; |
| break; |
| } |
| |
| if (!Opt->size) |
| fatal(Filename + ": zero option descriptor size"); |
| D = D.slice(Opt->size); |
| } |
| }; |
| |
| if (Create) |
| return make<MipsOptionsSection<ELFT>>(Reginfo); |
| return nullptr; |
| } |
| |
| // MIPS .reginfo section. |
| template <class ELFT> |
| MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo Reginfo) |
| : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), |
| Reginfo(Reginfo) { |
| this->Entsize = sizeof(Elf_Mips_RegInfo); |
| } |
| |
| template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *Buf) { |
| if (!Config->Relocatable) |
| Reginfo.ri_gp_value = InX::MipsGot->getGp(); |
| memcpy(Buf, &Reginfo, sizeof(Reginfo)); |
| } |
| |
| template <class ELFT> |
| MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() { |
| // Section should be alive for O32 and N32 ABIs only. |
| if (ELFT::Is64Bits) |
| return nullptr; |
| |
| Elf_Mips_RegInfo Reginfo = {}; |
| bool Create = false; |
| |
| for (InputSectionBase *Sec : InputSections) { |
| if (Sec->Type != SHT_MIPS_REGINFO) |
| continue; |
| Sec->Live = false; |
| Create = true; |
| |
| if (Sec->Data.size() != sizeof(Elf_Mips_RegInfo)) { |
| error(toString(Sec->getFile<ELFT>()) + |
| ": invalid size of .reginfo section"); |
| return nullptr; |
| } |
| auto *R = reinterpret_cast<const Elf_Mips_RegInfo *>(Sec->Data.data()); |
| if (Config->Relocatable && R->ri_gp_value) |
| error(toString(Sec->getFile<ELFT>()) + |
| ": unsupported non-zero ri_gp_value"); |
| |
| Reginfo.ri_gprmask |= R->ri_gprmask; |
| Sec->getFile<ELFT>()->MipsGp0 = R->ri_gp_value; |
| }; |
| |
| if (Create) |
| return make<MipsReginfoSection<ELFT>>(Reginfo); |
| return nullptr; |
| } |
| |
| InputSection *elf::createInterpSection() { |
| // StringSaver guarantees that the returned string ends with '\0'. |
| StringRef S = Saver.save(Config->DynamicLinker); |
| ArrayRef<uint8_t> Contents = {(const uint8_t *)S.data(), S.size() + 1}; |
| |
| auto *Sec = |
| make<InputSection>(SHF_ALLOC, SHT_PROGBITS, 1, Contents, ".interp"); |
| Sec->Live = true; |
| return Sec; |
| } |
| |
| SymbolBody *elf::addSyntheticLocal(StringRef Name, uint8_t Type, uint64_t Value, |
| uint64_t Size, InputSectionBase *Section) { |
| auto *S = make<DefinedRegular>(Name, /*IsLocal*/ true, STV_DEFAULT, Type, |
| Value, Size, Section, nullptr); |
| if (InX::SymTab) |
| InX::SymTab->addSymbol(S); |
| return S; |
| } |
| |
| static size_t getHashSize() { |
| switch (Config->BuildId) { |
| case BuildIdKind::Fast: |
| return 8; |
| case BuildIdKind::Md5: |
| case BuildIdKind::Uuid: |
| return 16; |
| case BuildIdKind::Sha1: |
| return 20; |
| case BuildIdKind::Hexstring: |
| return Config->BuildIdVector.size(); |
| default: |
| llvm_unreachable("unknown BuildIdKind"); |
| } |
| } |
| |
| BuildIdSection::BuildIdSection() |
| : SyntheticSection(SHF_ALLOC, SHT_NOTE, 1, ".note.gnu.build-id"), |
| HashSize(getHashSize()) {} |
| |
| void BuildIdSection::writeTo(uint8_t *Buf) { |
| endianness E = Config->Endianness; |
| write32(Buf, 4, E); // Name size |
| write32(Buf + 4, HashSize, E); // Content size |
| write32(Buf + 8, NT_GNU_BUILD_ID, E); // Type |
| memcpy(Buf + 12, "GNU", 4); // Name string |
| HashBuf = Buf + 16; |
| } |
| |
| // Split one uint8 array into small pieces of uint8 arrays. |
| static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> Arr, |
| size_t ChunkSize) { |
| std::vector<ArrayRef<uint8_t>> Ret; |
| while (Arr.size() > ChunkSize) { |
| Ret.push_back(Arr.take_front(ChunkSize)); |
| Arr = Arr.drop_front(ChunkSize); |
| } |
| if (!Arr.empty()) |
| Ret.push_back(Arr); |
| return Ret; |
| } |
| |
| // Computes a hash value of Data using a given hash function. |
| // In order to utilize multiple cores, we first split data into 1MB |
| // chunks, compute a hash for each chunk, and then compute a hash value |
| // of the hash values. |
| void BuildIdSection::computeHash( |
| llvm::ArrayRef<uint8_t> Data, |
| std::function<void(uint8_t *Dest, ArrayRef<uint8_t> Arr)> HashFn) { |
| std::vector<ArrayRef<uint8_t>> Chunks = split(Data, 1024 * 1024); |
| std::vector<uint8_t> Hashes(Chunks.size() * HashSize); |
| |
| // Compute hash values. |
| parallelForEachN(0, Chunks.size(), [&](size_t I) { |
| HashFn(Hashes.data() + I * HashSize, Chunks[I]); |
| }); |
| |
| // Write to the final output buffer. |
| HashFn(HashBuf, Hashes); |
| } |
| |
| BssSection::BssSection(StringRef Name) |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, 0, Name) {} |
| |
| size_t BssSection::reserveSpace(uint64_t Size, uint32_t Alignment) { |
| if (OutputSection *Sec = getParent()) |
| Sec->updateAlignment(Alignment); |
| this->Size = alignTo(this->Size, Alignment) + Size; |
| this->Alignment = std::max(this->Alignment, Alignment); |
| return this->Size - Size; |
| } |
| |
| void BuildIdSection::writeBuildId(ArrayRef<uint8_t> Buf) { |
| switch (Config->BuildId) { |
| case BuildIdKind::Fast: |
| computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) { |
| write64le(Dest, xxHash64(toStringRef(Arr))); |
| }); |
| break; |
| case BuildIdKind::Md5: |
| computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) { |
| memcpy(Dest, MD5::hash(Arr).data(), 16); |
| }); |
| break; |
| case BuildIdKind::Sha1: |
| computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) { |
| memcpy(Dest, SHA1::hash(Arr).data(), 20); |
| }); |
| break; |
| case BuildIdKind::Uuid: |
| if (getRandomBytes(HashBuf, HashSize)) |
| error("entropy source failure"); |
| break; |
| case BuildIdKind::Hexstring: |
| memcpy(HashBuf, Config->BuildIdVector.data(), Config->BuildIdVector.size()); |
| break; |
| default: |
| llvm_unreachable("unknown BuildIdKind"); |
| } |
| } |
| |
| template <class ELFT> |
| EhFrameSection<ELFT>::EhFrameSection() |
| : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} |
| |
| // Search for an existing CIE record or create a new one. |
| // CIE records from input object files are uniquified by their contents |
| // and where their relocations point to. |
| template <class ELFT> |
| template <class RelTy> |
| CieRecord *EhFrameSection<ELFT>::addCie(EhSectionPiece &Piece, |
| ArrayRef<RelTy> Rels) { |
| auto *Sec = cast<EhInputSection>(Piece.ID); |
| const endianness E = ELFT::TargetEndianness; |
| if (read32<E>(Piece.data().data() + 4) != 0) |
| fatal(toString(Sec) + ": CIE expected at beginning of .eh_frame"); |
| |
| SymbolBody *Personality = nullptr; |
| unsigned FirstRelI = Piece.FirstRelocation; |
| if (FirstRelI != (unsigned)-1) |
| Personality = |
| &Sec->template getFile<ELFT>()->getRelocTargetSym(Rels[FirstRelI]); |
| |
| // Search for an existing CIE by CIE contents/relocation target pair. |
| CieRecord *&Cie = CieMap[{Piece.data(), Personality}]; |
| |
| // If not found, create a new one. |
| if (!Cie) { |
| Cie = make<CieRecord>(); |
| Cie->Piece = &Piece; |
| Cies.push_back(Cie); |
| } |
| return Cie; |
| } |
| |
| // There is one FDE per function. Returns true if a given FDE |
| // points to a live function. |
| template <class ELFT> |
| template <class RelTy> |
| bool EhFrameSection<ELFT>::isFdeLive(EhSectionPiece &Piece, |
| ArrayRef<RelTy> Rels) { |
| auto *Sec = cast<EhInputSection>(Piece.ID); |
| unsigned FirstRelI = Piece.FirstRelocation; |
| if (FirstRelI == (unsigned)-1) |
| return false; |
| const RelTy &Rel = Rels[FirstRelI]; |
| SymbolBody &B = Sec->template getFile<ELFT>()->getRelocTargetSym(Rel); |
| auto *D = dyn_cast<DefinedRegular>(&B); |
| if (!D || !D->Section) |
| return false; |
| auto *Target = |
| cast<InputSectionBase>(cast<InputSectionBase>(D->Section)->Repl); |
| return Target && Target->Live; |
| } |
| |
| // .eh_frame is a sequence of CIE or FDE records. In general, there |
| // is one CIE record per input object file which is followed by |
| // a list of FDEs. This function searches an existing CIE or create a new |
| // one and associates FDEs to the CIE. |
| template <class ELFT> |
| template <class RelTy> |
| void EhFrameSection<ELFT>::addSectionAux(EhInputSection *Sec, |
| ArrayRef<RelTy> Rels) { |
| const endianness E = ELFT::TargetEndianness; |
| |
| DenseMap<size_t, CieRecord *> OffsetToCie; |
| for (EhSectionPiece &Piece : Sec->Pieces) { |
| // The empty record is the end marker. |
| if (Piece.size() == 4) |
| return; |
| |
| size_t Offset = Piece.InputOff; |
| uint32_t ID = read32<E>(Piece.data().data() + 4); |
| if (ID == 0) { |
| OffsetToCie[Offset] = addCie(Piece, Rels); |
| continue; |
| } |
| |
| uint32_t CieOffset = Offset + 4 - ID; |
| CieRecord *Cie = OffsetToCie[CieOffset]; |
| if (!Cie) |
| fatal(toString(Sec) + ": invalid CIE reference"); |
| |
| if (!isFdeLive(Piece, Rels)) |
| continue; |
| Cie->FdePieces.push_back(&Piece); |
| NumFdes++; |
| } |
| } |
| |
| template <class ELFT> |
| void EhFrameSection<ELFT>::addSection(InputSectionBase *C) { |
| auto *Sec = cast<EhInputSection>(C); |
| Sec->Parent = this; |
| updateAlignment(Sec->Alignment); |
| Sections.push_back(Sec); |
| for (auto *DS : Sec->DependentSections) |
| DependentSections.push_back(DS); |
| |
| // .eh_frame is a sequence of CIE or FDE records. This function |
| // splits it into pieces so that we can call |
| // SplitInputSection::getSectionPiece on the section. |
| Sec->split<ELFT>(); |
| if (Sec->Pieces.empty()) |
| return; |
| |
| if (Sec->NumRelocations) { |
| if (Sec->AreRelocsRela) |
| addSectionAux(Sec, Sec->template relas<ELFT>()); |
| else |
| addSectionAux(Sec, Sec->template rels<ELFT>()); |
| return; |
| } |
| addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr)); |
| } |
| |
| template <class ELFT> |
| static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) { |
| memcpy(Buf, D.data(), D.size()); |
| |
| size_t Aligned = alignTo(D.size(), sizeof(typename ELFT::uint)); |
| |
| // Zero-clear trailing padding if it exists. |
| memset(Buf + D.size(), 0, Aligned - D.size()); |
| |
| // Fix the size field. -4 since size does not include the size field itself. |
| const endianness E = ELFT::TargetEndianness; |
| write32<E>(Buf, Aligned - 4); |
