| //===- InputSection.cpp ---------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputSection.h" |
| #include "Config.h" |
| #include "EhFrame.h" |
| #include "Error.h" |
| #include "InputFiles.h" |
| #include "LinkerScript.h" |
| #include "Memory.h" |
| #include "OutputSections.h" |
| #include "Relocations.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "Thunks.h" |
| #include "llvm/Object/Decompressor.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Compression.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/Threading.h" |
| #include <mutex> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| using namespace llvm::sys; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| std::vector<InputSectionBase *> elf::InputSections; |
| |
| // Returns a string to construct an error message. |
| std::string lld::toString(const InputSectionBase *Sec) { |
| return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); |
| } |
| |
| template <class ELFT> |
| static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File, |
| const typename ELFT::Shdr *Hdr) { |
| if (!File || Hdr->sh_type == SHT_NOBITS) |
| return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); |
| return check(File->getObj().getSectionContents(Hdr)); |
| } |
| |
| InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, |
| uint32_t Type, uint64_t Entsize, |
| uint32_t Link, uint32_t Info, |
| uint32_t Alignment, ArrayRef<uint8_t> Data, |
| StringRef Name, Kind SectionKind) |
| : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, |
| Link), |
| File(File), Data(Data), Repl(this) { |
| Live = !Config->GcSections || !(Flags & SHF_ALLOC); |
| Assigned = false; |
| NumRelocations = 0; |
| AreRelocsRela = false; |
| |
| // The ELF spec states that a value of 0 means the section has |
| // no alignment constraits. |
| uint32_t V = std::max<uint64_t>(Alignment, 1); |
| if (!isPowerOf2_64(V)) |
| fatal(toString(File) + ": section sh_addralign is not a power of 2"); |
| this->Alignment = V; |
| } |
| |
| // Drop SHF_GROUP bit unless we are producing a re-linkable object file. |
| // SHF_GROUP is a marker that a section belongs to some comdat group. |
| // That flag doesn't make sense in an executable. |
| static uint64_t getFlags(uint64_t Flags) { |
| Flags &= ~(uint64_t)SHF_INFO_LINK; |
| if (!Config->Relocatable) |
| Flags &= ~(uint64_t)SHF_GROUP; |
| return Flags; |
| } |
| |
| // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of |
| // March 2017) fail to infer section types for sections starting with |
| // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of |
| // SHF_INIT_ARRAY. As a result, the following assembler directive |
| // creates ".init_array.100" with SHT_PROGBITS, for example. |
| // |
| // .section .init_array.100, "aw" |
| // |
| // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle |
| // incorrect inputs as if they were correct from the beginning. |
| static uint64_t getType(uint64_t Type, StringRef Name) { |
| if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) |
| return SHT_INIT_ARRAY; |
| if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) |
| return SHT_FINI_ARRAY; |
| return Type; |
| } |
| |
| template <class ELFT> |
| InputSectionBase::InputSectionBase(elf::ObjectFile<ELFT> *File, |
| const typename ELFT::Shdr *Hdr, |
| StringRef Name, Kind SectionKind) |
| : InputSectionBase(File, getFlags(Hdr->sh_flags), |
| getType(Hdr->sh_type, Name), Hdr->sh_entsize, |
| Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign, |
| getSectionContents(File, Hdr), Name, SectionKind) { |
| // We reject object files having insanely large alignments even though |
| // they are allowed by the spec. I think 4GB is a reasonable limitation. |
| // We might want to relax this in the future. |
| if (Hdr->sh_addralign > UINT32_MAX) |
| fatal(toString(File) + ": section sh_addralign is too large"); |
| } |
| |
| size_t InputSectionBase::getSize() const { |
| if (auto *S = dyn_cast<SyntheticSection>(this)) |
| return S->getSize(); |
| |
| return Data.size(); |
| } |
| |
| uint64_t InputSectionBase::getOffsetInFile() const { |
| const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); |
| const uint8_t *SecStart = Data.begin(); |
| return SecStart - FileStart; |
| } |
| |
| uint64_t SectionBase::getOffset(uint64_t Offset) const { |
| switch (kind()) { |
| case Output: { |
| auto *OS = cast<OutputSection>(this); |
| // For output sections we treat offset -1 as the end of the section. |
| return Offset == uint64_t(-1) ? OS->Size : Offset; |
| } |
| case Regular: |
| return cast<InputSection>(this)->OutSecOff + Offset; |
| case Synthetic: { |
| auto *IS = cast<InputSection>(this); |
| // For synthetic sections we treat offset -1 as the end of the section. |
| return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); |
