| //===- Relocations.cpp ----------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains platform-independent functions to process relocations. |
| // I'll describe the overview of this file here. |
| // |
| // Simple relocations are easy to handle for the linker. For example, |
| // for R_X86_64_PC64 relocs, the linker just has to fix up locations |
| // with the relative offsets to the target symbols. It would just be |
| // reading records from relocation sections and applying them to output. |
| // |
| // But not all relocations are that easy to handle. For example, for |
| // R_386_GOTOFF relocs, the linker has to create new GOT entries for |
| // symbols if they don't exist, and fix up locations with GOT entry |
| // offsets from the beginning of GOT section. So there is more than |
| // fixing addresses in relocation processing. |
| // |
| // ELF defines a large number of complex relocations. |
| // |
| // The functions in this file analyze relocations and do whatever needs |
| // to be done. It includes, but not limited to, the following. |
| // |
| // - create GOT/PLT entries |
| // - create new relocations in .dynsym to let the dynamic linker resolve |
| // them at runtime (since ELF supports dynamic linking, not all |
| // relocations can be resolved at link-time) |
| // - create COPY relocs and reserve space in .bss |
| // - replace expensive relocs (in terms of runtime cost) with cheap ones |
| // - error out infeasible combinations such as PIC and non-relative relocs |
| // |
| // Note that the functions in this file don't actually apply relocations |
| // because it doesn't know about the output file nor the output file buffer. |
| // It instead stores Relocation objects to InputSection's Relocations |
| // vector to let it apply later in InputSection::writeTo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Relocations.h" |
| #include "Config.h" |
| #include "LinkerScript.h" |
| #include "Memory.h" |
| #include "OutputSections.h" |
| #include "Strings.h" |
| #include "SymbolTable.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "Thunks.h" |
| |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| // Construct a message in the following format. |
| // |
| // >>> defined in /home/alice/src/foo.o |
| // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) |
| // >>> /home/alice/src/bar.o:(.text+0x1) |
| template <class ELFT> |
| static std::string getLocation(InputSectionBase &S, const SymbolBody &Sym, |
| uint64_t Off) { |
| std::string Msg = |
| "\n>>> defined in " + toString(Sym.File) + "\n>>> referenced by "; |
| std::string Src = S.getSrcMsg<ELFT>(Off); |
| if (!Src.empty()) |
| Msg += Src + "\n>>> "; |
| return Msg + S.getObjMsg<ELFT>(Off); |
| } |
| |
| static bool isPreemptible(const SymbolBody &Body, uint32_t Type) { |
| // In case of MIPS GP-relative relocations always resolve to a definition |
| // in a regular input file, ignoring the one-definition rule. So we, |
| // for example, should not attempt to create a dynamic relocation even |
| // if the target symbol is preemptible. There are two two MIPS GP-relative |
| // relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16 |
| // can be against a preemptible symbol. |
| // To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all |
| // relocation types occupy eight bit. In case of N64 ABI we extract first |
| // relocation from 3-in-1 packet because only the first relocation can |
| // be against a real symbol. |
| if (Config->EMachine == EM_MIPS && (Type & 0xff) == R_MIPS_GPREL16) |
| return false; |
| return Body.isPreemptible(); |
| } |
| |
| // This function is similar to the `handleTlsRelocation`. MIPS does not |
| // support any relaxations for TLS relocations so by factoring out MIPS |
| // handling in to the separate function we can simplify the code and do not |
| // pollute other `handleTlsRelocation` by MIPS `ifs` statements. |
| // Mips has a custom MipsGotSection that handles the writing of GOT entries |
| // without dynamic relocations. |
| template <class ELFT> |
| static unsigned handleMipsTlsRelocation(uint32_t Type, SymbolBody &Body, |
| InputSectionBase &C, uint64_t Offset, |
| int64_t Addend, RelExpr Expr) { |
| if (Expr == R_MIPS_TLSLD) { |
| if (InX::MipsGot->addTlsIndex() && Config->Pic) |
| In<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::MipsGot, |
| InX::MipsGot->getTlsIndexOff(), false, |
| nullptr, 0}); |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| if (Expr == R_MIPS_TLSGD) { |
| if (InX::MipsGot->addDynTlsEntry(Body) && Body.isPreemptible()) { |
| uint64_t Off = InX::MipsGot->getGlobalDynOffset(Body); |
| In<ELFT>::RelaDyn->addReloc( |
| {Target->TlsModuleIndexRel, InX::MipsGot, Off, false, &Body, 0}); |
| if (Body.isPreemptible()) |
| In<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, InX::MipsGot, |
| Off + Config->Wordsize, false, &Body, 0}); |
| } |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| return 0; |
| } |
| |
| // This function is similar to the `handleMipsTlsRelocation`. ARM also does not |
| // support any relaxations for TLS relocations. ARM is logically similar to Mips |
| // in how it handles TLS, but Mips uses its own custom GOT which handles some |
| // of the cases that ARM uses GOT relocations for. |
| // |
| // We look for TLS global dynamic and local dynamic relocations, these may |
| // require the generation of a pair of GOT entries that have associated |
| // dynamic relocations. When the results of the dynamic relocations can be |
| // resolved at static link time we do so. This is necessary for static linking |
