| //===- Chunks.cpp ---------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Chunks.h" |
| #include "InputFiles.h" |
| #include "Symbols.h" |
| #include "Writer.h" |
| #include "SymbolTable.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/BinaryFormat/COFF.h" |
| #include "llvm/Object/COFF.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace llvm::COFF; |
| using llvm::support::ulittle32_t; |
| |
| namespace lld { |
| namespace coff { |
| |
| SectionChunk::SectionChunk(ObjFile *f, const coff_section *h) |
| : Chunk(SectionKind), file(f), header(h), repl(this) { |
| // Initialize relocs. |
| setRelocs(file->getCOFFObj()->getRelocations(header)); |
| |
| // Initialize sectionName. |
| StringRef sectionName; |
| if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header)) |
| sectionName = *e; |
| sectionNameData = sectionName.data(); |
| sectionNameSize = sectionName.size(); |
| |
| setAlignment(header->getAlignment()); |
| |
| hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); |
| |
| // If linker GC is disabled, every chunk starts out alive. If linker GC is |
| // enabled, treat non-comdat sections as roots. Generally optimized object |
| // files will be built with -ffunction-sections or /Gy, so most things worth |
| // stripping will be in a comdat. |
| live = !config->doGC || !isCOMDAT(); |
| } |
| |
| // SectionChunk is one of the most frequently allocated classes, so it is |
| // important to keep it as compact as possible. As of this writing, the number |
| // below is the size of this class on x64 platforms. |
| static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly"); |
| |
| static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); } |
| static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); } |
| static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); } |
| static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); } |
| static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); } |
| |
| // Verify that given sections are appropriate targets for SECREL |
| // relocations. This check is relaxed because unfortunately debug |
| // sections have section-relative relocations against absolute symbols. |
| static bool checkSecRel(const SectionChunk *sec, OutputSection *os) { |
| if (os) |
| return true; |
| if (sec->isCodeView()) |
| return false; |
| error("SECREL relocation cannot be applied to absolute symbols"); |
| return false; |
| } |
| |
| static void applySecRel(const SectionChunk *sec, uint8_t *off, |
| OutputSection *os, uint64_t s) { |
| if (!checkSecRel(sec, os)) |
| return; |
| uint64_t secRel = s - os->getRVA(); |
| if (secRel > UINT32_MAX) { |
| error("overflow in SECREL relocation in section: " + sec->getSectionName()); |
| return; |
| } |
| add32(off, secRel); |
| } |
| |
| static void applySecIdx(uint8_t *off, OutputSection *os) { |
| // Absolute symbol doesn't have section index, but section index relocation |
| // against absolute symbol should be resolved to one plus the last output |
| // section index. This is required for compatibility with MSVC. |
| if (os) |
| add16(off, os->sectionIndex); |
| else |
| add16(off, DefinedAbsolute::numOutputSections + 1); |
| } |
| |
| void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os, |
| uint64_t s, uint64_t p) const { |
| switch (type) { |
| case IMAGE_REL_AMD64_ADDR32: add32(off, s + config->imageBase); break; |
| case IMAGE_REL_AMD64_ADDR64: add64(off, s + config->imageBase); break; |
| case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break; |
| case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break; |
| case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break; |
| case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break; |
| case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break; |
| case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break; |
| case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break; |
| case IMAGE_REL_AMD64_SECTION: applySecIdx(off, os); break; |
| case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break; |
| default: |
| error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + |
| toString(file)); |
| } |
| } |
| |
| void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os, |
| uint64_t s, uint64_t p) const { |
| switch (type) { |
| case IMAGE_REL_I386_ABSOLUTE: break; |
| case IMAGE_REL_I386_DIR32: add32(off, s + config->imageBase); break; |
| case IMAGE_REL_I386_DIR32NB: add32(off, s); break; |
| case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break; |
| case IMAGE_REL_I386_SECTION: applySecIdx(off, os); break; |
| case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break; |
| default: |
