blob: 5d84cd2c5e27640c0289c7f2b993eadda685b85d [file] [log] [blame]
//===- X86.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Error.h"
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class X86 : public TargetInfo {
public:
X86();
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const override;
int64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
void writeGotPltHeader(uint8_t *Buf) const override;
uint32_t getDynRel(uint32_t Type) const override;
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override;
void writePltHeader(uint8_t *Buf) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
RelExpr Expr) const override;
void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
};
} // namespace
X86::X86() {
GotBaseSymOff = -1;
CopyRel = R_386_COPY;
GotRel = R_386_GLOB_DAT;
PltRel = R_386_JUMP_SLOT;
IRelativeRel = R_386_IRELATIVE;
RelativeRel = R_386_RELATIVE;
TlsGotRel = R_386_TLS_TPOFF;
TlsModuleIndexRel = R_386_TLS_DTPMOD32;
TlsOffsetRel = R_386_TLS_DTPOFF32;
GotEntrySize = 4;
GotPltEntrySize = 4;
PltEntrySize = 16;
PltHeaderSize = 16;
TlsGdRelaxSkip = 2;
TrapInstr = 0xcccccccc; // 0xcc = INT3
}
RelExpr X86::getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const {
switch (Type) {
case R_386_8:
case R_386_16:
case R_386_32:
case R_386_TLS_LDO_32:
return R_ABS;
case R_386_TLS_GD:
return R_TLSGD;
case R_386_TLS_LDM:
return R_TLSLD;
case R_386_PLT32:
return R_PLT_PC;
case R_386_PC8:
case R_386_PC16:
case R_386_PC32:
return R_PC;
case R_386_GOTPC:
return R_GOTONLY_PC_FROM_END;
case R_386_TLS_IE:
return R_GOT;
case R_386_GOT32:
case R_386_GOT32X:
// These relocations can be calculated in two different ways.
// Usual calculation is G + A - GOT what means an offset in GOT table
// (R_GOT_FROM_END). When instruction pointed by relocation has no base
// register, then relocations can be used when PIC code is disabled. In that
// case calculation is G + A, it resolves to an address of entry in GOT
// (R_GOT) and not an offset.
//
// To check that instruction has no base register we scan ModR/M byte.
// See "Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte"
// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
// 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
if ((Loc[-1] & 0xc7) != 0x5)
return R_GOT_FROM_END;
if (Config->Pic)
error(toString(S.File) + ": relocation " + toString(Type) + " against '" +
S.getName() +
"' without base register can not be used when PIC enabled");
return R_GOT;
case R_386_TLS_GOTIE:
return R_GOT_FROM_END;
case R_386_GOTOFF:
return R_GOTREL_FROM_END;
case R_386_TLS_LE:
return R_TLS;
case R_386_TLS_LE_32:
return R_NEG_TLS;
case R_386_NONE:
return R_NONE;
default:
error(toString(S.File) + ": unknown relocation type: " + toString(Type));
return R_HINT;
}
}
RelExpr X86::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
RelExpr Expr) const {
switch (Expr) {
default:
return Expr;
case R_RELAX_TLS_GD_TO_IE:
return R_RELAX_TLS_GD_TO_IE_END;
case R_RELAX_TLS_GD_TO_LE:
return R_RELAX_TLS_GD_TO_LE_NEG;
}
}
void X86::writeGotPltHeader(uint8_t *Buf) const {
write32le(Buf, InX::Dynamic->getVA());
}
void X86::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
// Entries in .got.plt initially points back to the corresponding
// PLT entries with a fixed offset to skip the first instruction.
write32le(Buf, S.getPltVA() + 6);
}
void X86::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
// An x86 entry is the address of the ifunc resolver function.