| } |
| case EHFrame: |
| // The file crtbeginT.o has relocations pointing to the start of an empty |
| // .eh_frame that is known to be the first in the link. It does that to |
| // identify the start of the output .eh_frame. |
| return Offset; |
| case Merge: |
| const MergeInputSection *MS = cast<MergeInputSection>(this); |
| if (InputSection *IS = MS->getParent()) |
| return IS->OutSecOff + MS->getOffset(Offset); |
| return MS->getOffset(Offset); |
| } |
| llvm_unreachable("invalid section kind"); |
| } |
| |
| OutputSection *SectionBase::getOutputSection() { |
| InputSection *Sec; |
| if (auto *IS = dyn_cast<InputSection>(this)) |
| Sec = IS; |
| else if (auto *MS = dyn_cast<MergeInputSection>(this)) |
| Sec = MS->getParent(); |
| else if (auto *EH = dyn_cast<EhInputSection>(this)) |
| Sec = EH->getParent(); |
| else |
| return cast<OutputSection>(this); |
| return Sec ? Sec->getParent() : nullptr; |
| } |
| |
| // Uncompress section contents. Note that this function is called |
| // from parallel_for_each, so it must be thread-safe. |
| void InputSectionBase::uncompress() { |
| Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data), |
| Config->IsLE, Config->Is64)); |
| |
| size_t Size = Dec.getDecompressedSize(); |
| char *OutputBuf; |
| { |
| static std::mutex Mu; |
| std::lock_guard<std::mutex> Lock(Mu); |
| OutputBuf = BAlloc.Allocate<char>(Size); |
| } |
| |
| if (Error E = Dec.decompress({OutputBuf, Size})) |
| fatal(toString(this) + |
| ": decompress failed: " + llvm::toString(std::move(E))); |
| this->Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size); |
| this->Flags &= ~(uint64_t)SHF_COMPRESSED; |
| } |
| |
| uint64_t SectionBase::getOffset(const DefinedRegular &Sym) const { |
| return getOffset(Sym.Value); |
| } |
| |
| InputSection *InputSectionBase::getLinkOrderDep() const { |
| if ((Flags & SHF_LINK_ORDER) && Link != 0) { |
| InputSectionBase *L = File->getSections()[Link]; |
| if (auto *IS = dyn_cast<InputSection>(L)) |
| return IS; |
| error( |
| "Merge and .eh_frame sections are not supported with SHF_LINK_ORDER " + |
| toString(L)); |
| } |
| return nullptr; |
| } |
| |
| // Returns a source location string. Used to construct an error message. |
| template <class ELFT> |
| std::string InputSectionBase::getLocation(uint64_t Offset) { |
| // We don't have file for synthetic sections. |
| if (getFile<ELFT>() == nullptr) |
| return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") |
| .str(); |
| |
| // First check if we can get desired values from debugging information. |
| std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); |
| if (!LineInfo.empty()) |
| return LineInfo; |
| |
| // File->SourceFile contains STT_FILE symbol that contains a |
| // source file name. If it's missing, we use an object file name. |
| std::string SrcFile = getFile<ELFT>()->SourceFile; |
| if (SrcFile.empty()) |
| SrcFile = toString(File); |
| |
| // Find a function symbol that encloses a given location. |
| for (SymbolBody *B : getFile<ELFT>()->getSymbols()) |
| if (auto *D = dyn_cast<DefinedRegular>(B)) |
| if (D->Section == this && D->Type == STT_FUNC) |
| if (D->Value <= Offset && Offset < D->Value + D->Size) |
| return SrcFile + ":(function " + toString(*D) + ")"; |
| |
| // If there's no symbol, print out the offset in the section. |
| return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); |
| } |
| |
| // Returns a source location string. This function is intended to be |
| // used for constructing an error message. The returned message looks |
| // like this: |
| // |
| // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) |
| // |
| // Returns an empty string if there's no way to get line info. |
| template <class ELFT> std::string InputSectionBase::getSrcMsg(uint64_t Offset) { |
| // Synthetic sections don't have input files. |
| elf::ObjectFile<ELFT> *File = getFile<ELFT>(); |
| if (!File) |
| return ""; |
| |
| Optional<DILineInfo> Info = File->getDILineInfo(this, Offset); |
| |
| // File->SourceFile contains STT_FILE symbol, and that is a last resort. |
| if (!Info) |
| return File->SourceFile; |
| |
| std::string Path = Info->FileName; |
| std::string Filename = path::filename(Path); |
| std::string Lineno = ":" + std::to_string(Info->Line); |
| if (Filename == Path) |
| return Filename + Lineno; |
| return Filename + Lineno + " (" + Path + Lineno + ")"; |
| } |
| |
| // Returns a filename string along with an optional section name. This |
| // function is intended to be used for constructing an error |
| // message. The returned message looks like this: |
| // |
| // path/to/foo.o:(function bar) |
| // |
| // or |
| // |
| // path/to/foo.o:(function bar) in archive path/to/bar.a |