| } |
| |
| template <class ELFT> void EhFrameSection<ELFT>::finalizeContents() { |
| if (this->Size) |
| return; // Already finalized. |
| |
| size_t Off = 0; |
| for (CieRecord *Cie : Cies) { |
| Cie->Piece->OutputOff = Off; |
| Off += alignTo(Cie->Piece->size(), Config->Wordsize); |
| |
| for (EhSectionPiece *Fde : Cie->FdePieces) { |
| Fde->OutputOff = Off; |
| Off += alignTo(Fde->size(), Config->Wordsize); |
| } |
| } |
| |
| // The LSB standard does not allow a .eh_frame section with zero |
| // Call Frame Information records. Therefore add a CIE record length |
| // 0 as a terminator if this .eh_frame section is empty. |
| if (Off == 0) |
| Off = 4; |
| |
| this->Size = Off; |
| } |
| |
| template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) { |
| const endianness E = ELFT::TargetEndianness; |
| switch (Size) { |
| case DW_EH_PE_udata2: |
| return read16<E>(Buf); |
| case DW_EH_PE_udata4: |
| return read32<E>(Buf); |
| case DW_EH_PE_udata8: |
| return read64<E>(Buf); |
| case DW_EH_PE_absptr: |
| if (ELFT::Is64Bits) |
| return read64<E>(Buf); |
| return read32<E>(Buf); |
| } |
| fatal("unknown FDE size encoding"); |
| } |
| |
| // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. |
| // We need it to create .eh_frame_hdr section. |
| template <class ELFT> |
| uint64_t EhFrameSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff, |
| uint8_t Enc) { |
| // The starting address to which this FDE applies is |
| // stored at FDE + 8 byte. |
| size_t Off = FdeOff + 8; |
| uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7); |
| if ((Enc & 0x70) == DW_EH_PE_absptr) |
| return Addr; |
| if ((Enc & 0x70) == DW_EH_PE_pcrel) |
| return Addr + getParent()->Addr + Off; |
| fatal("unknown FDE size relative encoding"); |
| } |
| |
| template <class ELFT> void EhFrameSection<ELFT>::writeTo(uint8_t *Buf) { |
| const endianness E = ELFT::TargetEndianness; |
| for (CieRecord *Cie : Cies) { |
| size_t CieOffset = Cie->Piece->OutputOff; |
| writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->data()); |
| |
| for (EhSectionPiece *Fde : Cie->FdePieces) { |
| size_t Off = Fde->OutputOff; |
| writeCieFde<ELFT>(Buf + Off, Fde->data()); |
| |
| // FDE's second word should have the offset to an associated CIE. |
| // Write it. |
| write32<E>(Buf + Off + 4, Off + 4 - CieOffset); |
| } |
| } |
| |
| for (EhInputSection *S : Sections) |
| S->relocateAlloc(Buf, nullptr); |
| |
| // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table |
| // to get a FDE from an address to which FDE is applied. So here |
| // we obtain two addresses and pass them to EhFrameHdr object. |
| if (In<ELFT>::EhFrameHdr) { |
| for (CieRecord *Cie : Cies) { |
| uint8_t Enc = getFdeEncoding<ELFT>(Cie->Piece); |
| for (SectionPiece *Fde : Cie->FdePieces) { |
| uint64_t Pc = getFdePc(Buf, Fde->OutputOff, Enc); |
| uint64_t FdeVA = getParent()->Addr + Fde->OutputOff; |
| In<ELFT>::EhFrameHdr->addFde(Pc, FdeVA); |
| } |
| } |
| } |
| } |
| |
| GotSection::GotSection() |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, |
| Target->GotEntrySize, ".got") {} |
| |
| void GotSection::addEntry(SymbolBody &Sym) { |
| Sym.GotIndex = NumEntries; |
| ++NumEntries; |
| } |
| |
| bool GotSection::addDynTlsEntry(SymbolBody &Sym) { |
| if (Sym.GlobalDynIndex != -1U) |
| return false; |
| Sym.GlobalDynIndex = NumEntries; |
| // Global Dynamic TLS entries take two GOT slots. |
| NumEntries += 2; |
| return true; |
| } |
| |
| // Reserves TLS entries for a TLS module ID and a TLS block offset. |
| // In total it takes two GOT slots. |
| bool GotSection::addTlsIndex() { |
| if (TlsIndexOff != uint32_t(-1)) |
| return false; |
| TlsIndexOff = NumEntries * Config->Wordsize; |
| NumEntries += 2; |
| return true; |
| } |
| |
| uint64_t GotSection::getGlobalDynAddr(const SymbolBody &B) const { |
| return this->getVA() + B.GlobalDynIndex * Config->Wordsize; |
| } |
| |
| uint64_t GotSection::getGlobalDynOffset(const SymbolBody &B) const { |
| return B.GlobalDynIndex * Config->Wordsize; |
| } |
| |
| void GotSection::finalizeContents() { Size = NumEntries * Config->Wordsize; } |
| |
| bool GotSection::empty() const { |
| // If we have a relocation that is relative to GOT (such as GOTOFFREL), |
| // we need to emit a GOT even if it's empty. |
| return NumEntries == 0 && !HasGotOffRel; |
| } |
| |
| void GotSection::writeTo(uint8_t *Buf) { |
| // Buf points to the start of this section's buffer, |
| // whereas InputSectionBase::relocateAlloc() expects its argument |
| // to point to the start of the output section. |
| relocateAlloc(Buf - OutSecOff, Buf - OutSecOff + Size); |
| } |
| |
| MipsGotSection::MipsGotSection() |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, |
| ".got") {} |
| |
| void MipsGotSection::addEntry(SymbolBody &Sym, int64_t Addend, RelExpr Expr) { |
| // For "true" local symbols which can be referenced from the same module |
| // only compiler creates two instructions for address loading: |
| // |
| // lw $8, 0($gp) # R_MIPS_GOT16 |
| // addi $8, $8, 0 # R_MIPS_LO16 |
| // |
| // The first instruction loads high 16 bits of the symbol address while |
| // the second adds an offset. That allows to reduce number of required |
| // GOT entries because only one global offset table entry is necessary |
| // for every 64 KBytes of local data. So for local symbols we need to |
| // allocate number of GOT entries to hold all required "page" addresses. |
| // |
| // All global symbols (hidden and regular) considered by compiler uniformly. |
| // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation |
| // to load address of the symbol. So for each such symbol we need to |
| // allocate dedicated GOT entry to store its address. |
| // |
| // If a symbol is preemptible we need help of dynamic linker to get its |
| // final address. The corresponding GOT entries are allocated in the |
| // "global" part of GOT. Entries for non preemptible global symbol allocated |
| // in the "local" part of GOT. |
| // |
| // See "Global Offset Table" in Chapter 5: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (Expr == R_MIPS_GOT_LOCAL_PAGE) { |
| // At this point we do not know final symbol value so to reduce number |
| // of allocated GOT entries do the following trick. Save all output |
| // sections referenced by GOT relocations. Then later in the `finalize` |
| // method calculate number of "pages" required to cover all saved output |
| // section and allocate appropriate number of GOT entries. |
| PageIndexMap.insert({Sym.getOutputSection(), 0}); |
| return; |
| } |
| if (Sym.isTls()) { |
| // GOT entries created for MIPS TLS relocations behave like |
| // almost GOT entries from other ABIs. They go to the end |
| // of the global offset table. |
| Sym.GotIndex = TlsEntries.size(); |
| TlsEntries.push_back(&Sym); |
| return; |
| } |
| auto AddEntry = [&](SymbolBody &S, uint64_t A, GotEntries &Items) { |
| if (S.isInGot() && !A) |
| return; |
| size_t NewIndex = Items.size(); |
| if (!EntryIndexMap.insert({{&S, A}, NewIndex}).second) |
| return; |
| Items.emplace_back(&S, A); |
| if (!A) |
| S.GotIndex = NewIndex; |
| }; |
| if (Sym.isPreemptible()) { |
| // Ignore addends for preemptible symbols. They got single GOT entry anyway. |
| AddEntry(Sym, 0, GlobalEntries); |
| Sym.IsInGlobalMipsGot = true; |
| } else if (Expr == R_MIPS_GOT_OFF32) { |
| AddEntry(Sym, Addend, LocalEntries32); |
| Sym.Is32BitMipsGot = true; |
| } else { |
| // Hold local GOT entries accessed via a 16-bit index separately. |
| // That allows to write them in the beginning of the GOT and keep |
| // their indexes as less as possible to escape relocation's overflow. |
| AddEntry(Sym, Addend, LocalEntries); |
| } |
| } |
| |
| bool MipsGotSection::addDynTlsEntry(SymbolBody &Sym) { |
| if (Sym.GlobalDynIndex != -1U) |
| return false; |
| Sym.GlobalDynIndex = TlsEntries.size(); |
| // Global Dynamic TLS entries take two GOT slots. |
| TlsEntries.push_back(nullptr); |
| TlsEntries.push_back(&Sym); |
| return true; |
| } |
| |
| // Reserves TLS entries for a TLS module ID and a TLS block offset. |
| // In total it takes two GOT slots. |
| bool MipsGotSection::addTlsIndex() { |
| if (TlsIndexOff != uint32_t(-1)) |
| return false; |
| TlsIndexOff = TlsEntries.size() * Config->Wordsize; |
| TlsEntries.push_back(nullptr); |
| TlsEntries.push_back(nullptr); |
| return true; |
| } |
| |
| static uint64_t getMipsPageAddr(uint64_t Addr) { |
| return (Addr + 0x8000) & ~0xffff; |
| } |
| |
| static uint64_t getMipsPageCount(uint64_t Size) { |
| return (Size + 0xfffe) / 0xffff + 1; |
| } |
| |
| uint64_t MipsGotSection::getPageEntryOffset(const SymbolBody &B, |
| int64_t Addend) const { |
| const OutputSection *OutSec = B.getOutputSection(); |
| uint64_t SecAddr = getMipsPageAddr(OutSec->Addr); |
| uint64_t SymAddr = getMipsPageAddr(B.getVA(Addend)); |
| uint64_t Index = PageIndexMap.lookup(OutSec) + (SymAddr - SecAddr) / 0xffff; |
| assert(Index < PageEntriesNum); |
| return (HeaderEntriesNum + Index) * Config->Wordsize; |
| } |
| |
| uint64_t MipsGotSection::getBodyEntryOffset(const SymbolBody &B, |
| int64_t Addend) const { |
| // Calculate offset of the GOT entries block: TLS, global, local. |
| uint64_t Index = HeaderEntriesNum + PageEntriesNum; |
| if (B.isTls()) |
| Index += LocalEntries.size() + LocalEntries32.size() + GlobalEntries.size(); |
| else if (B.IsInGlobalMipsGot) |
| Index += LocalEntries.size() + LocalEntries32.size(); |
| else if (B.Is32BitMipsGot) |
| Index += LocalEntries.size(); |
| // Calculate offset of the GOT entry in the block. |
| if (B.isInGot()) |
| Index += B.GotIndex; |
| else { |
| auto It = EntryIndexMap.find({&B, Addend}); |
| assert(It != EntryIndexMap.end()); |
| Index += It->second; |
| } |
| return Index * Config->Wordsize; |
| } |
| |
| uint64_t MipsGotSection::getTlsOffset() const { |
| return (getLocalEntriesNum() + GlobalEntries.size()) * Config->Wordsize; |
| } |
| |
| uint64_t MipsGotSection::getGlobalDynOffset(const SymbolBody &B) const { |