| error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + |
| toString(file)); |
| } |
| } |
| |
| static void applyMOV(uint8_t *off, uint16_t v) { |
| write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf)); |
| write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff)); |
| } |
| |
| static uint16_t readMOV(uint8_t *off, bool movt) { |
| uint16_t op1 = read16le(off); |
| if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240)) |
| error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + |
| " instruction in MOV32T relocation"); |
| uint16_t op2 = read16le(off + 2); |
| if ((op2 & 0x8000) != 0) |
| error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + |
| " instruction in MOV32T relocation"); |
| return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) | |
| ((op1 & 0x000f) << 12); |
| } |
| |
| void applyMOV32T(uint8_t *off, uint32_t v) { |
| uint16_t immW = readMOV(off, false); // read MOVW operand |
| uint16_t immT = readMOV(off + 4, true); // read MOVT operand |
| uint32_t imm = immW | (immT << 16); |
| v += imm; // add the immediate offset |
| applyMOV(off, v); // set MOVW operand |
| applyMOV(off + 4, v >> 16); // set MOVT operand |
| } |
| |
| static void applyBranch20T(uint8_t *off, int32_t v) { |
| if (!isInt<21>(v)) |
| error("relocation out of range"); |
| uint32_t s = v < 0 ? 1 : 0; |
| uint32_t j1 = (v >> 19) & 1; |
| uint32_t j2 = (v >> 18) & 1; |
| or16(off, (s << 10) | ((v >> 12) & 0x3f)); |
| or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); |
| } |
| |
| void applyBranch24T(uint8_t *off, int32_t v) { |
| if (!isInt<25>(v)) |
| error("relocation out of range"); |
| uint32_t s = v < 0 ? 1 : 0; |
| uint32_t j1 = ((~v >> 23) & 1) ^ s; |
| uint32_t j2 = ((~v >> 22) & 1) ^ s; |
| or16(off, (s << 10) | ((v >> 12) & 0x3ff)); |
| // Clear out the J1 and J2 bits which may be set. |
| write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); |
| } |
| |
| void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os, |
| uint64_t s, uint64_t p) const { |
| // Pointer to thumb code must have the LSB set. |
| uint64_t sx = s; |
| if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) |
| sx |= 1; |
| switch (type) { |
| case IMAGE_REL_ARM_ADDR32: add32(off, sx + config->imageBase); break; |
| case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break; |
| case IMAGE_REL_ARM_MOV32T: applyMOV32T(off, sx + config->imageBase); break; |
| case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break; |
| case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break; |
| case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break; |
| case IMAGE_REL_ARM_SECTION: applySecIdx(off, os); break; |
| case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break; |
| case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break; |
| default: |
| error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + |
| toString(file)); |
| } |
| } |
| |
| // Interpret the existing immediate value as a byte offset to the |
| // target symbol, then update the instruction with the immediate as |
| // the page offset from the current instruction to the target. |
| void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) { |
| uint32_t orig = read32le(off); |
| uint64_t imm = ((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC); |
| s += imm; |
| imm = (s >> shift) - (p >> shift); |
| uint32_t immLo = (imm & 0x3) << 29; |
| uint32_t immHi = (imm & 0x1FFFFC) << 3; |
| uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); |
| write32le(off, (orig & ~mask) | immLo | immHi); |
| } |
| |
| // Update the immediate field in a AARCH64 ldr, str, and add instruction. |
| // Optionally limit the range of the written immediate by one or more bits |
| // (rangeLimit). |
| void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) { |
| uint32_t orig = read32le(off); |
| imm += (orig >> 10) & 0xFFF; |
| orig &= ~(0xFFF << 10); |
| write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10)); |
| } |
| |
| // Add the 12 bit page offset to the existing immediate. |
| // Ldr/str instructions store the opcode immediate scaled |
| // by the load/store size (giving a larger range for larger |
| // loads/stores). The immediate is always (both before and after |
| // fixing up the relocation) stored scaled similarly. |
| // Even if larger loads/stores have a larger range, limit the |
| // effective offset to 12 bit, since it is intended to be a |
| // page offset. |
| static void applyArm64Ldr(uint8_t *off, uint64_t imm) { |
| uint32_t orig = read32le(off); |
| uint32_t size = orig >> 30; |
| // 0x04000000 indicates SIMD/FP registers |
| // 0x00800000 indicates 128 bit |
| if ((orig & 0x4800000) == 0x4800000) |
| size += 4; |