| template <class ELFT> std::string InputSectionBase::getObjMsg(uint64_t Off) { |
| // Synthetic sections don't have input files. |
| elf::ObjectFile<ELFT> *File = getFile<ELFT>(); |
| if (!File) |
| return ("(internal):(" + Name + "+0x" + utohexstr(Off) + ")").str(); |
| std::string Filename = File->getName(); |
| |
| std::string Archive; |
| if (!File->ArchiveName.empty()) |
| Archive = (" in archive " + File->ArchiveName).str(); |
| |
| // Find a symbol that encloses a given location. |
| for (SymbolBody *B : getFile<ELFT>()->getSymbols()) |
| if (auto *D = dyn_cast<DefinedRegular>(B)) |
| if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) |
| return Filename + ":(" + toString(*D) + ")" + Archive; |
| |
| // If there's no symbol, print out the offset in the section. |
| return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) |
| .str(); |
| } |
| |
| InputSectionBase InputSectionBase::Discarded; |
| |
| InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment, |
| ArrayRef<uint8_t> Data, StringRef Name, Kind K) |
| : InputSectionBase(nullptr, Flags, Type, |
| /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, |
| Name, K) {} |
| |
| template <class ELFT> |
| InputSection::InputSection(elf::ObjectFile<ELFT> *F, |
| const typename ELFT::Shdr *Header, StringRef Name) |
| : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} |
| |
| bool InputSection::classof(const SectionBase *S) { |
| return S->kind() == SectionBase::Regular || |
| S->kind() == SectionBase::Synthetic; |
| } |
| |
| bool InputSectionBase::classof(const SectionBase *S) { |
| return S->kind() != Output; |
| } |
| |
| OutputSection *InputSection::getParent() const { |
| return cast_or_null<OutputSection>(Parent); |
| } |
| |
| // Copy SHT_GROUP section contents. Used only for the -r option. |
| template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { |
| // ELFT::Word is the 32-bit integral type in the target endianness. |
| typedef typename ELFT::Word u32; |
| ArrayRef<u32> From = getDataAs<u32>(); |
| auto *To = reinterpret_cast<u32 *>(Buf); |
| |
| // The first entry is not a section number but a flag. |
| *To++ = From[0]; |
| |
| // Adjust section numbers because section numbers in an input object |
| // files are different in the output. |
| ArrayRef<InputSectionBase *> Sections = this->File->getSections(); |
| for (uint32_t Idx : From.slice(1)) |
| *To++ = Sections[Idx]->getOutputSection()->SectionIndex; |
| } |
| |
| InputSectionBase *InputSection::getRelocatedSection() { |
| assert(this->Type == SHT_RELA || this->Type == SHT_REL); |
| ArrayRef<InputSectionBase *> Sections = this->File->getSections(); |
| return Sections[this->Info]; |
| } |
| |
| // This is used for -r and --emit-relocs. We can't use memcpy to copy |
| // relocations because we need to update symbol table offset and section index |
| // for each relocation. So we copy relocations one by one. |
| template <class ELFT, class RelTy> |
| void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { |
| InputSectionBase *RelocatedSection = getRelocatedSection(); |
| |
| // Loop is slow and have complexity O(N*M), where N - amount of |
| // relocations and M - amount of symbols in symbol table. |
| // That happens because getSymbolIndex(...) call below performs |
| // simple linear search. |
| for (const RelTy &Rel : Rels) { |
| uint32_t Type = Rel.getType(Config->IsMips64EL); |
| SymbolBody &Body = this->getFile<ELFT>()->getRelocTargetSym(Rel); |
| |
| auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); |
| Buf += sizeof(RelTy); |
| |
| if (Config->IsRela) |
| P->r_addend = getAddend<ELFT>(Rel); |
| |
| // Output section VA is zero for -r, so r_offset is an offset within the |
| // section, but for --emit-relocs it is an virtual address. |
| P->r_offset = RelocatedSection->getOutputSection()->Addr + |
| RelocatedSection->getOffset(Rel.r_offset); |
| P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Body), Type, |
| Config->IsMips64EL); |
| |
| if (Body.Type == STT_SECTION) { |
| // We combine multiple section symbols into only one per |
| // section. This means we have to update the addend. That is |
| // trivial for Elf_Rela, but for Elf_Rel we have to write to the |
| // section data. We do that by adding to the Relocation vector. |
| |
| // .eh_frame is horribly special and can reference discarded sections. To |
| // avoid having to parse and recreate .eh_frame, we just replace any |
| // relocation in it pointing to discarded sections with R_*_NONE, which |
| // hopefully creates a frame that is ignored at runtime. |
| SectionBase *Section = cast<DefinedRegular>(Body).Section; |
| if (Section == &InputSection::Discarded) { |
| P->setSymbolAndType(0, 0, false); |
| continue; |
| } |
| |
| if (Config->IsRela) { |
| P->r_addend += Body.getVA() - Section->getOutputSection()->Addr; |