| // as there will be no dynamic loader to resolve them at load-time. |
| // |
| // The pair of GOT entries created are of the form |
| // GOT[e0] Module Index (Used to find pointer to TLS block at run-time) |
| // GOT[e1] Offset of symbol in TLS block |
| template <class ELFT> |
| static unsigned handleARMTlsRelocation(uint32_t Type, SymbolBody &Body, |
| InputSectionBase &C, uint64_t Offset, |
| int64_t Addend, RelExpr Expr) { |
| // The Dynamic TLS Module Index Relocation for a symbol defined in an |
| // executable is always 1. If the target Symbol is not preemtible then |
| // we know the offset into the TLS block at static link time. |
| bool NeedDynId = Body.isPreemptible() || Config->Shared; |
| bool NeedDynOff = Body.isPreemptible(); |
| |
| auto AddTlsReloc = [&](uint64_t Off, uint32_t Type, SymbolBody *Dest, |
| bool Dyn) { |
| if (Dyn) |
| In<ELFT>::RelaDyn->addReloc({Type, InX::Got, Off, false, Dest, 0}); |
| else |
| InX::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest}); |
| }; |
| |
| // Local Dynamic is for access to module local TLS variables, while still |
| // being suitable for being dynamically loaded via dlopen. |
| // GOT[e0] is the module index, with a special value of 0 for the current |
| // module. GOT[e1] is unused. There only needs to be one module index entry. |
| if (Expr == R_TLSLD_PC && InX::Got->addTlsIndex()) { |
| AddTlsReloc(InX::Got->getTlsIndexOff(), Target->TlsModuleIndexRel, |
| NeedDynId ? nullptr : &Body, NeedDynId); |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| // Global Dynamic is the most general purpose access model. When we know |
| // the module index and offset of symbol in TLS block we can fill these in |
| // using static GOT relocations. |
| if (Expr == R_TLSGD_PC) { |
| if (InX::Got->addDynTlsEntry(Body)) { |
| uint64_t Off = InX::Got->getGlobalDynOffset(Body); |
| AddTlsReloc(Off, Target->TlsModuleIndexRel, &Body, NeedDynId); |
| AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Body, |
| NeedDynOff); |
| } |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Returns the number of relocations processed. |
| template <class ELFT> |
| static unsigned |
| handleTlsRelocation(uint32_t Type, SymbolBody &Body, InputSectionBase &C, |
| typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) { |
| if (!(C.Flags & SHF_ALLOC)) |
| return 0; |
| |
| if (!Body.isTls()) |
| return 0; |
| |
| if (Config->EMachine == EM_ARM) |
| return handleARMTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr); |
| if (Config->EMachine == EM_MIPS) |
| return handleMipsTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr); |
| |
| bool IsPreemptible = isPreemptible(Body, Type); |
| if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) && |
| Config->Shared) { |
| if (InX::Got->addDynTlsEntry(Body)) { |
| uint64_t Off = InX::Got->getGlobalDynOffset(Body); |
| In<ELFT>::RelaDyn->addReloc( |
| {Target->TlsDescRel, InX::Got, Off, !IsPreemptible, &Body, 0}); |
| } |
| if (Expr != R_TLSDESC_CALL) |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| if (isRelExprOneOf<R_TLSLD_PC, R_TLSLD>(Expr)) { |
| // Local-Dynamic relocs can be relaxed to Local-Exec. |
| if (!Config->Shared) { |
| C.Relocations.push_back( |
| {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); |
| return 2; |
| } |
| if (InX::Got->addTlsIndex()) |
| In<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::Got, |
| InX::Got->getTlsIndexOff(), false, nullptr, |
| 0}); |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| // Local-Dynamic relocs can be relaxed to Local-Exec. |
| if (isRelExprOneOf<R_ABS, R_TLSLD, R_TLSLD_PC>(Expr) && !Config->Shared) { |
| C.Relocations.push_back( |
| {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD, |
| R_TLSGD_PC>(Expr)) { |
| if (Config->Shared) { |
| if (InX::Got->addDynTlsEntry(Body)) { |
| uint64_t Off = InX::Got->getGlobalDynOffset(Body); |
| In<ELFT>::RelaDyn->addReloc( |
| {Target->TlsModuleIndexRel, InX::Got, Off, false, &Body, 0}); |
| |
| // If the symbol is preemptible we need the dynamic linker to write |
| // the offset too. |
| uint64_t OffsetOff = Off + Config->Wordsize; |
| if (IsPreemptible) |
| In<ELFT>::RelaDyn->addReloc( |
| {Target->TlsOffsetRel, InX::Got, OffsetOff, false, &Body, 0}); |
| else |
| InX::Got->Relocations.push_back( |
| {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Body}); |
| } |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec |
| // depending on the symbol being locally defined or not. |
| if (IsPreemptible) { |
| C.Relocations.push_back( |
| {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type, |
| Offset, Addend, &Body}); |
| if (!Body.isInGot()) { |
| InX::Got->addEntry(Body); |
| In<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, InX::Got, |
| Body.getGotOffset(), false, &Body, 0}); |
| } |
| } else { |
| C.Relocations.push_back( |
| {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, |
| Offset, Addend, &Body}); |
| } |
| return Target->TlsGdRelaxSkip; |
| } |
| |
| // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally |
| // defined. |
| if (isRelExprOneOf<R_GOT, R_GOT_FROM_END, R_GOT_PC, R_GOT_PAGE_PC>(Expr) && |
| !Config->Shared && !IsPreemptible) { |
| C.Relocations.push_back( |
| {R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| if (Expr == R_TLSDESC_CALL) |
| return 1; |
| return 0; |
| } |
| |
| static uint32_t getMipsPairType(uint32_t Type, const SymbolBody &Sym) { |
| switch (Type) { |
| case R_MIPS_HI16: |
| return R_MIPS_LO16; |
| case R_MIPS_GOT16: |