| if ((imm & ((1 << size) - 1)) != 0) |
| error("misaligned ldr/str offset"); |
| applyArm64Imm(off, imm >> size, size); |
| } |
| |
| static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off, |
| OutputSection *os, uint64_t s) { |
| if (checkSecRel(sec, os)) |
| applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0); |
| } |
| |
| static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off, |
| OutputSection *os, uint64_t s) { |
| if (!checkSecRel(sec, os)) |
| return; |
| uint64_t secRel = (s - os->getRVA()) >> 12; |
| if (0xfff < secRel) { |
| error("overflow in SECREL_HIGH12A relocation in section: " + |
| sec->getSectionName()); |
| return; |
| } |
| applyArm64Imm(off, secRel & 0xfff, 0); |
| } |
| |
| static void applySecRelLdr(const SectionChunk *sec, uint8_t *off, |
| OutputSection *os, uint64_t s) { |
| if (checkSecRel(sec, os)) |
| applyArm64Ldr(off, (s - os->getRVA()) & 0xfff); |
| } |
| |
| void applyArm64Branch26(uint8_t *off, int64_t v) { |
| if (!isInt<28>(v)) |
| error("relocation out of range"); |
| or32(off, (v & 0x0FFFFFFC) >> 2); |
| } |
| |
| static void applyArm64Branch19(uint8_t *off, int64_t v) { |
| if (!isInt<21>(v)) |
| error("relocation out of range"); |
| or32(off, (v & 0x001FFFFC) << 3); |
| } |
| |
| static void applyArm64Branch14(uint8_t *off, int64_t v) { |
| if (!isInt<16>(v)) |
| error("relocation out of range"); |
| or32(off, (v & 0x0000FFFC) << 3); |
| } |
| |
| void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os, |
| uint64_t s, uint64_t p) const { |
| switch (type) { |
| case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break; |
| case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break; |
| case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break; |
| case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break; |
| case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break; |
| case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break; |
| case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break; |
| case IMAGE_REL_ARM64_ADDR32: add32(off, s + config->imageBase); break; |
| case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break; |
| case IMAGE_REL_ARM64_ADDR64: add64(off, s + config->imageBase); break; |
| case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break; |
| case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break; |
| case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break; |
| case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break; |
| case IMAGE_REL_ARM64_SECTION: applySecIdx(off, os); break; |
| case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break; |
| default: |
| error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + |
| toString(file)); |
| } |
| } |
| |
| static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk, |
| Defined *sym, |
| const coff_relocation &rel) { |
| // Don't report these errors when the relocation comes from a debug info |
| // section or in mingw mode. MinGW mode object files (built by GCC) can |
| // have leftover sections with relocations against discarded comdat |
| // sections. Such sections are left as is, with relocations untouched. |
| if (fromChunk->isCodeView() || fromChunk->isDWARF() || config->mingw) |
| return; |
| |
| // Get the name of the symbol. If it's null, it was discarded early, so we |
| // have to go back to the object file. |
| ObjFile *file = fromChunk->file; |
| StringRef name; |
| if (sym) { |
| name = sym->getName(); |
| } else { |
| COFFSymbolRef coffSym = |
| check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex)); |
| file->getCOFFObj()->getSymbolName(coffSym, name); |
| } |
| |
| std::vector<std::string> symbolLocations = |
| getSymbolLocations(file, rel.SymbolTableIndex); |
| |
| std::string out; |
| llvm::raw_string_ostream os(out); |
| os << "relocation against symbol in discarded section: " + name; |
| for (const std::string &s : symbolLocations) |
| os << s; |
| error(os.str()); |
| } |
| |
| void SectionChunk::writeTo(uint8_t *buf) const { |
| if (!hasData) |
| return; |
| // Copy section contents from source object file to output file. |
| ArrayRef<uint8_t> a = getContents(); |
| if (!a.empty()) |
| memcpy(buf, a.data(), a.size()); |
| |
| // Apply relocations. |
| size_t inputSize = getSize(); |
| for (size_t i = 0, e = relocsSize; i < e; i++) { |
| const coff_relocation &rel = relocsData[i]; |
| |
| // Check for an invalid relocation offset. This check isn't perfect, because |
| // we don't have the relocation size, which is only known after checking the |
| // machine and relocation type. As a result, a relocation may overwrite the |
| // beginning of the following input section. |