| } else if (Config->Relocatable) { |
| const uint8_t *BufLoc = RelocatedSection->Data.begin() + Rel.r_offset; |
| RelocatedSection->Relocations.push_back( |
| {R_ABS, Type, Rel.r_offset, Target->getImplicitAddend(BufLoc, Type), |
| &Body}); |
| } |
| } |
| |
| } |
| } |
| |
| // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak |
| // references specially. The general rule is that the value of the symbol in |
| // this context is the address of the place P. A further special case is that |
| // branch relocations to an undefined weak reference resolve to the next |
| // instruction. |
| static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, |
| uint32_t P) { |
| switch (Type) { |
| // Unresolved branch relocations to weak references resolve to next |
| // instruction, this will be either 2 or 4 bytes on from P. |
| case R_ARM_THM_JUMP11: |
| return P + 2 + A; |
| case R_ARM_CALL: |
| case R_ARM_JUMP24: |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| case R_ARM_PREL31: |
| case R_ARM_THM_JUMP19: |
| case R_ARM_THM_JUMP24: |
| return P + 4 + A; |
| case R_ARM_THM_CALL: |
| // We don't want an interworking BLX to ARM |
| return P + 5 + A; |
| // Unresolved non branch pc-relative relocations |
| // R_ARM_TARGET2 which can be resolved relatively is not present as it never |
| // targets a weak-reference. |
| case R_ARM_MOVW_PREL_NC: |
| case R_ARM_MOVT_PREL: |
| case R_ARM_REL32: |
| case R_ARM_THM_MOVW_PREL_NC: |
| case R_ARM_THM_MOVT_PREL: |
| return P + A; |
| } |
| llvm_unreachable("ARM pc-relative relocation expected\n"); |
| } |
| |
| // The comment above getARMUndefinedRelativeWeakVA applies to this function. |
| static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, |
| uint64_t P) { |
| switch (Type) { |
| // Unresolved branch relocations to weak references resolve to next |
| // instruction, this is 4 bytes on from P. |
| case R_AARCH64_CALL26: |
| case R_AARCH64_CONDBR19: |
| case R_AARCH64_JUMP26: |
| case R_AARCH64_TSTBR14: |
| return P + 4 + A; |
| // Unresolved non branch pc-relative relocations |
| case R_AARCH64_PREL16: |
| case R_AARCH64_PREL32: |
| case R_AARCH64_PREL64: |
| case R_AARCH64_ADR_PREL_LO21: |
| return P + A; |
| } |
| llvm_unreachable("AArch64 pc-relative relocation expected\n"); |
| } |
| |
| // ARM SBREL relocations are of the form S + A - B where B is the static base |
| // The ARM ABI defines base to be "addressing origin of the output segment |
| // defining the symbol S". We defined the "addressing origin"/static base to be |
| // the base of the PT_LOAD segment containing the Body. |
| // The procedure call standard only defines a Read Write Position Independent |
| // RWPI variant so in practice we should expect the static base to be the base |
| // of the RW segment. |
| static uint64_t getARMStaticBase(const SymbolBody &Body) { |
| OutputSection *OS = Body.getOutputSection(); |
| if (!OS || !OS->FirstInPtLoad) |
| fatal("SBREL relocation to " + Body.getName() + " without static base"); |
| return OS->FirstInPtLoad->Addr; |
| } |
| |
| static uint64_t getRelocTargetVA(uint32_t Type, int64_t A, uint64_t P, |
| const SymbolBody &Body, RelExpr Expr) { |
| switch (Expr) { |
| case R_ABS: |
| case R_RELAX_GOT_PC_NOPIC: |
| return Body.getVA(A); |
| case R_ARM_SBREL: |
| return Body.getVA(A) - getARMStaticBase(Body); |
| case R_GOT: |
| case R_RELAX_TLS_GD_TO_IE_ABS: |
| return Body.getGotVA() + A; |
| case R_GOTONLY_PC: |
| return InX::Got->getVA() + A - P; |
| case R_GOTONLY_PC_FROM_END: |
| return InX::Got->getVA() + A - P + InX::Got->getSize(); |
| case R_GOTREL: |
| return Body.getVA(A) - InX::Got->getVA(); |
| case R_GOTREL_FROM_END: |
| return Body.getVA(A) - InX::Got->getVA() - InX::Got->getSize(); |
| case R_GOT_FROM_END: |
| case R_RELAX_TLS_GD_TO_IE_END: |
| return Body.getGotOffset() + A - InX::Got->getSize(); |
| case R_GOT_OFF: |
| return Body.getGotOffset() + A; |
| case R_GOT_PAGE_PC: |
| case R_RELAX_TLS_GD_TO_IE_PAGE_PC: |
| return getAArch64Page(Body.getGotVA() + A) - getAArch64Page(P); |
| case R_GOT_PC: |
| case R_RELAX_TLS_GD_TO_IE: |
| return Body.getGotVA() + A - P; |
| case R_HINT: |
| case R_NONE: |
| case R_TLSDESC_CALL: |
| llvm_unreachable("cannot relocate hint relocs"); |
| case R_MIPS_GOTREL: |
| return Body.getVA(A) - InX::MipsGot->getGp(); |
| case R_MIPS_GOT_GP: |
| return InX::MipsGot->getGp() + A; |
| case R_MIPS_GOT_GP_PC: { |
| // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target |
| // is _gp_disp symbol. In that case we should use the following |
| // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| uint64_t V = InX::MipsGot->getGp() + A - P; |
| if (Type == R_MIPS_LO16) |
| V += 4; |
| return V; |
| } |
| case R_MIPS_GOT_LOCAL_PAGE: |