| return B.GlobalDynIndex * Config->Wordsize; |
| } |
| |
| const SymbolBody *MipsGotSection::getFirstGlobalEntry() const { |
| return GlobalEntries.empty() ? nullptr : GlobalEntries.front().first; |
| } |
| |
| unsigned MipsGotSection::getLocalEntriesNum() const { |
| return HeaderEntriesNum + PageEntriesNum + LocalEntries.size() + |
| LocalEntries32.size(); |
| } |
| |
| void MipsGotSection::finalizeContents() { updateAllocSize(); } |
| |
| void MipsGotSection::updateAllocSize() { |
| PageEntriesNum = 0; |
| for (std::pair<const OutputSection *, size_t> &P : PageIndexMap) { |
| // For each output section referenced by GOT page relocations calculate |
| // and save into PageIndexMap an upper bound of MIPS GOT entries required |
| // to store page addresses of local symbols. We assume the worst case - |
| // each 64kb page of the output section has at least one GOT relocation |
| // against it. And take in account the case when the section intersects |
| // page boundaries. |
| P.second = PageEntriesNum; |
| PageEntriesNum += getMipsPageCount(P.first->Size); |
| } |
| Size = (getLocalEntriesNum() + GlobalEntries.size() + TlsEntries.size()) * |
| Config->Wordsize; |
| } |
| |
| bool MipsGotSection::empty() const { |
| // We add the .got section to the result for dynamic MIPS target because |
| // its address and properties are mentioned in the .dynamic section. |
| return Config->Relocatable; |
| } |
| |
| uint64_t MipsGotSection::getGp() const { return ElfSym::MipsGp->getVA(0); } |
| |
| static uint64_t readUint(uint8_t *Buf) { |
| if (Config->Is64) |
| return read64(Buf, Config->Endianness); |
| return read32(Buf, Config->Endianness); |
| } |
| |
| static void writeUint(uint8_t *Buf, uint64_t Val) { |
| if (Config->Is64) |
| write64(Buf, Val, Config->Endianness); |
| else |
| write32(Buf, Val, Config->Endianness); |
| } |
| |
| void MipsGotSection::writeTo(uint8_t *Buf) { |
| // Set the MSB of the second GOT slot. This is not required by any |
| // MIPS ABI documentation, though. |
| // |
| // There is a comment in glibc saying that "The MSB of got[1] of a |
| // gnu object is set to identify gnu objects," and in GNU gold it |
| // says "the second entry will be used by some runtime loaders". |
| // But how this field is being used is unclear. |
| // |
| // We are not really willing to mimic other linkers behaviors |
| // without understanding why they do that, but because all files |
| // generated by GNU tools have this special GOT value, and because |
| // we've been doing this for years, it is probably a safe bet to |
| // keep doing this for now. We really need to revisit this to see |
| // if we had to do this. |
| writeUint(Buf + Config->Wordsize, (uint64_t)1 << (Config->Wordsize * 8 - 1)); |
| Buf += HeaderEntriesNum * Config->Wordsize; |
| // Write 'page address' entries to the local part of the GOT. |
| for (std::pair<const OutputSection *, size_t> &L : PageIndexMap) { |
| size_t PageCount = getMipsPageCount(L.first->Size); |
| uint64_t FirstPageAddr = getMipsPageAddr(L.first->Addr); |
| for (size_t PI = 0; PI < PageCount; ++PI) { |
| uint8_t *Entry = Buf + (L.second + PI) * Config->Wordsize; |
| writeUint(Entry, FirstPageAddr + PI * 0x10000); |
| } |
| } |
| Buf += PageEntriesNum * Config->Wordsize; |
| auto AddEntry = [&](const GotEntry &SA) { |
| uint8_t *Entry = Buf; |
| Buf += Config->Wordsize; |
| const SymbolBody *Body = SA.first; |
| uint64_t VA = Body->getVA(SA.second); |
| writeUint(Entry, VA); |
| }; |
| std::for_each(std::begin(LocalEntries), std::end(LocalEntries), AddEntry); |
| std::for_each(std::begin(LocalEntries32), std::end(LocalEntries32), AddEntry); |
| std::for_each(std::begin(GlobalEntries), std::end(GlobalEntries), AddEntry); |
| // Initialize TLS-related GOT entries. If the entry has a corresponding |
| // dynamic relocations, leave it initialized by zero. Write down adjusted |
| // TLS symbol's values otherwise. To calculate the adjustments use offsets |
| // for thread-local storage. |
| // https://www.linux-mips.org/wiki/NPTL |
| if (TlsIndexOff != -1U && !Config->Pic) |
| writeUint(Buf + TlsIndexOff, 1); |
| for (const SymbolBody *B : TlsEntries) { |
| if (!B || B->isPreemptible()) |
| continue; |
| uint64_t VA = B->getVA(); |
| if (B->GotIndex != -1U) { |
| uint8_t *Entry = Buf + B->GotIndex * Config->Wordsize; |
| writeUint(Entry, VA - 0x7000); |
| } |
| if (B->GlobalDynIndex != -1U) { |
| uint8_t *Entry = Buf + B->GlobalDynIndex * Config->Wordsize; |
| writeUint(Entry, 1); |
| Entry += Config->Wordsize; |
| writeUint(Entry, VA - 0x8000); |
| } |
| } |
| } |
| |
| GotPltSection::GotPltSection() |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, |
| Target->GotPltEntrySize, ".got.plt") {} |
| |
| void GotPltSection::addEntry(SymbolBody &Sym) { |
| Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size(); |
| Entries.push_back(&Sym); |
| } |
| |
| size_t GotPltSection::getSize() const { |
| return (Target->GotPltHeaderEntriesNum + Entries.size()) * |
| Target->GotPltEntrySize; |
| } |
| |
| void GotPltSection::writeTo(uint8_t *Buf) { |
| Target->writeGotPltHeader(Buf); |
| Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize; |
| for (const SymbolBody *B : Entries) { |
| Target->writeGotPlt(Buf, *B); |
| Buf += Config->Wordsize; |
| } |
| } |
| |
| // On ARM the IgotPltSection is part of the GotSection, on other Targets it is |
| // part of the .got.plt |
| IgotPltSection::IgotPltSection() |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, |
| Target->GotPltEntrySize, |
| Config->EMachine == EM_ARM ? ".got" : ".got.plt") {} |
| |
| void IgotPltSection::addEntry(SymbolBody &Sym) { |
| Sym.IsInIgot = true; |
| Sym.GotPltIndex = Entries.size(); |
| Entries.push_back(&Sym); |
| } |
| |
| size_t IgotPltSection::getSize() const { |
| return Entries.size() * Target->GotPltEntrySize; |
| } |
| |
| void IgotPltSection::writeTo(uint8_t *Buf) { |
| for (const SymbolBody *B : Entries) { |
| Target->writeIgotPlt(Buf, *B); |
| Buf += Config->Wordsize; |
| } |
| } |
| |
| StringTableSection::StringTableSection(StringRef Name, bool Dynamic) |
| : SyntheticSection(Dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, Name), |
| Dynamic(Dynamic) { |
| // ELF string tables start with a NUL byte. |
| addString(""); |
| } |
| |
| // Adds a string to the string table. If HashIt is true we hash and check for |
| // duplicates. It is optional because the name of global symbols are already |
| // uniqued and hashing them again has a big cost for a small value: uniquing |
| // them with some other string that happens to be the same. |
| unsigned StringTableSection::addString(StringRef S, bool HashIt) { |
| if (HashIt) { |
| auto R = StringMap.insert(std::make_pair(S, this->Size)); |
| if (!R.second) |
| return R.first->second; |
| } |
| unsigned Ret = this->Size; |
| this->Size = this->Size + S.size() + 1; |
| Strings.push_back(S); |
| return Ret; |
| } |
| |
| void StringTableSection::writeTo(uint8_t *Buf) { |
| for (StringRef S : Strings) { |
| memcpy(Buf, S.data(), S.size()); |
| Buf += S.size() + 1; |
| } |
| } |
| |
| // Returns the number of version definition entries. Because the first entry |
| // is for the version definition itself, it is the number of versioned symbols |
| // plus one. Note that we don't support multiple versions yet. |
| static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; } |
| |
| template <class ELFT> |
| DynamicSection<ELFT>::DynamicSection() |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, Config->Wordsize, |
| ".dynamic") { |
| this->Entsize = ELFT::Is64Bits ? 16 : 8; |
| |
| // .dynamic section is not writable on MIPS and on Fuchsia OS |
| // which passes -z rodynamic. |
| // See "Special Section" in Chapter 4 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (Config->EMachine == EM_MIPS || Config->ZRodynamic) |
| this->Flags = SHF_ALLOC; |
| |
| addEntries(); |
| } |
| |
| // There are some dynamic entries that don't depend on other sections. |
| // Such entries can be set early. |
| template <class ELFT> void DynamicSection<ELFT>::addEntries() { |
| // Add strings to .dynstr early so that .dynstr's size will be |
| // fixed early. |
| for (StringRef S : Config->FilterList) |
| add({DT_FILTER, InX::DynStrTab->addString(S)}); |
| for (StringRef S : Config->AuxiliaryList) |
| add({DT_AUXILIARY, InX::DynStrTab->addString(S)}); |
| if (!Config->Rpath.empty()) |
| add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, |
| InX::DynStrTab->addString(Config->Rpath)}); |
| for (SharedFile<ELFT> *F : Symtab<ELFT>::X->getSharedFiles()) |
| if (F->isNeeded()) |
| add({DT_NEEDED, InX::DynStrTab->addString(F->SoName)}); |
| if (!Config->SoName.empty()) |
| add({DT_SONAME, InX::DynStrTab->addString(Config->SoName)}); |
| |
| // Set DT_FLAGS and DT_FLAGS_1. |
| uint32_t DtFlags = 0; |
| uint32_t DtFlags1 = 0; |
| if (Config->Bsymbolic) |
| DtFlags |= DF_SYMBOLIC; |
| if (Config->ZNodelete) |
| DtFlags1 |= DF_1_NODELETE; |
| if (Config->ZNodlopen) |
| DtFlags1 |= DF_1_NOOPEN; |
| if (Config->ZNow) { |
| DtFlags |= DF_BIND_NOW; |
| DtFlags1 |= DF_1_NOW; |
| } |
| if (Config->ZOrigin) { |
| DtFlags |= DF_ORIGIN; |
| DtFlags1 |= DF_1_ORIGIN; |
| } |
| |
| if (DtFlags) |
| add({DT_FLAGS, DtFlags}); |
| if (DtFlags1) |
| add({DT_FLAGS_1, DtFlags1}); |
| |
| // DT_DEBUG is a pointer to debug informaion used by debuggers at runtime. We |
| // need it for each process, so we don't write it for DSOs. The loader writes |
| // the pointer into this entry. |
| // |
| // DT_DEBUG is the only .dynamic entry that needs to be written to. Some |
| // systems (currently only Fuchsia OS) provide other means to give the |
| // debugger this information. Such systems may choose make .dynamic read-only. |
| // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. |
| if (!Config->Shared && !Config->Relocatable && !Config->ZRodynamic) |
| add({DT_DEBUG, (uint64_t)0}); |
| } |
| |
| // Add remaining entries to complete .dynamic contents. |