| return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE; |
| case R_MIPS_PCHI16: |
| return R_MIPS_PCLO16; |
| case R_MICROMIPS_HI16: |
| return R_MICROMIPS_LO16; |
| default: |
| return R_MIPS_NONE; |
| } |
| } |
| |
| // True if non-preemptable symbol always has the same value regardless of where |
| // the DSO is loaded. |
| static bool isAbsolute(const SymbolBody &Body) { |
| if (Body.isUndefined()) |
| return !Body.isLocal() && Body.symbol()->isWeak(); |
| if (const auto *DR = dyn_cast<DefinedRegular>(&Body)) |
| return DR->Section == nullptr; // Absolute symbol. |
| return false; |
| } |
| |
| static bool isAbsoluteValue(const SymbolBody &Body) { |
| return isAbsolute(Body) || Body.isTls(); |
| } |
| |
| // Returns true if Expr refers a PLT entry. |
| static bool needsPlt(RelExpr Expr) { |
| return isRelExprOneOf<R_PLT_PC, R_PPC_PLT_OPD, R_PLT, R_PLT_PAGE_PC>(Expr); |
| } |
| |
| // Returns true if Expr refers a GOT entry. Note that this function |
| // returns false for TLS variables even though they need GOT, because |
| // TLS variables uses GOT differently than the regular variables. |
| static bool needsGot(RelExpr Expr) { |
| return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF, |
| R_MIPS_GOT_OFF32, R_GOT_PAGE_PC, R_GOT_PC, |
| R_GOT_FROM_END>(Expr); |
| } |
| |
| // True if this expression is of the form Sym - X, where X is a position in the |
| // file (PC, or GOT for example). |
| static bool isRelExpr(RelExpr Expr) { |
| return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL, |
| R_PAGE_PC, R_RELAX_GOT_PC>(Expr); |
| } |
| |
| // Returns true if a given relocation can be computed at link-time. |
| // |
| // For instance, we know the offset from a relocation to its target at |
| // link-time if the relocation is PC-relative and refers a |
| // non-interposable function in the same executable. This function |
| // will return true for such relocation. |
| // |
| // If this function returns false, that means we need to emit a |
| // dynamic relocation so that the relocation will be fixed at load-time. |
| template <class ELFT> |
| static bool isStaticLinkTimeConstant(RelExpr E, uint32_t Type, |
| const SymbolBody &Body, |
| InputSectionBase &S, uint64_t RelOff) { |
| // These expressions always compute a constant |
| if (isRelExprOneOf<R_SIZE, R_GOT_FROM_END, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, |
| R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, |
| R_MIPS_TLSGD, R_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, |
| R_GOTONLY_PC_FROM_END, R_PLT_PC, R_TLSGD_PC, R_TLSGD, |
| R_PPC_PLT_OPD, R_TLSDESC_CALL, R_TLSDESC_PAGE, R_HINT>(E)) |
| return true; |
| |
| // These never do, except if the entire file is position dependent or if |
| // only the low bits are used. |
| if (E == R_GOT || E == R_PLT || E == R_TLSDESC) |
| return Target->usesOnlyLowPageBits(Type) || !Config->Pic; |
| |
| if (isPreemptible(Body, Type)) |
| return false; |
| if (!Config->Pic) |
| return true; |
| |
| // For the target and the relocation, we want to know if they are |
| // absolute or relative. |
| bool AbsVal = isAbsoluteValue(Body); |
| bool RelE = isRelExpr(E); |
| if (AbsVal && !RelE) |
| return true; |
| if (!AbsVal && RelE) |
| return true; |
| if (!AbsVal && !RelE) |
| return Target->usesOnlyLowPageBits(Type); |
| |
| // Relative relocation to an absolute value. This is normally unrepresentable, |
| // but if the relocation refers to a weak undefined symbol, we allow it to |
| // resolve to the image base. This is a little strange, but it allows us to |
| // link function calls to such symbols. Normally such a call will be guarded |
| // with a comparison, which will load a zero from the GOT. |
| // Another special case is MIPS _gp_disp symbol which represents offset |
| // between start of a function and '_gp' value and defined as absolute just |
| // to simplify the code. |
| assert(AbsVal && RelE); |
| if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) |
| return true; |
| |
| error("relocation " + toString(Type) + " cannot refer to absolute symbol: " + |
| toString(Body) + getLocation<ELFT>(S, Body, RelOff)); |
| return true; |
| } |
| |
| static RelExpr toPlt(RelExpr Expr) { |
| if (Expr == R_PPC_OPD) |
| return R_PPC_PLT_OPD; |
| if (Expr == R_PC) |
| return R_PLT_PC; |
| if (Expr == R_PAGE_PC) |
| return R_PLT_PAGE_PC; |
| if (Expr == R_ABS) |
| return R_PLT; |
| return Expr; |
| } |
| |
| static RelExpr fromPlt(RelExpr Expr) { |
| // We decided not to use a plt. Optimize a reference to the plt to a |
| // reference to the symbol itself. |
| if (Expr == R_PLT_PC) |
| return R_PC; |
| if (Expr == R_PPC_PLT_OPD) |
| return R_PPC_OPD; |
| if (Expr == R_PLT) |
| return R_ABS; |
| return Expr; |
| } |
| |
| // Returns true if a given shared symbol is in a read-only segment in a DSO. |
| template <class ELFT> static bool isReadOnly(SharedSymbol *SS) { |
| typedef typename ELFT::Phdr Elf_Phdr; |
| uint64_t Value = SS->getValue<ELFT>(); |
| |
| // Determine if the symbol is read-only by scanning the DSO's program headers. |
| auto *File = cast<SharedFile<ELFT>>(SS->File); |
| for (const Elf_Phdr &Phdr : check(File->getObj().program_headers())) |
| if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) && |
| !(Phdr.p_flags & ELF::PF_W) && Value >= Phdr.p_vaddr && |
| Value < Phdr.p_vaddr + Phdr.p_memsz) |
| return true; |
| return false; |
| } |
| |
| // Returns symbols at the same offset as a given symbol, including SS itself. |
| // |
| // If two or more symbols are at the same offset, and at least one of |