| if (rel.VirtualAddress >= inputSize) { |
| error("relocation points beyond the end of its parent section"); |
| continue; |
| } |
| |
| uint8_t *off = buf + rel.VirtualAddress; |
| |
| auto *sym = |
| dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); |
| |
| // Get the output section of the symbol for this relocation. The output |
| // section is needed to compute SECREL and SECTION relocations used in debug |
| // info. |
| Chunk *c = sym ? sym->getChunk() : nullptr; |
| OutputSection *os = c ? c->getOutputSection() : nullptr; |
| |
| // Skip the relocation if it refers to a discarded section, and diagnose it |
| // as an error if appropriate. If a symbol was discarded early, it may be |
| // null. If it was discarded late, the output section will be null, unless |
| // it was an absolute or synthetic symbol. |
| if (!sym || |
| (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) { |
| maybeReportRelocationToDiscarded(this, sym, rel); |
| continue; |
| } |
| |
| uint64_t s = sym->getRVA(); |
| |
| // Compute the RVA of the relocation for relative relocations. |
| uint64_t p = rva + rel.VirtualAddress; |
| switch (config->machine) { |
| case AMD64: |
| applyRelX64(off, rel.Type, os, s, p); |
| break; |
| case I386: |
| applyRelX86(off, rel.Type, os, s, p); |
| break; |
| case ARMNT: |
| applyRelARM(off, rel.Type, os, s, p); |
| break; |
| case ARM64: |
| applyRelARM64(off, rel.Type, os, s, p); |
| break; |
| default: |
| llvm_unreachable("unknown machine type"); |
| } |
| } |
| } |
| |
| void SectionChunk::addAssociative(SectionChunk *child) { |
| // Insert this child at the head of the list. |
| assert(child->assocChildren == nullptr && |
| "associated sections cannot have their own associated children"); |
| child->assocChildren = assocChildren; |
| assocChildren = child; |
| } |
| |
| static uint8_t getBaserelType(const coff_relocation &rel) { |
| switch (config->machine) { |
| case AMD64: |
| if (rel.Type == IMAGE_REL_AMD64_ADDR64) |
| return IMAGE_REL_BASED_DIR64; |
| return IMAGE_REL_BASED_ABSOLUTE; |
| case I386: |
| if (rel.Type == IMAGE_REL_I386_DIR32) |
| return IMAGE_REL_BASED_HIGHLOW; |
| return IMAGE_REL_BASED_ABSOLUTE; |
| case ARMNT: |
| if (rel.Type == IMAGE_REL_ARM_ADDR32) |
| return IMAGE_REL_BASED_HIGHLOW; |
| if (rel.Type == IMAGE_REL_ARM_MOV32T) |
| return IMAGE_REL_BASED_ARM_MOV32T; |
| return IMAGE_REL_BASED_ABSOLUTE; |
| case ARM64: |
| if (rel.Type == IMAGE_REL_ARM64_ADDR64) |
| return IMAGE_REL_BASED_DIR64; |
| return IMAGE_REL_BASED_ABSOLUTE; |
| default: |
| llvm_unreachable("unknown machine type"); |
| } |
| } |
| |
| // Windows-specific. |
| // Collect all locations that contain absolute addresses, which need to be |
| // fixed by the loader if load-time relocation is needed. |
| // Only called when base relocation is enabled. |
| void SectionChunk::getBaserels(std::vector<Baserel> *res) { |
| for (size_t i = 0, e = relocsSize; i < e; i++) { |
| const coff_relocation &rel = relocsData[i]; |
| uint8_t ty = getBaserelType(rel); |
| if (ty == IMAGE_REL_BASED_ABSOLUTE) |
| continue; |
| Symbol *target = file->getSymbol(rel.SymbolTableIndex); |
| if (!target || isa<DefinedAbsolute>(target)) |
| continue; |
| res->emplace_back(rva + rel.VirtualAddress, ty); |
| } |
| } |
| |
| // MinGW specific. |
| // Check whether a static relocation of type Type can be deferred and |
| // handled at runtime as a pseudo relocation (for references to a module |
| // local variable, which turned out to actually need to be imported from |
| // another DLL) This returns the size the relocation is supposed to update, |
| // in bits, or 0 if the relocation cannot be handled as a runtime pseudo |
| // relocation. |
| static int getRuntimePseudoRelocSize(uint16_t type) { |
| // Relocations that either contain an absolute address, or a plain |
| // relative offset, since the runtime pseudo reloc implementation |
| // adds 8/16/32/64 bit values to a memory address. |
| // |
| // Given a pseudo relocation entry, |
| // |
| // typedef struct { |
| // DWORD sym; |
| // DWORD target; |
| // DWORD flags; |
| // } runtime_pseudo_reloc_item_v2; |
| // |
| // the runtime relocation performs this adjustment: |
| // *(base + .target) += *(base + .sym) - (base + .sym) |
| // |
| // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64, |
| // IMAGE_REL_I386_DIR32, where the memory location initially contains |
| // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32), |
| // where the memory location originally contains the relative offset to the |
| // IAT slot. |
| // |
| // This requires the target address to be writable, either directly out of |
| // the image, or temporarily changed at runtime with VirtualProtect. |