| template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { |
| if (this->Size) |
| return; // Already finalized. |
| |
| this->Link = InX::DynStrTab->getParent()->SectionIndex; |
| if (In<ELFT>::RelaDyn->getParent() && !In<ELFT>::RelaDyn->empty()) { |
| bool IsRela = Config->IsRela; |
| add({IsRela ? DT_RELA : DT_REL, In<ELFT>::RelaDyn}); |
| add({IsRela ? DT_RELASZ : DT_RELSZ, In<ELFT>::RelaDyn->getParent(), |
| Entry::SecSize}); |
| add({IsRela ? DT_RELAENT : DT_RELENT, |
| uint64_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); |
| |
| // MIPS dynamic loader does not support RELCOUNT tag. |
| // The problem is in the tight relation between dynamic |
| // relocations and GOT. So do not emit this tag on MIPS. |
| if (Config->EMachine != EM_MIPS) { |
| size_t NumRelativeRels = In<ELFT>::RelaDyn->getRelativeRelocCount(); |
| if (Config->ZCombreloc && NumRelativeRels) |
| add({IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels}); |
| } |
| } |
| if (In<ELFT>::RelaPlt->getParent() && !In<ELFT>::RelaPlt->empty()) { |
| add({DT_JMPREL, In<ELFT>::RelaPlt}); |
| add({DT_PLTRELSZ, In<ELFT>::RelaPlt->getParent(), Entry::SecSize}); |
| switch (Config->EMachine) { |
| case EM_MIPS: |
| add({DT_MIPS_PLTGOT, In<ELFT>::GotPlt}); |
| break; |
| case EM_SPARCV9: |
| add({DT_PLTGOT, In<ELFT>::Plt}); |
| break; |
| default: |
| add({DT_PLTGOT, In<ELFT>::GotPlt}); |
| break; |
| } |
| add({DT_PLTREL, uint64_t(Config->IsRela ? DT_RELA : DT_REL)}); |
| } |
| |
| add({DT_SYMTAB, InX::DynSymTab}); |
| add({DT_SYMENT, sizeof(Elf_Sym)}); |
| add({DT_STRTAB, InX::DynStrTab}); |
| add({DT_STRSZ, InX::DynStrTab->getSize()}); |
| if (!Config->ZText) |
| add({DT_TEXTREL, (uint64_t)0}); |
| if (InX::GnuHashTab) |
| add({DT_GNU_HASH, InX::GnuHashTab}); |
| if (In<ELFT>::HashTab) |
| add({DT_HASH, In<ELFT>::HashTab}); |
| |
| if (Out::PreinitArray) { |
| add({DT_PREINIT_ARRAY, Out::PreinitArray}); |
| add({DT_PREINIT_ARRAYSZ, Out::PreinitArray, Entry::SecSize}); |
| } |
| if (Out::InitArray) { |
| add({DT_INIT_ARRAY, Out::InitArray}); |
| add({DT_INIT_ARRAYSZ, Out::InitArray, Entry::SecSize}); |
| } |
| if (Out::FiniArray) { |
| add({DT_FINI_ARRAY, Out::FiniArray}); |
| add({DT_FINI_ARRAYSZ, Out::FiniArray, Entry::SecSize}); |
| } |
| |
| if (SymbolBody *B = Symtab<ELFT>::X->findInCurrentDSO(Config->Init)) |
| add({DT_INIT, B}); |
| if (SymbolBody *B = Symtab<ELFT>::X->findInCurrentDSO(Config->Fini)) |
| add({DT_FINI, B}); |
| |
| bool HasVerNeed = In<ELFT>::VerNeed->getNeedNum() != 0; |
| if (HasVerNeed || In<ELFT>::VerDef) |
| add({DT_VERSYM, In<ELFT>::VerSym}); |
| if (In<ELFT>::VerDef) { |
| add({DT_VERDEF, In<ELFT>::VerDef}); |
| add({DT_VERDEFNUM, getVerDefNum()}); |
| } |
| if (HasVerNeed) { |
| add({DT_VERNEED, In<ELFT>::VerNeed}); |
| add({DT_VERNEEDNUM, In<ELFT>::VerNeed->getNeedNum()}); |
| } |
| |
| if (Config->EMachine == EM_MIPS) { |
| add({DT_MIPS_RLD_VERSION, 1}); |
| add({DT_MIPS_FLAGS, RHF_NOTPOT}); |
| add({DT_MIPS_BASE_ADDRESS, Config->ImageBase}); |
| add({DT_MIPS_SYMTABNO, InX::DynSymTab->getNumSymbols()}); |
| add({DT_MIPS_LOCAL_GOTNO, InX::MipsGot->getLocalEntriesNum()}); |
| if (const SymbolBody *B = InX::MipsGot->getFirstGlobalEntry()) |
| add({DT_MIPS_GOTSYM, B->DynsymIndex}); |
| else |
| add({DT_MIPS_GOTSYM, InX::DynSymTab->getNumSymbols()}); |
| add({DT_PLTGOT, InX::MipsGot}); |
| if (InX::MipsRldMap) |
| add({DT_MIPS_RLD_MAP, InX::MipsRldMap}); |
| } |
| |
| getParent()->Link = this->Link; |
| |
| // +1 for DT_NULL |
| this->Size = (Entries.size() + 1) * this->Entsize; |
| } |
| |
| template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) { |
| auto *P = reinterpret_cast<Elf_Dyn *>(Buf); |
| |
| for (const Entry &E : Entries) { |
| P->d_tag = E.Tag; |
| switch (E.Kind) { |
| case Entry::SecAddr: |
| P->d_un.d_ptr = E.OutSec->Addr; |
| break; |
| case Entry::InSecAddr: |
| P->d_un.d_ptr = E.InSec->getParent()->Addr + E.InSec->OutSecOff; |
| break; |
| case Entry::SecSize: |
| P->d_un.d_val = E.OutSec->Size; |
| break; |
| case Entry::SymAddr: |
| P->d_un.d_ptr = E.Sym->getVA(); |
| break; |
| case Entry::PlainInt: |
| P->d_un.d_val = E.Val; |
| break; |
| } |
| ++P; |
| } |
| } |
| |
| uint64_t DynamicReloc::getOffset() const { |
| return InputSec->getOutputSection()->Addr + InputSec->getOffset(OffsetInSec); |
| } |
| |
| int64_t DynamicReloc::getAddend() const { |
| if (UseSymVA) |
| return Sym->getVA(Addend); |
| return Addend; |
| } |
| |
| uint32_t DynamicReloc::getSymIndex() const { |
| if (Sym && !UseSymVA) |
| return Sym->DynsymIndex; |
| return 0; |
| } |
| |
| template <class ELFT> |
| RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort) |
| : SyntheticSection(SHF_ALLOC, Config->IsRela ? SHT_RELA : SHT_REL, |
| Config->Wordsize, Name), |
| Sort(Sort) { |
| this->Entsize = Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| } |
| |
| template <class ELFT> |
| void RelocationSection<ELFT>::addReloc(const DynamicReloc &Reloc) { |
| if (Reloc.Type == Target->RelativeRel) |
| ++NumRelativeRelocs; |
| Relocs.push_back(Reloc); |
| } |
| |
| template <class ELFT, class RelTy> |
| static bool compRelocations(const RelTy &A, const RelTy &B) { |
| bool AIsRel = A.getType(Config->IsMips64EL) == Target->RelativeRel; |
| bool BIsRel = B.getType(Config->IsMips64EL) == Target->RelativeRel; |
| if (AIsRel != BIsRel) |
| return AIsRel; |
| |
| return A.getSymbol(Config->IsMips64EL) < B.getSymbol(Config->IsMips64EL); |
| } |
| |
| template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) { |
| uint8_t *BufBegin = Buf; |
| for (const DynamicReloc &Rel : Relocs) { |
| auto *P = reinterpret_cast<Elf_Rela *>(Buf); |
| Buf += Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| |
| if (Config->IsRela) |
| P->r_addend = Rel.getAddend(); |
| P->r_offset = Rel.getOffset(); |
| if (Config->EMachine == EM_MIPS && Rel.getInputSec() == InX::MipsGot) |
| // Dynamic relocation against MIPS GOT section make deal TLS entries |
| // allocated in the end of the GOT. We need to adjust the offset to take |
| // in account 'local' and 'global' GOT entries. |
| P->r_offset += InX::MipsGot->getTlsOffset(); |
| P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->IsMips64EL); |
| } |
| |
| if (Sort) { |
| if (Config->IsRela) |
| std::stable_sort((Elf_Rela *)BufBegin, |
| (Elf_Rela *)BufBegin + Relocs.size(), |
| compRelocations<ELFT, Elf_Rela>); |
| else |
| std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(), |
| compRelocations<ELFT, Elf_Rel>); |
| } |
| } |
| |
| template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() { |
| return this->Entsize * Relocs.size(); |
| } |
| |
| template <class ELFT> void RelocationSection<ELFT>::finalizeContents() { |
| this->Link = InX::DynSymTab ? InX::DynSymTab->getParent()->SectionIndex |
| : InX::SymTab->getParent()->SectionIndex; |
| |
| // Set required output section properties. |
| getParent()->Link = this->Link; |
| } |
| |
| SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &StrTabSec) |
| : SyntheticSection(StrTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, |
| StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, |
| Config->Wordsize, |
| StrTabSec.isDynamic() ? ".dynsym" : ".symtab"), |
| StrTabSec(StrTabSec) {} |
| |
| // Orders symbols according to their positions in the GOT, |
| // in compliance with MIPS ABI rules. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| static bool sortMipsSymbols(const SymbolTableEntry &L, |
| const SymbolTableEntry &R) { |
| // Sort entries related to non-local preemptible symbols by GOT indexes. |
| // All other entries go to the first part of GOT in arbitrary order. |
| bool LIsInLocalGot = !L.Symbol->IsInGlobalMipsGot; |
| bool RIsInLocalGot = !R.Symbol->IsInGlobalMipsGot; |
| if (LIsInLocalGot || RIsInLocalGot) |
| return !RIsInLocalGot; |
| return L.Symbol->GotIndex < R.Symbol->GotIndex; |
| } |
| |
| // Finalize a symbol table. The ELF spec requires that all local |
| // symbols precede global symbols, so we sort symbol entries in this |
| // function. (For .dynsym, we don't do that because symbols for |
| // dynamic linking are inherently all globals.) |
| void SymbolTableBaseSection::finalizeContents() { |
| getParent()->Link = StrTabSec.getParent()->SectionIndex; |
| |
| // If it is a .dynsym, there should be no local symbols, but we need |
| // to do a few things for the dynamic linker. |
| if (this->Type == SHT_DYNSYM) { |
| // Section's Info field has the index of the first non-local symbol. |
| // Because the first symbol entry is a null entry, 1 is the first. |
| getParent()->Info = 1; |
| |
| if (InX::GnuHashTab) { |
| // NB: It also sorts Symbols to meet the GNU hash table requirements. |
| InX::GnuHashTab->addSymbols(Symbols); |
| } else if (Config->EMachine == EM_MIPS) { |
| std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols); |
| } |
| |
| size_t I = 0; |
| for (const SymbolTableEntry &S : Symbols) |
| S.Symbol->DynsymIndex = ++I; |
| return; |
| } |
| } |
| |
| void SymbolTableBaseSection::postThunkContents() { |
| if (this->Type == SHT_DYNSYM) |
| return; |
| // move all local symbols before global symbols. |
| auto It = std::stable_partition( |
| Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &S) { |
| return S.Symbol->isLocal() || |
| S.Symbol->symbol()->computeBinding() == STB_LOCAL; |
| }); |
| size_t NumLocals = It - Symbols.begin(); |
| getParent()->Info = NumLocals + 1; |
| } |
| |
| void SymbolTableBaseSection::addSymbol(SymbolBody *B) { |
| // Adding a local symbol to a .dynsym is a bug. |
| assert(this->Type != SHT_DYNSYM || !B->isLocal()); |
| |
| bool HashIt = B->isLocal(); |
| Symbols.push_back({B, StrTabSec.addString(B->getName(), HashIt)}); |
| } |
| |
| size_t SymbolTableBaseSection::getSymbolIndex(SymbolBody *Body) { |
| auto I = llvm::find_if(Symbols, [&](const SymbolTableEntry &E) { |
| if (E.Symbol == Body) |
| return true; |
| // This is used for -r, so we have to handle multiple section |
| // symbols being combined. |
| if (Body->Type == STT_SECTION && E.Symbol->Type == STT_SECTION) |