| // them are copied by a copy relocation, all of them need to be copied. |
| // Otherwise, they would refer different places at runtime. |
| template <class ELFT> |
| static std::vector<SharedSymbol *> getSymbolsAt(SharedSymbol *SS) { |
| typedef typename ELFT::Sym Elf_Sym; |
| |
| auto *File = cast<SharedFile<ELFT>>(SS->File); |
| uint64_t Shndx = SS->getShndx<ELFT>(); |
| uint64_t Value = SS->getValue<ELFT>(); |
| |
| std::vector<SharedSymbol *> Ret; |
| for (const Elf_Sym &S : File->getGlobalSymbols()) { |
| if (S.st_shndx != Shndx || S.st_value != Value) |
| continue; |
| StringRef Name = check(S.getName(File->getStringTable())); |
| SymbolBody *Sym = Symtab<ELFT>::X->find(Name); |
| if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym)) |
| Ret.push_back(Alias); |
| } |
| return Ret; |
| } |
| |
| // Reserve space in .bss or .bss.rel.ro for copy relocation. |
| // |
| // The copy relocation is pretty much a hack. If you use a copy relocation |
| // in your program, not only the symbol name but the symbol's size, RW/RO |
| // bit and alignment become part of the ABI. In addition to that, if the |
| // symbol has aliases, the aliases become part of the ABI. That's subtle, |
| // but if you violate that implicit ABI, that can cause very counter- |
| // intuitive consequences. |
| // |
| // So, what is the copy relocation? It's for linking non-position |
| // independent code to DSOs. In an ideal world, all references to data |
| // exported by DSOs should go indirectly through GOT. But if object files |
| // are compiled as non-PIC, all data references are direct. There is no |
| // way for the linker to transform the code to use GOT, as machine |
| // instructions are already set in stone in object files. This is where |
| // the copy relocation takes a role. |
| // |
| // A copy relocation instructs the dynamic linker to copy data from a DSO |
| // to a specified address (which is usually in .bss) at load-time. If the |
| // static linker (that's us) finds a direct data reference to a DSO |
| // symbol, it creates a copy relocation, so that the symbol can be |
| // resolved as if it were in .bss rather than in a DSO. |
| // |
| // As you can see in this function, we create a copy relocation for the |
| // dynamic linker, and the relocation contains not only symbol name but |
| // various other informtion about the symbol. So, such attributes become a |
| // part of the ABI. |
| // |
| // Note for application developers: I can give you a piece of advice if |
| // you are writing a shared library. You probably should export only |
| // functions from your library. You shouldn't export variables. |
| // |
| // As an example what can happen when you export variables without knowing |
| // the semantics of copy relocations, assume that you have an exported |
| // variable of type T. It is an ABI-breaking change to add new members at |
| // end of T even though doing that doesn't change the layout of the |
| // existing members. That's because the space for the new members are not |
| // reserved in .bss unless you recompile the main program. That means they |
| // are likely to overlap with other data that happens to be laid out next |
| // to the variable in .bss. This kind of issue is sometimes very hard to |
| // debug. What's a solution? Instead of exporting a varaible V from a DSO, |
| // define an accessor getV(). |
| template <class ELFT> static void addCopyRelSymbol(SharedSymbol *SS) { |
| // Copy relocation against zero-sized symbol doesn't make sense. |
| uint64_t SymSize = SS->template getSize<ELFT>(); |
| if (SymSize == 0) |
| fatal("cannot create a copy relocation for symbol " + toString(*SS)); |
| |
| // See if this symbol is in a read-only segment. If so, preserve the symbol's |
| // memory protection by reserving space in the .bss.rel.ro section. |
| bool IsReadOnly = isReadOnly<ELFT>(SS); |
| BssSection *Sec = IsReadOnly ? InX::BssRelRo : InX::Bss; |
| uint64_t Off = Sec->reserveSpace(SymSize, SS->getAlignment<ELFT>()); |
| |
| // Look through the DSO's dynamic symbol table for aliases and create a |
| // dynamic symbol for each one. This causes the copy relocation to correctly |
| // interpose any aliases. |
| for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS)) { |
| Sym->NeedsCopy = true; |
| Sym->CopyRelSec = Sec; |
| Sym->CopyRelSecOff = Off; |
| Sym->symbol()->IsUsedInRegularObj = true; |
| } |
| |
| In<ELFT>::RelaDyn->addReloc({Target->CopyRel, Sec, Off, false, SS, 0}); |
| } |
| |
| template <class ELFT> |
| static RelExpr adjustExpr(SymbolBody &Body, RelExpr Expr, uint32_t Type, |
| const uint8_t *Data, InputSectionBase &S, |
| typename ELFT::uint RelOff) { |
| if (Body.isGnuIFunc()) { |
| Expr = toPlt(Expr); |
| } else if (!isPreemptible(Body, Type)) { |
| if (needsPlt(Expr)) |
| Expr = fromPlt(Expr); |
| if (Expr == R_GOT_PC && !isAbsoluteValue(Body)) |
| Expr = Target->adjustRelaxExpr(Type, Data, Expr); |
| } |
| |
| bool IsWrite = !Config->ZText || (S.Flags & SHF_WRITE); |
| if (IsWrite || isStaticLinkTimeConstant<ELFT>(Expr, Type, Body, S, RelOff)) |
| return Expr; |
| |
| // This relocation would require the dynamic linker to write a value to read |
| // only memory. We can hack around it if we are producing an executable and |
| // the refered symbol can be preemepted to refer to the executable. |
| if (Config->Shared || (Config->Pic && !isRelExpr(Expr))) { |
| error("can't create dynamic relocation " + toString(Type) + " against " + |
| (Body.getName().empty() ? "local symbol" |
| : "symbol: " + toString(Body)) + |