write32le(Buf, S.getVA());
}
uint32_t X86::getDynRel(uint32_t Type) const {
if (Type == R_386_TLS_LE)
return R_386_TLS_TPOFF;
if (Type == R_386_TLS_LE_32)
return R_386_TLS_TPOFF32;
return Type;
}
void X86::writePltHeader(uint8_t *Buf) const {
if (Config->Pic) {
const uint8_t V[] = {
0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl GOTPLT+4(%ebx)
0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *GOTPLT+8(%ebx)
0x90, 0x90, 0x90, 0x90 // nop
};
memcpy(Buf, V, sizeof(V));
uint32_t Ebx = InX::Got->getVA() + InX::Got->getSize();
uint32_t GotPlt = InX::GotPlt->getVA() - Ebx;
write32le(Buf + 2, GotPlt + 4);
write32le(Buf + 8, GotPlt + 8);
return;
}
const uint8_t PltData[] = {
0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOTPLT+4)
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOTPLT+8)
0x90, 0x90, 0x90, 0x90 // nop
};
memcpy(Buf, PltData, sizeof(PltData));
uint32_t GotPlt = InX::GotPlt->getVA();
write32le(Buf + 2, GotPlt + 4);
write32le(Buf + 8, GotPlt + 8);
}
void X86::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
const uint8_t Inst[] = {
0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
0x68, 0x00, 0x00, 0x00, 0x00, // pushl $reloc_offset
0xe9, 0x00, 0x00, 0x00, 0x00 // jmp .PLT0@PC
};
memcpy(Buf, Inst, sizeof(Inst));
if (Config->Pic) {
// jmp *foo@GOT(%ebx)
uint32_t Ebx = InX::Got->getVA() + InX::Got->getSize();
Buf[1] = 0xa3;
write32le(Buf + 2, GotPltEntryAddr - Ebx);
} else {
// jmp *foo_in_GOT
Buf[1] = 0x25;
write32le(Buf + 2, GotPltEntryAddr);
}
write32le(Buf + 7, RelOff);
write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
}
int64_t X86::getImplicitAddend(const uint8_t *Buf, uint32_t Type) const {
switch (Type) {
default:
return 0;
case R_386_8:
case R_386_PC8:
return SignExtend64<8>(*Buf);
case R_386_16:
case R_386_PC16:
return SignExtend64<16>(read16le(Buf));
case R_386_32:
case R_386_GOT32:
case R_386_GOT32X:
case R_386_GOTOFF:
case R_386_GOTPC:
case R_386_PC32:
case R_386_PLT32:
case R_386_TLS_LDO_32:
case R_386_TLS_LE:
return SignExtend64<32>(read32le(Buf));
}
}
void X86::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
// R_386_{PC,}{8,16} are not part of the i386 psABI, but they are
// being used for some 16-bit programs such as boot loaders, so
// we want to support them.
switch (Type) {
case R_386_8:
checkUInt<8>(Loc, Val, Type);
*Loc = Val;
break;
case R_386_PC8:
checkInt<8>(Loc, Val, Type);
*Loc = Val;
break;
case R_386_16:
checkUInt<16>(Loc, Val, Type);
write16le(Loc, Val);
break;
case R_386_PC16:
// R_386_PC16 is normally used with 16 bit code. In that situation
// the PC is 16 bits, just like the addend. This means that it can
// point from any 16 bit address to any other if the possibility
// of wrapping is included.
// The only restriction we have to check then is that the destination
// address fits in 16 bits. That is impossible to do here. The problem is
// that we are passed the final value, which already had the
// current location subtracted from it.
// We just check that Val fits in 17 bits. This misses some cases, but
// should have no false positives.
checkInt<17>(Loc, Val, Type);
write16le(Loc, Val);
break;
default:
checkInt<32>(Loc, Val, Type);
write32le(Loc, Val);
}
}
void X86::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
// Convert
// leal x@tlsgd(, %ebx, 1),
// call __tls_get_addr@plt
// to
// movl %gs:0,%eax
// subl $x@ntpoff,%eax
const uint8_t Inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
0x81, 0xe8, 0x00, 0x00, 0x00, 0x00 // subl 0(%ebx), %eax
};
memcpy(Loc - 3, Inst, sizeof(Inst));
write32le(Loc + 5, Val);
}
void X86::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
// Convert
// leal x@tlsgd(, %ebx, 1),
// call __tls_get_addr@plt
// to
// movl %gs:0, %eax
// addl x@gotntpoff(%ebx), %eax
const uint8_t Inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
0x03, 0x83, 0x00, 0x00, 0x00, 0x00 // addl 0(%ebx), %eax
};
memcpy(Loc - 3, Inst, sizeof(Inst));
write32le(Loc + 5, Val);
}
// In some conditions, relocations can be optimized to avoid using GOT.