| // If relocation against MIPS local symbol requires GOT entry, this entry |
| // should be initialized by 'page address'. This address is high 16-bits |
| // of sum the symbol's value and the addend. |
| return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Body, A) - |
| InX::MipsGot->getGp(); |
| case R_MIPS_GOT_OFF: |
| case R_MIPS_GOT_OFF32: |
| // In case of MIPS if a GOT relocation has non-zero addend this addend |
| // should be applied to the GOT entry content not to the GOT entry offset. |
| // That is why we use separate expression type. |
| return InX::MipsGot->getVA() + InX::MipsGot->getBodyEntryOffset(Body, A) - |
| InX::MipsGot->getGp(); |
| case R_MIPS_TLSGD: |
| return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + |
| InX::MipsGot->getGlobalDynOffset(Body) - InX::MipsGot->getGp(); |
| case R_MIPS_TLSLD: |
| return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + |
| InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp(); |
| case R_PAGE_PC: |
| case R_PLT_PAGE_PC: { |
| uint64_t Dest; |
| if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) |
| Dest = getAArch64Page(A); |
| else |
| Dest = getAArch64Page(Body.getVA(A)); |
| return Dest - getAArch64Page(P); |
| } |
| case R_PC: { |
| uint64_t Dest; |
| if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) { |
| // On ARM and AArch64 a branch to an undefined weak resolves to the |
| // next instruction, otherwise the place. |
| if (Config->EMachine == EM_ARM) |
| Dest = getARMUndefinedRelativeWeakVA(Type, A, P); |
| else if (Config->EMachine == EM_AARCH64) |
| Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); |
| else |
| Dest = Body.getVA(A); |
| } else { |
| Dest = Body.getVA(A); |
| } |
| return Dest - P; |
| } |
| case R_PLT: |
| return Body.getPltVA() + A; |
| case R_PLT_PC: |
| case R_PPC_PLT_OPD: |
| return Body.getPltVA() + A - P; |
| case R_PPC_OPD: { |
| uint64_t SymVA = Body.getVA(A); |
| // If we have an undefined weak symbol, we might get here with a symbol |
| // address of zero. That could overflow, but the code must be unreachable, |
| // so don't bother doing anything at all. |
| if (!SymVA) |
| return 0; |
| if (Out::Opd) { |
| // If this is a local call, and we currently have the address of a |
| // function-descriptor, get the underlying code address instead. |
| uint64_t OpdStart = Out::Opd->Addr; |
| uint64_t OpdEnd = OpdStart + Out::Opd->Size; |
| bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; |
| if (InOpd) |
| SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); |
| } |
| return SymVA - P; |
| } |
| case R_PPC_TOC: |
| return getPPC64TocBase() + A; |
| case R_RELAX_GOT_PC: |
| return Body.getVA(A) - P; |
| case R_RELAX_TLS_GD_TO_LE: |
| case R_RELAX_TLS_IE_TO_LE: |
| case R_RELAX_TLS_LD_TO_LE: |
| case R_TLS: |
| // A weak undefined TLS symbol resolves to the base of the TLS |
| // block, i.e. gets a value of zero. If we pass --gc-sections to |
| // lld and .tbss is not referenced, it gets reclaimed and we don't |
| // create a TLS program header. Therefore, we resolve this |
| // statically to zero. |
| if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && |
| Body.symbol()->isWeak()) |
| return 0; |
| if (Target->TcbSize) |
| return Body.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); |
| return Body.getVA(A) - Out::TlsPhdr->p_memsz; |
| case R_RELAX_TLS_GD_TO_LE_NEG: |
| case R_NEG_TLS: |
| return Out::TlsPhdr->p_memsz - Body.getVA(A); |
| case R_SIZE: |
| return A; // Body.getSize was already folded into the addend. |
| case R_TLSDESC: |
| return InX::Got->getGlobalDynAddr(Body) + A; |
| case R_TLSDESC_PAGE: |
| return getAArch64Page(InX::Got->getGlobalDynAddr(Body) + A) - |
| getAArch64Page(P); |
| case R_TLSGD: |
| return InX::Got->getGlobalDynOffset(Body) + A - InX::Got->getSize(); |
| case R_TLSGD_PC: |
| return InX::Got->getGlobalDynAddr(Body) + A - P; |
| case R_TLSLD: |
| return InX::Got->getTlsIndexOff() + A - InX::Got->getSize(); |
| case R_TLSLD_PC: |
| return InX::Got->getTlsIndexVA() + A - P; |
| } |
| llvm_unreachable("Invalid expression"); |
| } |
| |
| // This function applies relocations to sections without SHF_ALLOC bit. |
| // Such sections are never mapped to memory at runtime. Debug sections are |
| // an example. Relocations in non-alloc sections are much easier to |
| // handle than in allocated sections because it will never need complex |
| // treatement such as GOT or PLT (because at runtime no one refers them). |
| // So, we handle relocations for non-alloc sections directly in this |
| // function as a performance optimization. |
| template <class ELFT, class RelTy> |
| void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { |
| for (const RelTy &Rel : Rels) { |
| uint32_t Type = Rel.getType(Config->IsMips64EL); |
| uint64_t Offset = getOffset(Rel.r_offset); |