| " in readonly segment" + getLocation<ELFT>(S, Body, RelOff)); |
| return Expr; |
| } |
| |
| if (Body.getVisibility() != STV_DEFAULT) { |
| error("cannot preempt symbol: " + toString(Body) + |
| getLocation<ELFT>(S, Body, RelOff)); |
| return Expr; |
| } |
| |
| if (Body.isObject()) { |
| // Produce a copy relocation. |
| auto *B = cast<SharedSymbol>(&Body); |
| if (!B->NeedsCopy) { |
| if (Config->ZNocopyreloc) |
| error("unresolvable relocation " + toString(Type) + |
| " against symbol '" + toString(*B) + |
| "'; recompile with -fPIC or remove '-z nocopyreloc'" + |
| getLocation<ELFT>(S, Body, RelOff)); |
| |
| addCopyRelSymbol<ELFT>(B); |
| } |
| return Expr; |
| } |
| |
| if (Body.isFunc()) { |
| // This handles a non PIC program call to function in a shared library. In |
| // an ideal world, we could just report an error saying the relocation can |
| // overflow at runtime. In the real world with glibc, crt1.o has a |
| // R_X86_64_PC32 pointing to libc.so. |
| // |
| // The general idea on how to handle such cases is to create a PLT entry and |
| // use that as the function value. |
| // |
| // For the static linking part, we just return a plt expr and everything |
| // else will use the the PLT entry as the address. |
| // |
| // The remaining problem is making sure pointer equality still works. We |
| // need the help of the dynamic linker for that. We let it know that we have |
| // a direct reference to a so symbol by creating an undefined symbol with a |
| // non zero st_value. Seeing that, the dynamic linker resolves the symbol to |
| // the value of the symbol we created. This is true even for got entries, so |
| // pointer equality is maintained. To avoid an infinite loop, the only entry |
| // that points to the real function is a dedicated got entry used by the |
| // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, |
| // R_386_JMP_SLOT, etc). |
| Body.NeedsPltAddr = true; |
| return toPlt(Expr); |
| } |
| |
| error("symbol '" + toString(Body) + "' defined in " + toString(Body.File) + |
| " has no type"); |
| return Expr; |
| } |
| |
| // Returns an addend of a given relocation. If it is RELA, an addend |
| // is in a relocation itself. If it is REL, we need to read it from an |
| // input section. |
| template <class ELFT, class RelTy> |
| static int64_t computeAddend(const RelTy &Rel, const uint8_t *Buf) { |
| uint32_t Type = Rel.getType(Config->IsMips64EL); |
| int64_t A = RelTy::IsRela |
| ? getAddend<ELFT>(Rel) |
| : Target->getImplicitAddend(Buf + Rel.r_offset, Type); |
| |
| if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC) |
| A += getPPC64TocBase(); |
| return A; |
| } |
| |
| // MIPS has an odd notion of "paired" relocations to calculate addends. |
| // For example, if a relocation is of R_MIPS_HI16, there must be a |
| // R_MIPS_LO16 relocation after that, and an addend is calculated using |
| // the two relocations. |
| template <class ELFT, class RelTy> |
| static int64_t computeMipsAddend(const RelTy &Rel, InputSectionBase &Sec, |
| RelExpr Expr, SymbolBody &Body, |
| const RelTy *End) { |
| if (Expr == R_MIPS_GOTREL && Body.isLocal()) |
| return Sec.getFile<ELFT>()->MipsGp0; |
| |
| // The ABI says that the paired relocation is used only for REL. |
| // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (RelTy::IsRela) |
| return 0; |
| |
| uint32_t Type = Rel.getType(Config->IsMips64EL); |
| uint32_t PairTy = getMipsPairType(Type, Body); |
| if (PairTy == R_MIPS_NONE) |
| return 0; |
| |
| const uint8_t *Buf = Sec.Data.data(); |
| uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL); |
| |
| // To make things worse, paired relocations might not be contiguous in |
| // the relocation table, so we need to do linear search. *sigh* |
| for (const RelTy *RI = &Rel; RI != End; ++RI) { |
| if (RI->getType(Config->IsMips64EL) != PairTy) |
| continue; |
| if (RI->getSymbol(Config->IsMips64EL) != SymIndex) |
| continue; |
| |
| endianness E = Config->Endianness; |
| int32_t Hi = (read32(Buf + Rel.r_offset, E) & 0xffff) << 16; |
| int32_t Lo = SignExtend32<16>(read32(Buf + RI->r_offset, E)); |
| return Hi + Lo; |
| } |
| |
| warn("can't find matching " + toString(PairTy) + " relocation for " + |
| toString(Type)); |
| return 0; |
| } |
| |
| template <class ELFT> |
| static void reportUndefined(SymbolBody &Sym, InputSectionBase &S, |
| uint64_t Offset) { |
| if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll) |
| return; |
| |
| bool CanBeExternal = Sym.symbol()->computeBinding() != STB_LOCAL && |
| Sym.getVisibility() == STV_DEFAULT; |
| if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal) |
| return; |
| |
| std::string Msg = |
| "undefined symbol: " + toString(Sym) + "\n>>> referenced by "; |
| |
| std::string Src = S.getSrcMsg<ELFT>(Offset); |
| if (!Src.empty()) |
| Msg += Src + "\n>>> "; |
| Msg += S.getObjMsg<ELFT>(Offset); |
| |
| if (Config->UnresolvedSymbols == UnresolvedPolicy::WarnAll || |
| (Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal)) { |
| warn(Msg); |
| } else { |
| error(Msg); |
| } |
| } |
| |
| template <class RelTy> |
| static std::pair<uint32_t, uint32_t> |
| mergeMipsN32RelTypes(uint32_t Type, uint32_t Offset, RelTy *I, RelTy *E) { |
| // MIPS N32 ABI treats series of successive relocations with the same offset |
| // as a single relocation. The similar approach used by N64 ABI, but this ABI |
| // packs all relocations into the single relocation record. Here we emulate |
| // this for the N32 ABI. Iterate over relocation with the same offset and put |
| // theirs types into the single bit-set. |
| uint32_t Processed = 0; |