// This function does that for Initial Exec to Local Exec case.
void X86::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
// Ulrich's document section 6.2 says that @gotntpoff can
// be used with MOVL or ADDL instructions.
// @indntpoff is similar to @gotntpoff, but for use in
// position dependent code.
uint8_t Reg = (Loc[-1] >> 3) & 7;
if (Type == R_386_TLS_IE) {
if (Loc[-1] == 0xa1) {
// "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
// This case is different from the generic case below because
// this is a 5 byte instruction while below is 6 bytes.
Loc[-1] = 0xb8;
} else if (Loc[-2] == 0x8b) {
// "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
Loc[-2] = 0xc7;
Loc[-1] = 0xc0 | Reg;
} else {
// "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
Loc[-2] = 0x81;
Loc[-1] = 0xc0 | Reg;
}
} else {
assert(Type == R_386_TLS_GOTIE);
if (Loc[-2] == 0x8b) {
// "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
Loc[-2] = 0xc7;
Loc[-1] = 0xc0 | Reg;
} else {
// "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
Loc[-2] = 0x8d;
Loc[-1] = 0x80 | (Reg << 3) | Reg;
}
}
write32le(Loc, Val);
}
void X86::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
if (Type == R_386_TLS_LDO_32) {
write32le(Loc, Val);
return;
}
// Convert
// leal foo(%reg),%eax
// call ___tls_get_addr
// to
// movl %gs:0,%eax
// nop
// leal 0(%esi,1),%esi
const uint8_t Inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
0x90, // nop
0x8d, 0x74, 0x26, 0x00 // leal 0(%esi,1),%esi
};
memcpy(Loc - 2, Inst, sizeof(Inst));
}
namespace {
class RetpolinePic : public X86 {
public:
RetpolinePic();
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
void writePltHeader(uint8_t *Buf) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
};
class RetpolineNoPic : public X86 {
public:
RetpolineNoPic();
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
void writePltHeader(uint8_t *Buf) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
};
} // namespace
RetpolinePic::RetpolinePic() {
PltHeaderSize = 48;
PltEntrySize = 32;
}
void RetpolinePic::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
write32le(Buf, S.getPltVA() + 17);
}
void RetpolinePic::writePltHeader(uint8_t *Buf) const {
const uint8_t Insn[] = {
0xff, 0xb3, 0, 0, 0, 0, // 0: pushl GOTPLT+4(%ebx)
0x50, // 6: pushl %eax
0x8b, 0x83, 0, 0, 0, 0, // 7: mov GOTPLT+8(%ebx), %eax
0xe8, 0x0e, 0x00, 0x00, 0x00, // d: call next
0xf3, 0x90, // 12: loop: pause
0x0f, 0xae, 0xe8, // 14: lfence
0xeb, 0xf9, // 17: jmp loop
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16
0x89, 0x0c, 0x24, // 20: next: mov %ecx, (%esp)
0x8b, 0x4c, 0x24, 0x04, // 23: mov 0x4(%esp), %ecx
0x89, 0x44, 0x24, 0x04, // 27: mov %eax ,0x4(%esp)
0x89, 0xc8, // 2b: mov %ecx, %eax
0x59, // 2d: pop %ecx
0xc3, // 2e: ret
0xcc, // 2f: int3
};
memcpy(Buf, Insn, sizeof(Insn));
assert(sizeof(Insn) == TargetInfo::PltHeaderSize);