| uint8_t *BufLoc = Buf + Offset; |
| int64_t Addend = getAddend<ELFT>(Rel); |
| if (!RelTy::IsRela) |
| Addend += Target->getImplicitAddend(BufLoc, Type); |
| |
| SymbolBody &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); |
| RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); |
| if (Expr == R_NONE) |
| continue; |
| if (Expr != R_ABS) { |
| error(this->getLocation<ELFT>(Offset) + ": has non-ABS reloc"); |
| return; |
| } |
| |
| uint64_t AddrLoc = getParent()->Addr + Offset; |
| uint64_t SymVA = 0; |
| if (!Sym.isTls() || Out::TlsPhdr) |
| SymVA = SignExtend64<sizeof(typename ELFT::uint) * 8>( |
| getRelocTargetVA(Type, Addend, AddrLoc, Sym, R_ABS)); |
| Target->relocateOne(BufLoc, Type, SymVA); |
| } |
| } |
| |
| template <class ELFT> elf::ObjectFile<ELFT> *InputSectionBase::getFile() const { |
| return cast_or_null<elf::ObjectFile<ELFT>>(File); |
| } |
| |
| template <class ELFT> |
| void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { |
| if (Flags & SHF_ALLOC) |
| relocateAlloc(Buf, BufEnd); |
| else |
| relocateNonAlloc<ELFT>(Buf, BufEnd); |
| } |
| |
| template <class ELFT> |
| void InputSectionBase::relocateNonAlloc(uint8_t *Buf, uint8_t *BufEnd) { |
| // scanReloc function in Writer.cpp constructs Relocations |
| // vector only for SHF_ALLOC'ed sections. For other sections, |
| // we handle relocations directly here. |
| auto *IS = cast<InputSection>(this); |
| assert(!(IS->Flags & SHF_ALLOC)); |
| if (IS->AreRelocsRela) |
| IS->relocateNonAlloc<ELFT>(Buf, IS->template relas<ELFT>()); |
| else |
| IS->relocateNonAlloc<ELFT>(Buf, IS->template rels<ELFT>()); |
| } |
| |
| void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { |
| assert(Flags & SHF_ALLOC); |
| const unsigned Bits = Config->Wordsize * 8; |
| for (const Relocation &Rel : Relocations) { |
| uint64_t Offset = getOffset(Rel.Offset); |
| uint8_t *BufLoc = Buf + Offset; |
| uint32_t Type = Rel.Type; |
| |
| uint64_t AddrLoc = getOutputSection()->Addr + Offset; |
| RelExpr Expr = Rel.Expr; |
| uint64_t TargetVA = SignExtend64( |
| getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits); |
| |
| switch (Expr) { |
| case R_RELAX_GOT_PC: |
| case R_RELAX_GOT_PC_NOPIC: |
| Target->relaxGot(BufLoc, TargetVA); |
| break; |
| case R_RELAX_TLS_IE_TO_LE: |
| Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); |
| break; |
| case R_RELAX_TLS_LD_TO_LE: |
| Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); |
| break; |
| case R_RELAX_TLS_GD_TO_LE: |
| case R_RELAX_TLS_GD_TO_LE_NEG: |
| Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); |
| break; |
| case R_RELAX_TLS_GD_TO_IE: |
| case R_RELAX_TLS_GD_TO_IE_ABS: |
| case R_RELAX_TLS_GD_TO_IE_PAGE_PC: |
| case R_RELAX_TLS_GD_TO_IE_END: |
| Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); |
| break; |
| case R_PPC_PLT_OPD: |
| // Patch a nop (0x60000000) to a ld. |
| if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) |
| write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) |
| LLVM_FALLTHROUGH; |
| default: |
| Target->relocateOne(BufLoc, Type, TargetVA); |
| break; |
| } |
| } |
| } |
| |
| template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { |
| if (this->Type == SHT_NOBITS) |
| return; |
| |
| if (auto *S = dyn_cast<SyntheticSection>(this)) { |
| S->writeTo(Buf + OutSecOff); |
| return; |
| } |
| |
| // If -r or --emit-relocs is given, then an InputSection |
| // may be a relocation section. |
| if (this->Type == SHT_RELA) { |
| copyRelocations<ELFT>(Buf + OutSecOff, |
| this->template getDataAs<typename ELFT::Rela>()); |
| return; |
| } |
| if (this->Type == SHT_REL) { |
| copyRelocations<ELFT>(Buf + OutSecOff, |
| this->template getDataAs<typename ELFT::Rel>()); |
| return; |
| } |
| |
| // If -r is given, we may have a SHT_GROUP section. |
| if (this->Type == SHT_GROUP) { |
| copyShtGroup<ELFT>(Buf + OutSecOff); |
| return; |
| } |
| |
| // Copy section contents from source object file to output file |
| // and then apply relocations. |
| memcpy(Buf + OutSecOff, Data.data(), Data.size()); |
| uint8_t *BufEnd = Buf + OutSecOff + Data.size(); |
| this->relocate<ELFT>(Buf, BufEnd); |
| } |
| |
| void InputSection::replace(InputSection *Other) { |
| this->Alignment = std::max(this->Alignment, Other->Alignment); |
| Other->Repl = this->Repl; |
| Other->Live = false; |
| } |
| |
| template <class ELFT> |
| EhInputSection::EhInputSection(elf::ObjectFile<ELFT> *F, |
| const typename ELFT::Shdr *Header, |
| StringRef Name) |
| : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) { |
| // Mark .eh_frame sections as live by default because there are |
| // usually no relocations that point to .eh_frames. Otherwise, |
| // the garbage collector would drop all .eh_frame sections. |
| this->Live = true; |
| } |
| |