| for (; I != E && Offset == I->r_offset; ++I) { |
| ++Processed; |
| Type |= I->getType(Config->IsMips64EL) << (8 * Processed); |
| } |
| return std::make_pair(Type, Processed); |
| } |
| |
| // .eh_frame sections are mergeable input sections, so their input |
| // offsets are not linearly mapped to output section. For each input |
| // offset, we need to find a section piece containing the offset and |
| // add the piece's base address to the input offset to compute the |
| // output offset. That isn't cheap. |
| // |
| // This class is to speed up the offset computation. When we process |
| // relocations, we access offsets in the monotonically increasing |
| // order. So we can optimize for that access pattern. |
| // |
| // For sections other than .eh_frame, this class doesn't do anything. |
| namespace { |
| class OffsetGetter { |
| public: |
| explicit OffsetGetter(InputSectionBase &Sec) { |
| if (auto *Eh = dyn_cast<EhInputSection>(&Sec)) { |
| P = Eh->Pieces; |
| Size = Eh->Pieces.size(); |
| } |
| } |
| |
| // Translates offsets in input sections to offsets in output sections. |
| // Given offset must increase monotonically. We assume that P is |
| // sorted by InputOff. |
| uint64_t get(uint64_t Off) { |
| if (P.empty()) |
| return Off; |
| |
| while (I != Size && P[I].InputOff + P[I].size() <= Off) |
| ++I; |
| if (I == Size) |
| return Off; |
| |
| // P must be contiguous, so there must be no holes in between. |
| assert(P[I].InputOff <= Off && "Relocation not in any piece"); |
| |
| // Offset -1 means that the piece is dead (i.e. garbage collected). |
| if (P[I].OutputOff == -1) |
| return -1; |
| return P[I].OutputOff + Off - P[I].InputOff; |
| } |
| |
| private: |
| ArrayRef<EhSectionPiece> P; |
| size_t I = 0; |
| size_t Size; |
| }; |
| } // namespace |
| |
| template <class ELFT, class GotPltSection> |
| static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt, |
| RelocationSection<ELFT> *Rel, uint32_t Type, |
| SymbolBody &Sym, bool UseSymVA) { |
| Plt->addEntry<ELFT>(Sym); |
| GotPlt->addEntry(Sym); |
| Rel->addReloc({Type, GotPlt, Sym.getGotPltOffset(), UseSymVA, &Sym, 0}); |
| } |
| |
| template <class ELFT> |
| static void addGotEntry(SymbolBody &Sym, bool Preemptible) { |
| InX::Got->addEntry(Sym); |
| |
| uint64_t Off = Sym.getGotOffset(); |
| uint32_t DynType; |
| RelExpr Expr = R_ABS; |
| |
| if (Sym.isTls()) { |
| DynType = Target->TlsGotRel; |
| Expr = R_TLS; |
| } else if (!Preemptible && Config->Pic && !isAbsolute(Sym)) { |
| DynType = Target->RelativeRel; |
| } else { |
| DynType = Target->GotRel; |
| } |
| |
| bool Constant = !Preemptible && !(Config->Pic && !isAbsolute(Sym)); |
| if (!Constant) |
| In<ELFT>::RelaDyn->addReloc( |
| {DynType, InX::Got, Off, !Preemptible, &Sym, 0}); |
| |
| if (Constant || (!Config->IsRela && !Preemptible)) |
| InX::Got->Relocations.push_back({Expr, DynType, Off, 0, &Sym}); |
| } |
| |
| // The reason we have to do this early scan is as follows |
| // * To mmap the output file, we need to know the size |
| // * For that, we need to know how many dynamic relocs we will have. |
| // It might be possible to avoid this by outputting the file with write: |
| // * Write the allocated output sections, computing addresses. |
| // * Apply relocations, recording which ones require a dynamic reloc. |
| // * Write the dynamic relocations. |
| // * Write the rest of the file. |
| // This would have some drawbacks. For example, we would only know if .rela.dyn |
| // is needed after applying relocations. If it is, it will go after rw and rx |
| // sections. Given that it is ro, we will need an extra PT_LOAD. This |
| // complicates things for the dynamic linker and means we would have to reserve |
| // space for the extra PT_LOAD even if we end up not using it. |
| template <class ELFT, class RelTy> |
| static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) { |
| OffsetGetter GetOffset(Sec); |
| |
| for (auto I = Rels.begin(), End = Rels.end(); I != End; ++I) { |
| const RelTy &Rel = *I; |
| SymbolBody &Body = Sec.getFile<ELFT>()->getRelocTargetSym(Rel); |
| uint32_t Type = Rel.getType(Config->IsMips64EL); |
| |
| if (Config->MipsN32Abi) { |
| uint32_t Processed; |
| std::tie(Type, Processed) = |
| mergeMipsN32RelTypes(Type, Rel.r_offset, I + 1, End); |
| I += Processed; |
| } |
| |
| // Compute the offset of this section in the output section. |
| uint64_t Offset = GetOffset.get(Rel.r_offset); |
| if (Offset == uint64_t(-1)) |
| continue; |
| |
| // Report undefined symbols. The fact that we report undefined |
| // symbols here means that we report undefined symbols only when |
| // they have relocations pointing to them. We don't care about |
| // undefined symbols that are in dead-stripped sections. |
| if (!Body.isLocal() && Body.isUndefined() && !Body.symbol()->isWeak()) |
| reportUndefined<ELFT>(Body, Sec, Rel.r_offset); |
| |
| RelExpr Expr = |
| Target->getRelExpr(Type, Body, Sec.Data.begin() + Rel.r_offset); |
| |
| // Ignore "hint" relocations because they are only markers for relaxation. |
| if (isRelExprOneOf<R_HINT, R_NONE>(Expr)) |
| continue; |
| |
| bool Preemptible = isPreemptible(Body, Type); |
| Expr = adjustExpr<ELFT>(Body, Expr, Type, Sec.Data.data() + Rel.r_offset, |
| Sec, Rel.r_offset); |
| if (ErrorCount) |
| continue; |
| |
| // This relocation does not require got entry, but it is relative to got and |
| // needs it to be created. Here we request for that. |
| if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL, |
| R_GOTREL_FROM_END, R_PPC_TOC>(Expr)) |