uint32_t Ebx = InX::Got->getVA() + InX::Got->getSize();
uint32_t GotPlt = InX::GotPlt->getVA() - Ebx;
write32le(Buf + 2, GotPlt + 4);
write32le(Buf + 9, GotPlt + 8);
}
void RetpolinePic::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
const uint8_t Insn[] = {
0x50, // pushl %eax
0x8b, 0x83, 0, 0, 0, 0, // mov foo@GOT(%ebx), %eax
0xe8, 0, 0, 0, 0, // call plt+0x20
0xe9, 0, 0, 0, 0, // jmp plt+0x12
0x68, 0, 0, 0, 0, // pushl $reloc_offset
0xe9, 0, 0, 0, 0, // jmp plt+0
0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
};
memcpy(Buf, Insn, sizeof(Insn));
assert(sizeof(Insn) == TargetInfo::PltEntrySize);
uint32_t Ebx = InX::Got->getVA() + InX::Got->getSize();
write32le(Buf + 3, GotPltEntryAddr - Ebx);
write32le(Buf + 8, -Index * PltEntrySize - PltHeaderSize - 12 + 32);
write32le(Buf + 13, -Index * PltEntrySize - PltHeaderSize - 17 + 18);
write32le(Buf + 18, RelOff);
write32le(Buf + 23, -Index * PltEntrySize - PltHeaderSize - 27);
}
RetpolineNoPic::RetpolineNoPic() {
PltHeaderSize = 48;
PltEntrySize = 32;
}
void RetpolineNoPic::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
write32le(Buf, S.getPltVA() + 16);
}
void RetpolineNoPic::writePltHeader(uint8_t *Buf) const {
const uint8_t PltData[] = {
0xff, 0x35, 0, 0, 0, 0, // 0: pushl GOTPLT+4
0x50, // 6: pushl %eax
0xa1, 0, 0, 0, 0, // 7: mov GOTPLT+8, %eax
0xe8, 0x0f, 0x00, 0x00, 0x00, // c: call next
0xf3, 0x90, // 11: loop: pause
0x0f, 0xae, 0xe8, // 13: lfence
0xeb, 0xf9, // 16: jmp loop
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 18: int3
0xcc, 0xcc, 0xcc, // 1f: int3; .align 16
0x89, 0x0c, 0x24, // 20: next: mov %ecx, (%esp)
0x8b, 0x4c, 0x24, 0x04, // 23: mov 0x4(%esp), %ecx
0x89, 0x44, 0x24, 0x04, // 27: mov %eax ,0x4(%esp)
0x89, 0xc8, // 2b: mov %ecx, %eax
0x59, // 2d: pop %ecx
0xc3, // 2e: ret
0xcc, // 2f: int3
};
memcpy(Buf, PltData, sizeof(PltData));
assert(sizeof(PltData) == TargetInfo::PltHeaderSize);
uint32_t GotPlt = InX::GotPlt->getVA();
write32le(Buf + 2, GotPlt + 4);
write32le(Buf + 8, GotPlt + 8);
}
void RetpolineNoPic::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
const uint8_t Insn[] = {
0x50, // 0: pushl %eax
0xa1, 0, 0, 0, 0, // 1: mov foo_in_GOT, %eax
0xe8, 0, 0, 0, 0, // 6: call plt+0x20
0xe9, 0, 0, 0, 0, // b: jmp plt+0x11
0x68, 0, 0, 0, 0, // 10: pushl $reloc_offset
0xe9, 0, 0, 0, 0, // 15: jmp plt+0
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
};
memcpy(Buf, Insn, sizeof(Insn));
assert(sizeof(Insn) == TargetInfo::PltEntrySize);
write32le(Buf + 2, GotPltEntryAddr);
write32le(Buf + 7, -Index * PltEntrySize - PltHeaderSize - 11 + 32);
write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16 + 17);
write32le(Buf + 17, RelOff);
write32le(Buf + 22, -Index * PltEntrySize - PltHeaderSize - 26);
}
TargetInfo *elf::getX86TargetInfo() {
if (Config->ZRetpolineplt) {
if (Config->Pic) {
static RetpolinePic T;
return &T;
}
static RetpolineNoPic T;
return &T;
}
static X86 T;
return &T;
}