| SyntheticSection *EhInputSection::getParent() const { |
| return cast_or_null<SyntheticSection>(Parent); |
| } |
| |
| bool EhInputSection::classof(const SectionBase *S) { |
| return S->kind() == InputSectionBase::EHFrame; |
| } |
| |
| // Returns the index of the first relocation that points to a region between |
| // Begin and Begin+Size. |
| template <class IntTy, class RelTy> |
| static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, |
| unsigned &RelocI) { |
| // Start search from RelocI for fast access. That works because the |
| // relocations are sorted in .eh_frame. |
| for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { |
| const RelTy &Rel = Rels[RelocI]; |
| if (Rel.r_offset < Begin) |
| continue; |
| |
| if (Rel.r_offset < Begin + Size) |
| return RelocI; |
| return -1; |
| } |
| return -1; |
| } |
| |
| // .eh_frame is a sequence of CIE or FDE records. |
| // This function splits an input section into records and returns them. |
| template <class ELFT> void EhInputSection::split() { |
| // Early exit if already split. |
| if (!this->Pieces.empty()) |
| return; |
| |
| if (this->NumRelocations) { |
| if (this->AreRelocsRela) |
| split<ELFT>(this->relas<ELFT>()); |
| else |
| split<ELFT>(this->rels<ELFT>()); |
| return; |
| } |
| split<ELFT>(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); |
| } |
| |
| template <class ELFT, class RelTy> |
| void EhInputSection::split(ArrayRef<RelTy> Rels) { |
| ArrayRef<uint8_t> Data = this->Data; |
| unsigned RelI = 0; |
| for (size_t Off = 0, End = Data.size(); Off != End;) { |
| size_t Size = readEhRecordSize<ELFT>(this, Off); |
| this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); |
| // The empty record is the end marker. |
| if (Size == 4) |
| break; |
| Off += Size; |
| } |
| } |
| |
| static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { |
| // Optimize the common case. |
| StringRef S((const char *)A.data(), A.size()); |
| if (EntSize == 1) |
| return S.find(0); |
| |
| for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { |
| const char *B = S.begin() + I; |
| if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) |
| return I; |
| } |
| return StringRef::npos; |
| } |
| |
| SyntheticSection *MergeInputSection::getParent() const { |
| return cast_or_null<SyntheticSection>(Parent); |
| } |
| |
| // Split SHF_STRINGS section. Such section is a sequence of |
| // null-terminated strings. |
| void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { |
| size_t Off = 0; |
| bool IsAlloc = this->Flags & SHF_ALLOC; |
| while (!Data.empty()) { |
| size_t End = findNull(Data, EntSize); |
| if (End == StringRef::npos) |
| fatal(toString(this) + ": string is not null terminated"); |
| size_t Size = End + EntSize; |
| Pieces.emplace_back(Off, !IsAlloc); |
| Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); |
| Data = Data.slice(Size); |
| Off += Size; |
| } |
| } |
| |
| // Split non-SHF_STRINGS section. Such section is a sequence of |
| // fixed size records. |
| void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, |
| size_t EntSize) { |
| size_t Size = Data.size(); |
| assert((Size % EntSize) == 0); |
| bool IsAlloc = this->Flags & SHF_ALLOC; |
| for (unsigned I = 0, N = Size; I != N; I += EntSize) { |
| Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); |
| Pieces.emplace_back(I, !IsAlloc); |
| } |
| } |
| |
| template <class ELFT> |
| MergeInputSection::MergeInputSection(elf::ObjectFile<ELFT> *F, |
| const typename ELFT::Shdr *Header, |
| StringRef Name) |
| : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} |
| |
| // This function is called after we obtain a complete list of input sections |
| // that need to be linked. This is responsible to split section contents |
| // into small chunks for further processing. |
| // |
| // Note that this function is called from parallel_for_each. This must be |
| // thread-safe (i.e. no memory allocation from the pools). |
| void MergeInputSection::splitIntoPieces() { |
| ArrayRef<uint8_t> Data = this->Data; |
| uint64_t EntSize = this->Entsize; |
| if (this->Flags & SHF_STRINGS) |
| splitStrings(Data, EntSize); |
| else |
| splitNonStrings(Data, EntSize); |
| |
| if (Config->GcSections && (this->Flags & SHF_ALLOC)) |
| for (uint64_t Off : LiveOffsets) |
| this->getSectionPiece(Off)->Live = true; |
| } |
| |
| bool MergeInputSection::classof(const SectionBase *S) { |
| return S->kind() == InputSectionBase::Merge; |
| } |
| |
| // Do binary search to get a section piece at a given input offset. |
| SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { |
| auto *This = static_cast<const MergeInputSection *>(this); |
| return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); |
| } |
| |
| template <class It, class T, class Compare> |