| return Body->getOutputSection() == E.Symbol->getOutputSection(); |
| return false; |
| }); |
| if (I == Symbols.end()) |
| return 0; |
| return I - Symbols.begin() + 1; |
| } |
| |
| template <class ELFT> |
| SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &StrTabSec) |
| : SymbolTableBaseSection(StrTabSec) { |
| this->Entsize = sizeof(Elf_Sym); |
| } |
| |
| // Write the internal symbol table contents to the output symbol table. |
| template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| // The first entry is a null entry as per the ELF spec. |
| Buf += sizeof(Elf_Sym); |
| |
| auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); |
| |
| for (SymbolTableEntry &Ent : Symbols) { |
| SymbolBody *Body = Ent.Symbol; |
| |
| // Set st_info and st_other. |
| if (Body->isLocal()) { |
| ESym->setBindingAndType(STB_LOCAL, Body->Type); |
| } else { |
| ESym->setBindingAndType(Body->symbol()->computeBinding(), Body->Type); |
| ESym->setVisibility(Body->symbol()->Visibility); |
| } |
| |
| ESym->st_name = Ent.StrTabOffset; |
| |
| // Set a section index. |
| if (const OutputSection *OutSec = Body->getOutputSection()) |
| ESym->st_shndx = OutSec->SectionIndex; |
| else if (isa<DefinedRegular>(Body)) |
| ESym->st_shndx = SHN_ABS; |
| else if (isa<DefinedCommon>(Body)) |
| ESym->st_shndx = SHN_COMMON; |
| |
| // Copy symbol size if it is a defined symbol. st_size is not significant |
| // for undefined symbols, so whether copying it or not is up to us if that's |
| // the case. We'll leave it as zero because by not setting a value, we can |
| // get the exact same outputs for two sets of input files that differ only |
| // in undefined symbol size in DSOs. |
| if (ESym->st_shndx != SHN_UNDEF) |
| ESym->st_size = Body->getSize<ELFT>(); |
| |
| // st_value is usually an address of a symbol, but that has a |
| // special meaining for uninstantiated common symbols (this can |
| // occur if -r is given). |
| if (!Config->DefineCommon && isa<DefinedCommon>(Body)) |
| ESym->st_value = cast<DefinedCommon>(Body)->Alignment; |
| else |
| ESym->st_value = Body->getVA(); |
| |
| ++ESym; |
| } |
| |
| // On MIPS we need to mark symbol which has a PLT entry and requires |
| // pointer equality by STO_MIPS_PLT flag. That is necessary to help |
| // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. |
| // https://sourceware.org/ml/binutils/2008-07/txt00000.txt |
| if (Config->EMachine == EM_MIPS) { |
| auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); |
| |
| for (SymbolTableEntry &Ent : Symbols) { |
| SymbolBody *Body = Ent.Symbol; |
| if (Body->isInPlt() && Body->NeedsPltAddr) |
| ESym->st_other |= STO_MIPS_PLT; |
| |
| if (Config->Relocatable) |
| if (auto *D = dyn_cast<DefinedRegular>(Body)) |
| if (D->isMipsPIC<ELFT>()) |
| ESym->st_other |= STO_MIPS_PIC; |
| ++ESym; |
| } |
| } |
| } |
| |
| // .hash and .gnu.hash sections contain on-disk hash tables that map |
| // symbol names to their dynamic symbol table indices. Their purpose |
| // is to help the dynamic linker resolve symbols quickly. If ELF files |
| // don't have them, the dynamic linker has to do linear search on all |
| // dynamic symbols, which makes programs slower. Therefore, a .hash |
| // section is added to a DSO by default. A .gnu.hash is added if you |
| // give the -hash-style=gnu or -hash-style=both option. |
| // |
| // The Unix semantics of resolving dynamic symbols is somewhat expensive. |
| // Each ELF file has a list of DSOs that the ELF file depends on and a |
| // list of dynamic symbols that need to be resolved from any of the |
| // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) |
| // where m is the number of DSOs and n is the number of dynamic |
| // symbols. For modern large programs, both m and n are large. So |
| // making each step faster by using hash tables substiantially |
| // improves time to load programs. |
| // |
| // (Note that this is not the only way to design the shared library. |
| // For instance, the Windows DLL takes a different approach. On |
| // Windows, each dynamic symbol has a name of DLL from which the symbol |
| // has to be resolved. That makes the cost of symbol resolution O(n). |
| // This disables some hacky techniques you can use on Unix such as |
| // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) |
| // |
| // Due to historical reasons, we have two different hash tables, .hash |
| // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new |
| // and better version of .hash. .hash is just an on-disk hash table, but |
| // .gnu.hash has a bloom filter in addition to a hash table to skip |
| // DSOs very quickly. If you are sure that your dynamic linker knows |
| // about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a |
| // safe bet is to specify -hash-style=both for backward compatibilty. |
| GnuHashTableSection::GnuHashTableSection() |
| : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, Config->Wordsize, ".gnu.hash") { |
| } |
| |
| void GnuHashTableSection::finalizeContents() { |
| getParent()->Link = InX::DynSymTab->getParent()->SectionIndex; |
| |
| // Computes bloom filter size in word size. We want to allocate 8 |
| // bits for each symbol. It must be a power of two. |
| if (Symbols.empty()) |
| MaskWords = 1; |
| else |
| MaskWords = NextPowerOf2((Symbols.size() - 1) / Config->Wordsize); |
| |
| Size = 16; // Header |
| Size += Config->Wordsize * MaskWords; // Bloom filter |
| Size += NBuckets * 4; // Hash buckets |
| Size += Symbols.size() * 4; // Hash values |
| } |
| |
| void GnuHashTableSection::writeTo(uint8_t *Buf) { |
| // Write a header. |
| write32(Buf, NBuckets, Config->Endianness); |
| write32(Buf + 4, InX::DynSymTab->getNumSymbols() - Symbols.size(), |
| Config->Endianness); |
| write32(Buf + 8, MaskWords, Config->Endianness); |
| write32(Buf + 12, getShift2(), Config->Endianness); |
| Buf += 16; |
| |
| // Write a bloom filter and a hash table. |
| writeBloomFilter(Buf); |
| Buf += Config->Wordsize * MaskWords; |
| writeHashTable(Buf); |
| } |
| |
| // This function writes a 2-bit bloom filter. This bloom filter alone |
| // usually filters out 80% or more of all symbol lookups [1]. |
| // The dynamic linker uses the hash table only when a symbol is not |
| // filtered out by a bloom filter. |
| // |
| // [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2), |
| // p.9, https://www.akkadia.org/drepper/dsohowto.pdf |
| void GnuHashTableSection::writeBloomFilter(uint8_t *Buf) { |
| const unsigned C = Config->Wordsize * 8; |
| for (const Entry &Sym : Symbols) { |
| size_t I = (Sym.Hash / C) & (MaskWords - 1); |
| uint64_t Val = readUint(Buf + I * Config->Wordsize); |
| Val |= uint64_t(1) << (Sym.Hash % C); |
| Val |= uint64_t(1) << ((Sym.Hash >> getShift2()) % C); |
| writeUint(Buf + I * Config->Wordsize, Val); |
| } |
| } |
| |
| void GnuHashTableSection::writeHashTable(uint8_t *Buf) { |
| // Group symbols by hash value. |
| std::vector<std::vector<Entry>> Syms(NBuckets); |
| for (const Entry &Ent : Symbols) |
| Syms[Ent.Hash % NBuckets].push_back(Ent); |
| |
| // Write hash buckets. Hash buckets contain indices in the following |
| // hash value table. |
| uint32_t *Buckets = reinterpret_cast<uint32_t *>(Buf); |
| for (size_t I = 0; I < NBuckets; ++I) |
| if (!Syms[I].empty()) |
| write32(Buckets + I, Syms[I][0].Body->DynsymIndex, Config->Endianness); |
| |
| // Write a hash value table. It represents a sequence of chains that |
| // share the same hash modulo value. The last element of each chain |
| // is terminated by LSB 1. |
| uint32_t *Values = Buckets + NBuckets; |
| size_t I = 0; |
| for (std::vector<Entry> &Vec : Syms) { |
| if (Vec.empty()) |
| continue; |
| for (const Entry &Ent : makeArrayRef(Vec).drop_back()) |
| write32(Values + I++, Ent.Hash & ~1, Config->Endianness); |
| write32(Values + I++, Vec.back().Hash | 1, Config->Endianness); |
| } |
| } |
| |
| static uint32_t hashGnu(StringRef Name) { |
| uint32_t H = 5381; |
| for (uint8_t C : Name) |
| H = (H << 5) + H + C; |
| return H; |
| } |
| |
| // Returns a number of hash buckets to accomodate given number of elements. |
| // We want to choose a moderate number that is not too small (which |
| // causes too many hash collisions) and not too large (which wastes |
| // disk space.) |
| // |
| // We return a prime number because it (is believed to) achieve good |
| // hash distribution. |
| static size_t getBucketSize(size_t NumSymbols) { |
| // List of largest prime numbers that are not greater than 2^n + 1. |
| for (size_t N : {131071, 65521, 32749, 16381, 8191, 4093, 2039, 1021, 509, |
| 251, 127, 61, 31, 13, 7, 3, 1}) |
| if (N <= NumSymbols) |
| return N; |
| return 0; |
| } |
| |
| // Add symbols to this symbol hash table. Note that this function |
| // destructively sort a given vector -- which is needed because |
| // GNU-style hash table places some sorting requirements. |
| void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &V) { |
| // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce |
| // its type correctly. |
| std::vector<SymbolTableEntry>::iterator Mid = |
| std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) { |
| return S.Symbol->isUndefined(); |
| }); |
| if (Mid == V.end()) |
| return; |
| |
| for (SymbolTableEntry &Ent : llvm::make_range(Mid, V.end())) { |
| SymbolBody *B = Ent.Symbol; |
| Symbols.push_back({B, Ent.StrTabOffset, hashGnu(B->getName())}); |
| } |
| |
| NBuckets = getBucketSize(Symbols.size()); |
| std::stable_sort(Symbols.begin(), Symbols.end(), |
| [&](const Entry &L, const Entry &R) { |
| return L.Hash % NBuckets < R.Hash % NBuckets; |
| }); |
| |
| V.erase(Mid, V.end()); |
| for (const Entry &Ent : Symbols) |
| V.push_back({Ent.Body, Ent.StrTabOffset}); |
| } |
| |
| template <class ELFT> |
| HashTableSection<ELFT>::HashTableSection() |
| : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { |
| this->Entsize = 4; |
| } |
| |
| template <class ELFT> void HashTableSection<ELFT>::finalizeContents() { |