| InX::Got->HasGotOffRel = true; |
| |
| // Read an addend. |
| int64_t Addend = computeAddend<ELFT>(Rel, Sec.Data.data()); |
| if (Config->EMachine == EM_MIPS) |
| Addend += computeMipsAddend<ELFT>(Rel, Sec, Expr, Body, End); |
| |
| // Process some TLS relocations, including relaxing TLS relocations. |
| // Note that this function does not handle all TLS relocations. |
| if (unsigned Processed = |
| handleTlsRelocation<ELFT>(Type, Body, Sec, Offset, Addend, Expr)) { |
| I += (Processed - 1); |
| continue; |
| } |
| |
| // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. |
| if (needsPlt(Expr) && !Body.isInPlt()) { |
| if (Body.isGnuIFunc() && !Preemptible) |
| addPltEntry(InX::Iplt, InX::IgotPlt, In<ELFT>::RelaIplt, |
| Target->IRelativeRel, Body, true); |
| else |
| addPltEntry(InX::Plt, InX::GotPlt, In<ELFT>::RelaPlt, Target->PltRel, |
| Body, !Preemptible); |
| } |
| |
| // Create a GOT slot if a relocation needs GOT. |
| if (needsGot(Expr)) { |
| if (Config->EMachine == EM_MIPS) { |
| // MIPS ABI has special rules to process GOT entries and doesn't |
| // require relocation entries for them. A special case is TLS |
| // relocations. In that case dynamic loader applies dynamic |
| // relocations to initialize TLS GOT entries. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| InX::MipsGot->addEntry(Body, Addend, Expr); |
| if (Body.isTls() && Body.isPreemptible()) |
| In<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, InX::MipsGot, |
| Body.getGotOffset(), false, &Body, 0}); |
| } else if (!Body.isInGot()) { |
| addGotEntry<ELFT>(Body, Preemptible); |
| } |
| } |
| |
| if (!needsPlt(Expr) && !needsGot(Expr) && isPreemptible(Body, Type)) { |
| // We don't know anything about the finaly symbol. Just ask the dynamic |
| // linker to handle the relocation for us. |
| if (!Target->isPicRel(Type)) |
| error("relocation " + toString(Type) + |
| " cannot be used against shared object; recompile with -fPIC" + |
| getLocation<ELFT>(Sec, Body, Offset)); |
| |
| In<ELFT>::RelaDyn->addReloc( |
| {Target->getDynRel(Type), &Sec, Offset, false, &Body, Addend}); |
| |
| // MIPS ABI turns using of GOT and dynamic relocations inside out. |
| // While regular ABI uses dynamic relocations to fill up GOT entries |
| // MIPS ABI requires dynamic linker to fills up GOT entries using |
| // specially sorted dynamic symbol table. This affects even dynamic |
| // relocations against symbols which do not require GOT entries |
| // creation explicitly, i.e. do not have any GOT-relocations. So if |
| // a preemptible symbol has a dynamic relocation we anyway have |
| // to create a GOT entry for it. |
| // If a non-preemptible symbol has a dynamic relocation against it, |
| // dynamic linker takes it st_value, adds offset and writes down |
| // result of the dynamic relocation. In case of preemptible symbol |
| // dynamic linker performs symbol resolution, writes the symbol value |
| // to the GOT entry and reads the GOT entry when it needs to perform |
| // a dynamic relocation. |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 |
| if (Config->EMachine == EM_MIPS) |
| InX::MipsGot->addEntry(Body, Addend, Expr); |
| continue; |
| } |
| |
| // If the relocation points to something in the file, we can process it. |
| bool IsConstant = |
| isStaticLinkTimeConstant<ELFT>(Expr, Type, Body, Sec, Rel.r_offset); |
| |
| // The size is not going to change, so we fold it in here. |
| if (Expr == R_SIZE) |
| Addend += Body.getSize<ELFT>(); |
| |
| // If the output being produced is position independent, the final value |
| // is still not known. In that case we still need some help from the |
| // dynamic linker. We can however do better than just copying the incoming |
| // relocation. We can process some of it and and just ask the dynamic |
| // linker to add the load address. |
| if (!IsConstant) |
| In<ELFT>::RelaDyn->addReloc( |
| {Target->RelativeRel, &Sec, Offset, true, &Body, Addend}); |
| |
| // If the produced value is a constant, we just remember to write it |
| // when outputting this section. We also have to do it if the format |
| // uses Elf_Rel, since in that case the written value is the addend. |
| if (IsConstant || !RelTy::IsRela) |
| Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| } |
| } |
| |
| template <class ELFT> void elf::scanRelocations(InputSectionBase &S) { |
| if (S.AreRelocsRela) |
| scanRelocs<ELFT>(S, S.relas<ELFT>()); |
| else |
| scanRelocs<ELFT>(S, S.rels<ELFT>()); |
| } |
| |
| // Insert the Thunks for OutputSection OS into their designated place |
| // in the Sections vector, and recalculate the InputSection output section |
| // offsets. |
| // This may invalidate any output section offsets stored outside of InputSection |
| void ThunkCreator::mergeThunks() { |
| for (auto &KV : ThunkSections) { |
| std::vector<InputSection *> *ISR = KV.first; |
| std::vector<ThunkSection *> &Thunks = KV.second; |
| |
| // Order Thunks in ascending OutSecOff |
| auto ThunkCmp = [](const ThunkSection *A, const ThunkSection *B) { |
| return A->OutSecOff < B->OutSecOff; |
| }; |
| std::stable_sort(Thunks.begin(), Thunks.end(), ThunkCmp); |
| |
| // Merge sorted vectors of Thunks and InputSections by OutSecOff |
| std::vector<InputSection *> Tmp; |
| Tmp.reserve(ISR->size() + Thunks.size()); |
| auto MergeCmp = [](const InputSection *A, const InputSection *B) { |
| // std::merge requires a strict weak ordering. |
| if (A->OutSecOff < B->OutSecOff) |
| return true; |
| if (A->OutSecOff == B->OutSecOff) |
| // Check if Thunk is immediately before any specific Target InputSection |