| static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { |
| size_t Size = std::distance(First, Last); |
| assert(Size != 0); |
| while (Size != 1) { |
| size_t H = Size / 2; |
| const It MI = First + H; |
| Size -= H; |
| First = Comp(Value, *MI) ? First : First + H; |
| } |
| return Comp(Value, *First) ? First : First + 1; |
| } |
| |
| const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { |
| uint64_t Size = this->Data.size(); |
| if (Offset >= Size) |
| fatal(toString(this) + ": entry is past the end of the section"); |
| |
| // Find the element this offset points to. |
| auto I = fastUpperBound( |
| Pieces.begin(), Pieces.end(), Offset, |
| [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); |
| --I; |
| return &*I; |
| } |
| |
| // Returns the offset in an output section for a given input offset. |
| // Because contents of a mergeable section is not contiguous in output, |
| // it is not just an addition to a base output offset. |
| uint64_t MergeInputSection::getOffset(uint64_t Offset) const { |
| // Initialize OffsetMap lazily. |
| llvm::call_once(InitOffsetMap, [&] { |
| OffsetMap.reserve(Pieces.size()); |
| for (const SectionPiece &Piece : Pieces) |
| OffsetMap[Piece.InputOff] = Piece.OutputOff; |
| }); |
| |
| // Find a string starting at a given offset. |
| auto It = OffsetMap.find(Offset); |
| if (It != OffsetMap.end()) |
| return It->second; |
| |
| if (!this->Live) |
| return 0; |
| |
| // If Offset is not at beginning of a section piece, it is not in the map. |
| // In that case we need to search from the original section piece vector. |
| const SectionPiece &Piece = *this->getSectionPiece(Offset); |
| if (!Piece.Live) |
| return 0; |
| |
| uint64_t Addend = Offset - Piece.InputOff; |
| return Piece.OutputOff + Addend; |
| } |
| |
| template InputSection::InputSection(elf::ObjectFile<ELF32LE> *, |
| const ELF32LE::Shdr *, StringRef); |
| template InputSection::InputSection(elf::ObjectFile<ELF32BE> *, |
| const ELF32BE::Shdr *, StringRef); |
| template InputSection::InputSection(elf::ObjectFile<ELF64LE> *, |
| const ELF64LE::Shdr *, StringRef); |
| template InputSection::InputSection(elf::ObjectFile<ELF64BE> *, |
| const ELF64BE::Shdr *, StringRef); |
| |
| template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); |
| template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); |
| template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); |
| template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); |
| |
| template std::string InputSectionBase::getSrcMsg<ELF32LE>(uint64_t); |
| template std::string InputSectionBase::getSrcMsg<ELF32BE>(uint64_t); |
| template std::string InputSectionBase::getSrcMsg<ELF64LE>(uint64_t); |
| template std::string InputSectionBase::getSrcMsg<ELF64BE>(uint64_t); |
| |
| template std::string InputSectionBase::getObjMsg<ELF32LE>(uint64_t); |
| template std::string InputSectionBase::getObjMsg<ELF32BE>(uint64_t); |
| template std::string InputSectionBase::getObjMsg<ELF64LE>(uint64_t); |
| template std::string InputSectionBase::getObjMsg<ELF64BE>(uint64_t); |
| |
| template void InputSection::writeTo<ELF32LE>(uint8_t *); |
| template void InputSection::writeTo<ELF32BE>(uint8_t *); |
| template void InputSection::writeTo<ELF64LE>(uint8_t *); |
| template void InputSection::writeTo<ELF64BE>(uint8_t *); |
| |
| template elf::ObjectFile<ELF32LE> *InputSectionBase::getFile<ELF32LE>() const; |
| template elf::ObjectFile<ELF32BE> *InputSectionBase::getFile<ELF32BE>() const; |
| template elf::ObjectFile<ELF64LE> *InputSectionBase::getFile<ELF64LE>() const; |
| template elf::ObjectFile<ELF64BE> *InputSectionBase::getFile<ELF64BE>() const; |
| |
| template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF32LE> *, |
| const ELF32LE::Shdr *, StringRef); |
| template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF32BE> *, |
| const ELF32BE::Shdr *, StringRef); |
| template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF64LE> *, |
| const ELF64LE::Shdr *, StringRef); |
| template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF64BE> *, |
| const ELF64BE::Shdr *, StringRef); |
| |
| template EhInputSection::EhInputSection(elf::ObjectFile<ELF32LE> *, |
| const ELF32LE::Shdr *, StringRef); |
| template EhInputSection::EhInputSection(elf::ObjectFile<ELF32BE> *, |
| const ELF32BE::Shdr *, StringRef); |
| template EhInputSection::EhInputSection(elf::ObjectFile<ELF64LE> *, |
| const ELF64LE::Shdr *, StringRef); |
| template EhInputSection::EhInputSection(elf::ObjectFile<ELF64BE> *, |
| const ELF64BE::Shdr *, StringRef); |
| |
| template void EhInputSection::split<ELF32LE>(); |
| template void EhInputSection::split<ELF32BE>(); |
| template void EhInputSection::split<ELF64LE>(); |
| template void EhInputSection::split<ELF64BE>(); |