| getParent()->Link = InX::DynSymTab->getParent()->SectionIndex; |
| |
| unsigned NumEntries = 2; // nbucket and nchain. |
| NumEntries += InX::DynSymTab->getNumSymbols(); // The chain entries. |
| |
| // Create as many buckets as there are symbols. |
| // FIXME: This is simplistic. We can try to optimize it, but implementing |
| // support for SHT_GNU_HASH is probably even more profitable. |
| NumEntries += InX::DynSymTab->getNumSymbols(); |
| this->Size = NumEntries * 4; |
| } |
| |
| template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| // A 32-bit integer type in the target endianness. |
| typedef typename ELFT::Word Elf_Word; |
| |
| unsigned NumSymbols = InX::DynSymTab->getNumSymbols(); |
| |
| auto *P = reinterpret_cast<Elf_Word *>(Buf); |
| *P++ = NumSymbols; // nbucket |
| *P++ = NumSymbols; // nchain |
| |
| Elf_Word *Buckets = P; |
| Elf_Word *Chains = P + NumSymbols; |
| |
| for (const SymbolTableEntry &S : InX::DynSymTab->getSymbols()) { |
| SymbolBody *Body = S.Symbol; |
| StringRef Name = Body->getName(); |
| unsigned I = Body->DynsymIndex; |
| uint32_t Hash = hashSysV(Name) % NumSymbols; |
| Chains[I] = Buckets[Hash]; |
| Buckets[Hash] = I; |
| } |
| } |
| |
| PltSection::PltSection(size_t S) |
| : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), |
| HeaderSize(S) { |
| // The PLT needs to be writable on SPARC as the dynamic linker will |
| // modify the instructions in the PLT entries. |
| if (Config->EMachine == EM_SPARCV9) |
| this->Flags |= SHF_WRITE; |
| } |
| |
| void PltSection::writeTo(uint8_t *Buf) { |
| // At beginning of PLT but not the IPLT, we have code to call the dynamic |
| // linker to resolve dynsyms at runtime. Write such code. |
| if (HeaderSize != 0) |
| Target->writePltHeader(Buf); |
| size_t Off = HeaderSize; |
| // The IPlt is immediately after the Plt, account for this in RelOff |
| unsigned PltOff = getPltRelocOff(); |
| |
| for (auto &I : Entries) { |
| const SymbolBody *B = I.first; |
| unsigned RelOff = I.second + PltOff; |
| uint64_t Got = B->getGotPltVA(); |
| uint64_t Plt = this->getVA() + Off; |
| Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); |
| Off += Target->PltEntrySize; |
| } |
| } |
| |
| template <class ELFT> void PltSection::addEntry(SymbolBody &Sym) { |
| Sym.PltIndex = Entries.size(); |
| RelocationSection<ELFT> *PltRelocSection = In<ELFT>::RelaPlt; |
| if (HeaderSize == 0) { |
| PltRelocSection = In<ELFT>::RelaIplt; |
| Sym.IsInIplt = true; |
| } |
| unsigned RelOff = PltRelocSection->getRelocOffset(); |
| Entries.push_back(std::make_pair(&Sym, RelOff)); |
| } |
| |
| size_t PltSection::getSize() const { |
| return HeaderSize + Entries.size() * Target->PltEntrySize; |
| } |
| |
| // Some architectures such as additional symbols in the PLT section. For |
| // example ARM uses mapping symbols to aid disassembly |
| void PltSection::addSymbols() { |
| // The PLT may have symbols defined for the Header, the IPLT has no header |
| if (HeaderSize != 0) |
| Target->addPltHeaderSymbols(this); |
| size_t Off = HeaderSize; |
| for (size_t I = 0; I < Entries.size(); ++I) { |
| Target->addPltSymbols(this, Off); |
| Off += Target->PltEntrySize; |
| } |
| } |
| |
| unsigned PltSection::getPltRelocOff() const { |
| return (HeaderSize == 0) ? InX::Plt->getSize() : 0; |
| } |
| |
| GdbIndexSection::GdbIndexSection(std::vector<GdbIndexChunk> &&Chunks) |
| : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index"), |
| StringPool(llvm::StringTableBuilder::ELF), Chunks(std::move(Chunks)) {} |
| |
| // Iterative hash function for symbol's name is described in .gdb_index format |
| // specification. Note that we use one for version 5 to 7 here, it is different |
| // for version 4. |
| static uint32_t hash(StringRef Str) { |
| uint32_t R = 0; |
| for (uint8_t C : Str) |
| R = R * 67 + tolower(C) - 113; |
| return R; |
| } |
| |
| static std::vector<CompilationUnitEntry> readCuList(DWARFContext &Dwarf) { |
| std::vector<CompilationUnitEntry> Ret; |
| for (std::unique_ptr<DWARFCompileUnit> &CU : Dwarf.compile_units()) |
| Ret.push_back({CU->getOffset(), CU->getLength() + 4}); |
| return Ret; |
| } |
| |
| static std::vector<AddressEntry> readAddressArea(DWARFContext &Dwarf, |
| InputSection *Sec) { |
| std::vector<AddressEntry> Ret; |
| |
| uint32_t CurrentCu = 0; |
| for (std::unique_ptr<DWARFCompileUnit> &CU : Dwarf.compile_units()) { |
| DWARFAddressRangesVector Ranges; |
| CU->collectAddressRanges(Ranges); |
| |
| ArrayRef<InputSectionBase *> Sections = Sec->File->getSections(); |
| for (DWARFAddressRange &R : Ranges) { |
| InputSectionBase *S = Sections[R.SectionIndex]; |
| if (!S || S == &InputSection::Discarded || !S->Live) |
| continue; |
| // Range list with zero size has no effect. |
| if (R.LowPC == R.HighPC) |
| continue; |
| Ret.push_back({cast<InputSection>(S), R.LowPC, R.HighPC, CurrentCu}); |
| } |
| ++CurrentCu; |
| } |
| return Ret; |
| } |
| |
| static std::vector<NameTypeEntry> readPubNamesAndTypes(DWARFContext &Dwarf, |
| bool IsLE) { |
| StringRef Data[] = {Dwarf.getGnuPubNamesSection(), |
| Dwarf.getGnuPubTypesSection()}; |
| |
| std::vector<NameTypeEntry> Ret; |
| for (StringRef D : Data) { |
| DWARFDebugPubTable PubTable(D, IsLE, true); |
| for (const DWARFDebugPubTable::Set &Set : PubTable.getData()) |
| for (const DWARFDebugPubTable::Entry &Ent : Set.Entries) |
| Ret.push_back({Ent.Name, Ent.Descriptor.toBits()}); |
| } |
| return Ret; |
| } |
| |
| static std::vector<InputSection *> getDebugInfoSections() { |
| std::vector<InputSection *> Ret; |
| for (InputSectionBase *S : InputSections) |
| if (InputSection *IS = dyn_cast<InputSection>(S)) |
| if (IS->Name == ".debug_info") |
| Ret.push_back(IS); |
| return Ret; |
| } |
| |
| void GdbIndexSection::buildIndex() { |
| if (Chunks.empty()) |
| return; |
| |
| uint32_t CuId = 0; |
| for (GdbIndexChunk &D : Chunks) { |
| for (AddressEntry &E : D.AddressArea) |
| E.CuIndex += CuId; |
| |
| // Populate constant pool area. |
| for (NameTypeEntry &NameType : D.NamesAndTypes) { |
| uint32_t Hash = hash(NameType.Name); |
| size_t Offset = StringPool.add(NameType.Name); |
| |
| bool IsNew; |
| GdbSymbol *Sym; |
| std::tie(IsNew, Sym) = SymbolTable.add(Hash, Offset); |
| if (IsNew) { |
| Sym->CuVectorIndex = CuVectors.size(); |
| CuVectors.resize(CuVectors.size() + 1); |
| } |
| |
| CuVectors[Sym->CuVectorIndex].insert(CuId | (NameType.Type << 24)); |
| } |
| |
| CuId += D.CompilationUnits.size(); |
| } |
| } |
| |
| static GdbIndexChunk readDwarf(DWARFContextInMemory &Dwarf, InputSection *Sec) { |
| GdbIndexChunk Ret; |
| Ret.DebugInfoSec = Sec; |
| Ret.CompilationUnits = readCuList(Dwarf); |
| Ret.AddressArea = readAddressArea(Dwarf, Sec); |
| Ret.NamesAndTypes = readPubNamesAndTypes(Dwarf, Config->IsLE); |
| return Ret; |
| } |
| |
| template <class ELFT> GdbIndexSection *elf::createGdbIndex() { |
| std::vector<GdbIndexChunk> Chunks; |
| for (InputSection *Sec : getDebugInfoSections()) { |
| InputFile *F = Sec->File; |
| std::error_code EC; |
| ELFObjectFile<ELFT> Obj(F->MB, EC); |
| if (EC) |
| fatal(EC.message()); |
| DWARFContextInMemory Dwarf(Obj, nullptr, [&](Error E) { |
| error(toString(F) + ": error parsing DWARF data:\n>>> " + |
| toString(std::move(E))); |
| return ErrorPolicy::Continue; |
| }); |
| Chunks.push_back(readDwarf(Dwarf, Sec)); |
| } |
| return make<GdbIndexSection>(std::move(Chunks)); |
| } |
| |
| static size_t getCuSize(std::vector<GdbIndexChunk> &C) { |
| size_t Ret = 0; |
| for (GdbIndexChunk &D : C) |
| Ret += D.CompilationUnits.size(); |
| return Ret; |
| } |
| |
| static size_t getAddressAreaSize(std::vector<GdbIndexChunk> &C) { |
| size_t Ret = 0; |
| for (GdbIndexChunk &D : C) |
| Ret += D.AddressArea.size(); |
| return Ret; |
| } |
| |
| void GdbIndexSection::finalizeContents() { |
| if (Finalized) |
| return; |
| Finalized = true; |
| |
| buildIndex(); |
| |
| SymbolTable.finalizeContents(); |
| |
| // GdbIndex header consist from version fields |
| // and 5 more fields with different kinds of offsets. |
| CuTypesOffset = CuListOffset + getCuSize(Chunks) * CompilationUnitSize; |
| SymTabOffset = CuTypesOffset + getAddressAreaSize(Chunks) * AddressEntrySize; |
| |
| ConstantPoolOffset = |
| SymTabOffset + SymbolTable.getCapacity() * SymTabEntrySize; |
| |
| for (std::set<uint32_t> &CuVec : CuVectors) { |
| CuVectorsOffset.push_back(CuVectorsSize); |
| CuVectorsSize += OffsetTypeSize * (CuVec.size() + 1); |
| } |
| StringPoolOffset = ConstantPoolOffset + CuVectorsSize; |
| |
| StringPool.finalizeInOrder(); |
| } |
| |
| size_t GdbIndexSection::getSize() const { |
| const_cast<GdbIndexSection *>(this)->finalizeContents(); |
| return StringPoolOffset + StringPool.getSize(); |
| } |
| |
| void GdbIndexSection::writeTo(uint8_t *Buf) { |
| write32le(Buf, 7); // Write version. |
| write32le(Buf + 4, CuListOffset); // CU list offset. |
| write32le(Buf + 8, CuTypesOffset); // Types CU list offset. |
| write32le(Buf + 12, CuTypesOffset); // Address area offset. |
| write32le(Buf + 16, SymTabOffset); // Symbol table offset. |
| write32le(Buf + 20, ConstantPoolOffset); // Constant pool offset. |
| Buf += 24; |
| |
| // Write the CU list. |
| for (GdbIndexChunk &D : Chunks) { |
| for (CompilationUnitEntry &Cu : D.CompilationUnits) { |
| write64le(Buf, D.DebugInfoSec->OutSecOff + Cu.CuOffset); |
| write64le(Buf + 8, Cu.CuLength); |
| Buf += 16; |
| } |
| } |
| |
| // Write the address area. |
| for (GdbIndexChunk &D : Chunks) { |
| for (AddressEntry &E : D.AddressArea) { |
| uint64_t BaseAddr = |
| E.Section->getParent()->Addr + E.Section->getOffset(0); |
| write64le(Buf, BaseAddr + E.LowAddress); |
| write64le(Buf + 8, BaseAddr + E.HighAddress); |
| write32le(Buf + 16, E.CuIndex); |
| Buf += 20; |
| } |
| } |
| |
| // Write the symbol table. |
| for (size_t I = 0; I < SymbolTable.getCapacity(); ++I) { |
| GdbSymbol *Sym = SymbolTable.getSymbol(I); |
| if (Sym) { |
| size_t NameOffset = |
| Sym->NameOffset + StringPoolOffset - ConstantPoolOffset; |