| // for example Mips LA25 Thunks. |
| if (auto *TA = dyn_cast<ThunkSection>(A)) |
| if (TA && TA->getTargetInputSection() == B) |
| return true; |
| return false; |
| }; |
| std::merge(ISR->begin(), ISR->end(), Thunks.begin(), Thunks.end(), |
| std::back_inserter(Tmp), MergeCmp); |
| *ISR = std::move(Tmp); |
| } |
| } |
| |
| static uint32_t findEndOfFirstNonExec(OutputSectionCommand &Cmd) { |
| for (BaseCommand *Base : Cmd.Commands) |
| if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) |
| for (auto *IS : ISD->Sections) |
| if ((IS->Flags & SHF_EXECINSTR) == 0) |
| return IS->OutSecOff + IS->getSize(); |
| return 0; |
| } |
| |
| ThunkSection *ThunkCreator::getOSThunkSec(OutputSectionCommand *Cmd, |
| std::vector<InputSection *> *ISR) { |
| if (CurTS == nullptr) { |
| uint32_t Off = findEndOfFirstNonExec(*Cmd); |
| CurTS = addThunkSection(Cmd->Sec, ISR, Off); |
| } |
| return CurTS; |
| } |
| |
| ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS, OutputSection *OS) { |
| ThunkSection *TS = ThunkedSections.lookup(IS); |
| if (TS) |
| return TS; |
| auto *TOS = IS->getParent(); |
| |
| // Find InputSectionRange within TOS that IS is in |
| OutputSectionCommand *C = Script->getCmd(TOS); |
| std::vector<InputSection *> *Range = nullptr; |
| for (BaseCommand *BC : C->Commands) |
| if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) { |
| InputSection *first = ISD->Sections.front(); |
| InputSection *last = ISD->Sections.back(); |
| if (IS->OutSecOff >= first->OutSecOff && |
| IS->OutSecOff <= last->OutSecOff) { |
| Range = &ISD->Sections; |
| break; |
| } |
| } |
| TS = addThunkSection(TOS, Range, IS->OutSecOff); |
| ThunkedSections[IS] = TS; |
| return TS; |
| } |
| |
| ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS, |
| std::vector<InputSection *> *ISR, |
| uint64_t Off) { |
| auto *TS = make<ThunkSection>(OS, Off); |
| ThunkSections[ISR].push_back(TS); |
| return TS; |
| } |
| |
| std::pair<Thunk *, bool> ThunkCreator::getThunk(SymbolBody &Body, |
| uint32_t Type) { |
| auto Res = ThunkedSymbols.insert({&Body, std::vector<Thunk *>()}); |
| if (!Res.second) { |
| // Check existing Thunks for Body to see if they can be reused |
| for (Thunk *ET : Res.first->second) |
| if (ET->isCompatibleWith(Type)) |
| return std::make_pair(ET, false); |
| } |
| // No existing compatible Thunk in range, create a new one |
| Thunk *T = addThunk(Type, Body); |
| Res.first->second.push_back(T); |
| return std::make_pair(T, true); |
| } |
| |
| // Call Fn on every executable InputSection accessed via the linker script |
| // InputSectionDescription::Sections. |
| void ThunkCreator::forEachExecInputSection( |
| ArrayRef<OutputSectionCommand *> OutputSections, |
| std::function<void(OutputSectionCommand *, std::vector<InputSection *> *, |
| InputSection *)> |
| Fn) { |
| for (OutputSectionCommand *Cmd : OutputSections) { |
| OutputSection *OS = Cmd->Sec; |
| if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR)) |
| continue; |
| for (BaseCommand *BC : Cmd->Commands) |
| if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) { |
| CurTS = nullptr; |
| for (InputSection *IS : ISD->Sections) |
| Fn(Cmd, &ISD->Sections, IS); |
| } |
| } |
| } |
| |
| // Process all relocations from the InputSections that have been assigned |
| // to OutputSections and redirect through Thunks if needed. |
| // |
| // createThunks must be called after scanRelocs has created the Relocations for |
| // each InputSection. It must be called before the static symbol table is |
| // finalized. If any Thunks are added to an OutputSection the output section |
| // offsets of the InputSections will change. |
| // |
| // FIXME: All Thunks are assumed to be in range of the relocation. Range |
| // extension Thunks are not yet supported. |
| bool ThunkCreator::createThunks( |
| ArrayRef<OutputSectionCommand *> OutputSections) { |
| if (Pass > 0) |
| ThunkSections.clear(); |
| |
| // Create all the Thunks and insert them into synthetic ThunkSections. The |
| // ThunkSections are later inserted back into the OutputSection. |
| |
| // We separate the creation of ThunkSections from the insertion of the |
| // ThunkSections back into the OutputSection as ThunkSections are not always |
| // inserted into the same OutputSection as the caller. |
| forEachExecInputSection(OutputSections, [&](OutputSectionCommand *Cmd, |
| std::vector<InputSection *> *ISR, |
| InputSection *IS) { |
| for (Relocation &Rel : IS->Relocations) { |
| SymbolBody &Body = *Rel.Sym; |
| if (Thunks.find(&Body) != Thunks.end() || |
| !Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Body)) |
| continue; |
| Thunk *T; |
| bool IsNew; |
| std::tie(T, IsNew) = getThunk(Body, Rel.Type); |
| if (IsNew) { |
| // Find or create a ThunkSection for the new Thunk |
| ThunkSection *TS; |
| if (auto *TIS = T->getTargetInputSection()) |
| TS = getISThunkSec(TIS, Cmd->Sec); |
| else |
| TS = getOSThunkSec(Cmd, ISR); |
| TS->addThunk(T); |
| Thunks[T->ThunkSym] = T; |
| } |
| // Redirect relocation to Thunk, we never go via the PLT to a Thunk |
| Rel.Sym = T->ThunkSym; |
| Rel.Expr = fromPlt(Rel.Expr); |
| } |
| }); |
| // Merge all created synthetic ThunkSections back into OutputSection |
| mergeThunks(); |
| ++Pass; |
| return !ThunkSections.empty(); |
| } |
| |
| template void elf::scanRelocations<ELF32LE>(InputSectionBase &); |
| template void elf::scanRelocations<ELF32BE>(InputSectionBase &); |
| template void elf::scanRelocations<ELF64LE>(InputSectionBase &); |
| template void elf::scanRelocations<ELF64BE>(InputSectionBase &); |