| size_t CuVectorOffset = CuVectorsOffset[Sym->CuVectorIndex]; |
| write32le(Buf, NameOffset); |
| write32le(Buf + 4, CuVectorOffset); |
| } |
| Buf += 8; |
| } |
| |
| // Write the CU vectors into the constant pool. |
| for (std::set<uint32_t> &CuVec : CuVectors) { |
| write32le(Buf, CuVec.size()); |
| Buf += 4; |
| for (uint32_t Val : CuVec) { |
| write32le(Buf, Val); |
| Buf += 4; |
| } |
| } |
| |
| StringPool.write(Buf); |
| } |
| |
| bool GdbIndexSection::empty() const { return !Out::DebugInfo; } |
| |
| template <class ELFT> |
| EhFrameHeader<ELFT>::EhFrameHeader() |
| : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame_hdr") {} |
| |
| // .eh_frame_hdr contains a binary search table of pointers to FDEs. |
| // Each entry of the search table consists of two values, |
| // the starting PC from where FDEs covers, and the FDE's address. |
| // It is sorted by PC. |
| template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) { |
| const endianness E = ELFT::TargetEndianness; |
| |
| // Sort the FDE list by their PC and uniqueify. Usually there is only |
| // one FDE for a PC (i.e. function), but if ICF merges two functions |
| // into one, there can be more than one FDEs pointing to the address. |
| auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; }; |
| std::stable_sort(Fdes.begin(), Fdes.end(), Less); |
| auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; }; |
| Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end()); |
| |
| Buf[0] = 1; |
| Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; |
| Buf[2] = DW_EH_PE_udata4; |
| Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; |
| write32<E>(Buf + 4, In<ELFT>::EhFrame->getParent()->Addr - this->getVA() - 4); |
| write32<E>(Buf + 8, Fdes.size()); |
| Buf += 12; |
| |
| uint64_t VA = this->getVA(); |
| for (FdeData &Fde : Fdes) { |
| write32<E>(Buf, Fde.Pc - VA); |
| write32<E>(Buf + 4, Fde.FdeVA - VA); |
| Buf += 8; |
| } |
| } |
| |
| template <class ELFT> size_t EhFrameHeader<ELFT>::getSize() const { |
| // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. |
| return 12 + In<ELFT>::EhFrame->NumFdes * 8; |
| } |
| |
| template <class ELFT> |
| void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) { |
| Fdes.push_back({Pc, FdeVA}); |
| } |
| |
| template <class ELFT> bool EhFrameHeader<ELFT>::empty() const { |
| return In<ELFT>::EhFrame->empty(); |
| } |
| |
| template <class ELFT> |
| VersionDefinitionSection<ELFT>::VersionDefinitionSection() |
| : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), |
| ".gnu.version_d") {} |
| |
| static StringRef getFileDefName() { |
| if (!Config->SoName.empty()) |
| return Config->SoName; |
| return Config->OutputFile; |
| } |
| |
| template <class ELFT> void VersionDefinitionSection<ELFT>::finalizeContents() { |
| FileDefNameOff = InX::DynStrTab->addString(getFileDefName()); |
| for (VersionDefinition &V : Config->VersionDefinitions) |
| V.NameOff = InX::DynStrTab->addString(V.Name); |
| |
| getParent()->Link = InX::DynStrTab->getParent()->SectionIndex; |
| |
| // sh_info should be set to the number of definitions. This fact is missed in |
| // documentation, but confirmed by binutils community: |
| // https://sourceware.org/ml/binutils/2014-11/msg00355.html |
| getParent()->Info = getVerDefNum(); |
| } |
| |
| template <class ELFT> |
| void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index, |
| StringRef Name, size_t NameOff) { |
| auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf); |
| Verdef->vd_version = 1; |
| Verdef->vd_cnt = 1; |
| Verdef->vd_aux = sizeof(Elf_Verdef); |
| Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); |
| Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0); |
| Verdef->vd_ndx = Index; |
| Verdef->vd_hash = hashSysV(Name); |
| |
| auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef)); |
| Verdaux->vda_name = NameOff; |
| Verdaux->vda_next = 0; |
| } |
| |
| template <class ELFT> |
| void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) { |
| writeOne(Buf, 1, getFileDefName(), FileDefNameOff); |
| |
| for (VersionDefinition &V : Config->VersionDefinitions) { |
| Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); |
| writeOne(Buf, V.Id, V.Name, V.NameOff); |
| } |
| |
| // Need to terminate the last version definition. |
| Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf); |
| Verdef->vd_next = 0; |
| } |
| |
| template <class ELFT> size_t VersionDefinitionSection<ELFT>::getSize() const { |
| return (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum(); |
| } |
| |
| template <class ELFT> |
| VersionTableSection<ELFT>::VersionTableSection() |
| : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), |
| ".gnu.version") { |
| this->Entsize = sizeof(Elf_Versym); |
| } |
| |
| template <class ELFT> void VersionTableSection<ELFT>::finalizeContents() { |
| // At the moment of june 2016 GNU docs does not mention that sh_link field |
| // should be set, but Sun docs do. Also readelf relies on this field. |
| getParent()->Link = InX::DynSymTab->getParent()->SectionIndex; |
| } |
| |
| template <class ELFT> size_t VersionTableSection<ELFT>::getSize() const { |
| return sizeof(Elf_Versym) * (InX::DynSymTab->getSymbols().size() + 1); |
| } |
| |
| template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1; |
| for (const SymbolTableEntry &S : InX::DynSymTab->getSymbols()) { |
| OutVersym->vs_index = S.Symbol->symbol()->VersionId; |
| ++OutVersym; |
| } |
| } |
| |
| template <class ELFT> bool VersionTableSection<ELFT>::empty() const { |
| return !In<ELFT>::VerDef && In<ELFT>::VerNeed->empty(); |
| } |
| |
| template <class ELFT> |
| VersionNeedSection<ELFT>::VersionNeedSection() |
| : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), |
| ".gnu.version_r") { |
| // Identifiers in verneed section start at 2 because 0 and 1 are reserved |
| // for VER_NDX_LOCAL and VER_NDX_GLOBAL. |
| // First identifiers are reserved by verdef section if it exist. |
| NextIndex = getVerDefNum() + 1; |
| } |
| |
| template <class ELFT> |
| void VersionNeedSection<ELFT>::addSymbol(SharedSymbol *SS) { |
| auto *Ver = reinterpret_cast<const typename ELFT::Verdef *>(SS->Verdef); |
| if (!Ver) { |
| SS->symbol()->VersionId = VER_NDX_GLOBAL; |
| return; |
| } |
| |
| auto *File = cast<SharedFile<ELFT>>(SS->File); |
| |
| // If we don't already know that we need an Elf_Verneed for this DSO, prepare |
| // to create one by adding it to our needed list and creating a dynstr entry |
| // for the soname. |
| if (File->VerdefMap.empty()) |
| Needed.push_back({File, InX::DynStrTab->addString(File->SoName)}); |
| typename SharedFile<ELFT>::NeededVer &NV = File->VerdefMap[Ver]; |
| // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, |
| // prepare to create one by allocating a version identifier and creating a |
| // dynstr entry for the version name. |
| if (NV.Index == 0) { |
| NV.StrTab = InX::DynStrTab->addString(File->getStringTable().data() + |
| Ver->getAux()->vda_name); |
| NV.Index = NextIndex++; |
| } |
| SS->symbol()->VersionId = NV.Index; |
| } |
| |
| template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) { |
| // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. |
| auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf); |
| auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size()); |
| |
| for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) { |
| // Create an Elf_Verneed for this DSO. |
| Verneed->vn_version = 1; |
| Verneed->vn_cnt = P.first->VerdefMap.size(); |
| Verneed->vn_file = P.second; |
| Verneed->vn_aux = |
| reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed); |
| Verneed->vn_next = sizeof(Elf_Verneed); |
| ++Verneed; |
| |
| // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over |
| // VerdefMap, which will only contain references to needed version |
| // definitions. Each Elf_Vernaux is based on the information contained in |
| // the Elf_Verdef in the source DSO. This loop iterates over a std::map of |
| // pointers, but is deterministic because the pointers refer to Elf_Verdef |
| // data structures within a single input file. |
| for (auto &NV : P.first->VerdefMap) { |
| Vernaux->vna_hash = NV.first->vd_hash; |
| Vernaux->vna_flags = 0; |
| Vernaux->vna_other = NV.second.Index; |
| Vernaux->vna_name = NV.second.StrTab; |
| Vernaux->vna_next = sizeof(Elf_Vernaux); |
| ++Vernaux; |
| } |
| |
| Vernaux[-1].vna_next = 0; |
| } |
| Verneed[-1].vn_next = 0; |
| } |
| |
| template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { |
| getParent()->Link = InX::DynStrTab->getParent()->SectionIndex; |
| getParent()->Info = Needed.size(); |
| } |
| |
| template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { |
| unsigned Size = Needed.size() * sizeof(Elf_Verneed); |
| for (const std::pair<SharedFile<ELFT> *, size_t> &P : Needed) |
| Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); |
| return Size; |
| } |
| |
| template <class ELFT> bool VersionNeedSection<ELFT>::empty() const { |
| return getNeedNum() == 0; |
| } |
| |
| MergeSyntheticSection::MergeSyntheticSection(StringRef Name, uint32_t Type, |
| uint64_t Flags, uint32_t Alignment) |
| : SyntheticSection(Flags, Type, Alignment, Name), |
| Builder(StringTableBuilder::RAW, Alignment) {} |
| |
| void MergeSyntheticSection::addSection(MergeInputSection *MS) { |
| MS->Parent = this; |
| Sections.push_back(MS); |
| } |
| |
| void MergeSyntheticSection::writeTo(uint8_t *Buf) { Builder.write(Buf); } |
| |
| bool MergeSyntheticSection::shouldTailMerge() const { |
| return (this->Flags & SHF_STRINGS) && Config->Optimize >= 2; |
| } |
| |
| void MergeSyntheticSection::finalizeTailMerge() { |
| // Add all string pieces to the string table builder to create section |
| // contents. |
| for (MergeInputSection *Sec : Sections) |
| for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) |
| if (Sec->Pieces[I].Live) |
| Builder.add(Sec->getData(I)); |
| |
| // Fix the string table content. After this, the contents will never change. |
| Builder.finalize(); |
| |
| // finalize() fixed tail-optimized strings, so we can now get |
| // offsets of strings. Get an offset for each string and save it |
| // to a corresponding StringPiece for easy access. |
| for (MergeInputSection *Sec : Sections) |
| for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) |
| if (Sec->Pieces[I].Live) |
| Sec->Pieces[I].OutputOff = Builder.getOffset(Sec->getData(I)); |
| } |
| |
| void MergeSyntheticSection::finalizeNoTailMerge() { |
| // Add all string pieces to the string table builder to create section |
| // contents. Because we are not tail-optimizing, offsets of strings are |
| // fixed when they are added to the builder (string table builder contains |
| // a hash table from strings to offsets). |
| for (MergeInputSection *Sec : Sections) |
| for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) |
| if (Sec->Pieces[I].Live) |
| Sec->Pieces[I].OutputOff = Builder.add(Sec->getData(I)); |
| |
| Builder.finalizeInOrder(); |
| } |
| |
| void MergeSyntheticSection::finalizeContents() { |
| if (shouldTailMerge()) |
| finalizeTailMerge(); |
| else |
| finalizeNoTailMerge(); |
| } |
| |
| size_t MergeSyntheticSection::getSize() const { return Builder.getSize(); } |
| |
| // This function decompresses compressed sections and scans over the input |
| // sections to create mergeable synthetic sections. It removes |
| // MergeInputSections from the input section array and adds new synthetic |
| // sections at the location of the first input section that it replaces. It then |
| // finalizes each synthetic section in order to compute an output offset for |
| // each piece of each input section. |
| void elf::decompressAndMergeSections() { |
| // splitIntoPieces needs to be called on each MergeInputSection before calling |
| // finalizeContents(). Do that first. |
| parallelForEach(InputSections.begin(), InputSections.end(), |
| [](InputSectionBase *S) { |
| if (!S->Live) |
| return; |
| if (Decompressor::isCompressedELFSection(S->Flags, S->Name)) |
| S->uncompress(); |
| if (auto *MS = dyn_cast<MergeInputSection>(S)) |
| MS->splitIntoPieces(); |
| }); |
| |
| std::vector<MergeSyntheticSection *> MergeSections; |
| for (InputSectionBase *&S : InputSections) { |
| MergeInputSection *MS = dyn_cast<MergeInputSection>(S); |
| if (!MS) |
| continue; |
| |
| // We do not want to handle sections that are not alive, so just remove |
| // them instead of trying to merge. |
| if (!MS->Live) |
| continue; |
| |
| StringRef OutsecName = getOutputSectionName(MS->Name); |
| uint64_t Flags = MS->Flags & ~(uint64_t)SHF_GROUP; |
| uint32_t Alignment = std::max<uint32_t>(MS->Alignment, MS->Entsize); |
| |
| auto I = llvm::find_if(MergeSections, [=](MergeSyntheticSection *Sec) { |
| return Sec->Name == OutsecName && Sec->Flags == Flags && |
| Sec->Alignment == Alignment; |
| }); |
| if (I == MergeSections.end()) { |
| MergeSyntheticSection *Syn = |
| make<MergeSyntheticSection>(OutsecName, MS->Type, Flags, Alignment); |
| MergeSections.push_back(Syn); |
| I = std::prev(MergeSections.end()); |
| S = Syn; |
| } else { |
| S = nullptr; |
| } |
| (*I)->addSection(MS); |
| } |
| for (auto *MS : MergeSections) |
| MS->finalizeContents(); |
| |
| std::vector<InputSectionBase *> &V = InputSections; |
| V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); |
| } |
| |
| MipsRldMapSection::MipsRldMapSection() |
| : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Config->Wordsize, |
| ".rld_map") {} |
| |
| ARMExidxSentinelSection::ARMExidxSentinelSection() |
| : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, |
| Config->Wordsize, ".ARM.exidx") {} |
| |
| // Write a terminating sentinel entry to the end of the .ARM.exidx table. |
| // This section will have been sorted last in the .ARM.exidx table. |
| // This table entry will have the form: |
| // | PREL31 upper bound of code that has exception tables | EXIDX_CANTUNWIND | |
| // The sentinel must have the PREL31 value of an address higher than any |
| // address described by any other table entry. |
| void ARMExidxSentinelSection::writeTo(uint8_t *Buf) { |
| // The Sections are sorted in order of ascending PREL31 address with the |
| // sentinel last. We need to find the InputSection that precedes the |
| // sentinel. By construction the Sentinel is in the last |
| // InputSectionDescription as the InputSection that precedes it. |
| OutputSectionCommand *C = Script->getCmd(getParent()); |
| auto ISD = std::find_if(C->Commands.rbegin(), C->Commands.rend(), |
| [](const BaseCommand *Base) { |
| return isa<InputSectionDescription>(Base); |
| }); |
| auto L = cast<InputSectionDescription>(*ISD); |
| InputSection *Highest = L->Sections[L->Sections.size() - 2]; |
| InputSection *LS = Highest->getLinkOrderDep(); |
| uint64_t S = LS->getParent()->Addr + LS->getOffset(LS->getSize()); |
| uint64_t P = getVA(); |
| Target->relocateOne(Buf, R_ARM_PREL31, S - P); |
| write32le(Buf + 4, 0x1); |
| } |
| |
| ThunkSection::ThunkSection(OutputSection *OS, uint64_t Off) |
| : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, |
| Config->Wordsize, ".text.thunk") { |
| this->Parent = OS; |
| this->OutSecOff = Off; |
| } |
| |
| void ThunkSection::addThunk(Thunk *T) { |
| uint64_t Off = alignTo(Size, T->Alignment); |
| T->Offset = Off; |
| Thunks.push_back(T); |
| T->addSymbols(*this); |
| Size = Off + T->size(); |
| } |
| |
| void ThunkSection::writeTo(uint8_t *Buf) { |
| for (const Thunk *T : Thunks) |
| T->writeTo(Buf + T->Offset, *this); |
| } |
| |
| InputSection *ThunkSection::getTargetInputSection() const { |
| const Thunk *T = Thunks.front(); |
| return T->getTargetInputSection(); |
| } |
| |
| InputSection *InX::ARMAttributes; |
| BssSection *InX::Bss; |
| BssSection *InX::BssRelRo; |
| BuildIdSection *InX::BuildId; |
| InputSection *InX::Common; |
| SyntheticSection *InX::Dynamic; |
| StringTableSection *InX::DynStrTab; |
| SymbolTableBaseSection *InX::DynSymTab; |
| InputSection *InX::Interp; |
| GdbIndexSection *InX::GdbIndex; |
| GotSection *InX::Got; |
| GotPltSection *InX::GotPlt; |
| GnuHashTableSection *InX::GnuHashTab; |
| IgotPltSection *InX::IgotPlt; |
| MipsGotSection *InX::MipsGot; |
| MipsRldMapSection *InX::MipsRldMap; |
| PltSection *InX::Plt; |
| PltSection *InX::Iplt; |
| StringTableSection *InX::ShStrTab; |
| StringTableSection *InX::StrTab; |
| SymbolTableBaseSection *InX::SymTab; |
| |
| template GdbIndexSection *elf::createGdbIndex<ELF32LE>(); |
| template GdbIndexSection *elf::createGdbIndex<ELF32BE>(); |
| template GdbIndexSection *elf::createGdbIndex<ELF64LE>(); |
| template GdbIndexSection *elf::createGdbIndex<ELF64BE>(); |
| |
| template void PltSection::addEntry<ELF32LE>(SymbolBody &Sym); |
| template void PltSection::addEntry<ELF32BE>(SymbolBody &Sym); |
| template void PltSection::addEntry<ELF64LE>(SymbolBody &Sym); |
| template void PltSection::addEntry<ELF64BE>(SymbolBody &Sym); |
| |
| template InputSection *elf::createCommonSection<ELF32LE>(); |
| template InputSection *elf::createCommonSection<ELF32BE>(); |
| template InputSection *elf::createCommonSection<ELF64LE>(); |
| template InputSection *elf::createCommonSection<ELF64BE>(); |
| |
| template MergeInputSection *elf::createCommentSection<ELF32LE>(); |
| template MergeInputSection *elf::createCommentSection<ELF32BE>(); |
| template MergeInputSection *elf::createCommentSection<ELF64LE>(); |
| template MergeInputSection *elf::createCommentSection<ELF64BE>(); |
| |
| template class elf::MipsAbiFlagsSection<ELF32LE>; |
| template class elf::MipsAbiFlagsSection<ELF32BE>; |
| template class elf::MipsAbiFlagsSection<ELF64LE>; |
| template class elf::MipsAbiFlagsSection<ELF64BE>; |
| |
| template class elf::MipsOptionsSection<ELF32LE>; |
| template class elf::MipsOptionsSection<ELF32BE>; |
| template class elf::MipsOptionsSection<ELF64LE>; |
| template class elf::MipsOptionsSection<ELF64BE>; |
| |
| template class elf::MipsReginfoSection<ELF32LE>; |
| template class elf::MipsReginfoSection<ELF32BE>; |
| template class elf::MipsReginfoSection<ELF64LE>; |
| template class elf::MipsReginfoSection<ELF64BE>; |
| |
| template class elf::DynamicSection<ELF32LE>; |
| template class elf::DynamicSection<ELF32BE>; |
| template class elf::DynamicSection<ELF64LE>; |
| template class elf::DynamicSection<ELF64BE>; |
| |
| template class elf::RelocationSection<ELF32LE>; |
| template class elf::RelocationSection<ELF32BE>; |
| template class elf::RelocationSection<ELF64LE>; |
| template class elf::RelocationSection<ELF64BE>; |
| |
| template class elf::SymbolTableSection<ELF32LE>; |
| template class elf::SymbolTableSection<ELF32BE>; |
| template class elf::SymbolTableSection<ELF64LE>; |
| template class elf::SymbolTableSection<ELF64BE>; |
| |
| template class elf::HashTableSection<ELF32LE>; |
| template class elf::HashTableSection<ELF32BE>; |
| template class elf::HashTableSection<ELF64LE>; |
| template class elf::HashTableSection<ELF64BE>; |
| |
| template class elf::EhFrameHeader<ELF32LE>; |
| template class elf::EhFrameHeader<ELF32BE>; |
| template class elf::EhFrameHeader<ELF64LE>; |
| template class elf::EhFrameHeader<ELF64BE>; |
| |
| template class elf::VersionTableSection<ELF32LE>; |
| template class elf::VersionTableSection<ELF32BE>; |
| template class elf::VersionTableSection<ELF64LE>; |
| template class elf::VersionTableSection<ELF64BE>; |
| |
| template class elf::VersionNeedSection<ELF32LE>; |
| template class elf::VersionNeedSection<ELF32BE>; |
| template class elf::VersionNeedSection<ELF64LE>; |
| template class elf::VersionNeedSection<ELF64BE>; |
| |
| template class elf::VersionDefinitionSection<ELF32LE>; |
| template class elf::VersionDefinitionSection<ELF32BE>; |
| template class elf::VersionDefinitionSection<ELF64LE>; |
| template class elf::VersionDefinitionSection<ELF64BE>; |
| |
| template class elf::EhFrameSection<ELF32LE>; |
| template class elf::EhFrameSection<ELF32BE>; |
| template class elf::EhFrameSection<ELF64LE>; |
| template class elf::EhFrameSection<ELF64BE>; |