| // Since this only operates on direct address values, it doesn't work for |
| // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations. |
| switch (config->machine) { |
| case AMD64: |
| switch (type) { |
| case IMAGE_REL_AMD64_ADDR64: |
| return 64; |
| case IMAGE_REL_AMD64_ADDR32: |
| case IMAGE_REL_AMD64_REL32: |
| case IMAGE_REL_AMD64_REL32_1: |
| case IMAGE_REL_AMD64_REL32_2: |
| case IMAGE_REL_AMD64_REL32_3: |
| case IMAGE_REL_AMD64_REL32_4: |
| case IMAGE_REL_AMD64_REL32_5: |
| return 32; |
| default: |
| return 0; |
| } |
| case I386: |
| switch (type) { |
| case IMAGE_REL_I386_DIR32: |
| case IMAGE_REL_I386_REL32: |
| return 32; |
| default: |
| return 0; |
| } |
| case ARMNT: |
| switch (type) { |
| case IMAGE_REL_ARM_ADDR32: |
| return 32; |
| default: |
| return 0; |
| } |
| case ARM64: |
| switch (type) { |
| case IMAGE_REL_ARM64_ADDR64: |
| return 64; |
| case IMAGE_REL_ARM64_ADDR32: |
| return 32; |
| default: |
| return 0; |
| } |
| default: |
| llvm_unreachable("unknown machine type"); |
| } |
| } |
| |
| // MinGW specific. |
| // Append information to the provided vector about all relocations that |
| // need to be handled at runtime as runtime pseudo relocations (references |
| // to a module local variable, which turned out to actually need to be |
| // imported from another DLL). |
| void SectionChunk::getRuntimePseudoRelocs( |
| std::vector<RuntimePseudoReloc> &res) { |
| for (const coff_relocation &rel : getRelocs()) { |
| auto *target = |
| dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); |
| if (!target || !target->isRuntimePseudoReloc) |
| continue; |
| int sizeInBits = getRuntimePseudoRelocSize(rel.Type); |
| if (sizeInBits == 0) { |
| error("unable to automatically import from " + target->getName() + |
| " with relocation type " + |
| file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " + |
| toString(file)); |
| continue; |
| } |
| // sizeInBits is used to initialize the Flags field; currently no |
| // other flags are defined. |
| res.emplace_back( |
| RuntimePseudoReloc(target, this, rel.VirtualAddress, sizeInBits)); |
| } |
| } |
| |
| bool SectionChunk::isCOMDAT() const { |
| return header->Characteristics & IMAGE_SCN_LNK_COMDAT; |
| } |
| |
| void SectionChunk::printDiscardedMessage() const { |
| // Removed by dead-stripping. If it's removed by ICF, ICF already |
| // printed out the name, so don't repeat that here. |
| if (sym && this == repl) |
| message("Discarded " + sym->getName()); |
| } |
| |
| StringRef SectionChunk::getDebugName() const { |
| if (sym) |
| return sym->getName(); |
| return ""; |
| } |
| |
| ArrayRef<uint8_t> SectionChunk::getContents() const { |
| ArrayRef<uint8_t> a; |
| cantFail(file->getCOFFObj()->getSectionContents(header, a)); |
| return a; |
| } |
| |
| ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() { |
| assert(isCodeView()); |
| return consumeDebugMagic(getContents(), getSectionName()); |
| } |
| |
| ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data, |
| StringRef sectionName) { |
| if (data.empty()) |
| return {}; |
| |
| // First 4 bytes are section magic. |
| if (data.size() < 4) |
| fatal("the section is too short: " + sectionName); |
| |
| if (!sectionName.startswith(".debug$")) |
| fatal("invalid section: " + sectionName); |
| |
| uint32_t magic = support::endian::read32le(data.data()); |
| uint32_t expectedMagic = sectionName == ".debug$H" |
| ? DEBUG_HASHES_SECTION_MAGIC |
| : DEBUG_SECTION_MAGIC; |
| if (magic != expectedMagic) { |
| warn("ignoring section " + sectionName + " with unrecognized magic 0x" + |
| utohexstr(magic)); |
| return {}; |
| } |
| return data.slice(4); |
| } |
| |
| SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections, |
| StringRef name) { |
| for (SectionChunk *c : sections) |
| if (c->getSectionName() == name) |
| return c; |
| return nullptr; |
| } |
| |
| void SectionChunk::replace(SectionChunk *other) { |
| p2Align = std::max(p2Align, other->p2Align); |
| other->repl = repl; |
| other->live = false; |
| } |
| |
| uint32_t SectionChunk::getSectionNumber() const { |
| DataRefImpl r; |
| r.p = reinterpret_cast<uintptr_t>(header); |
| SectionRef s(r, file->getCOFFObj()); |
| return s.getIndex() + 1; |
| } |
| |
| CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) { |
| // The value of a common symbol is its size. Align all common symbols smaller |
| // than 32 bytes naturally, i.e. round the size up to the next power of two. |
| // This is what MSVC link.exe does. |
| setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue())))); |
| hasData = false; |
| } |
| |
| uint32_t CommonChunk::getOutputCharacteristics() const { |
| return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | |
| IMAGE_SCN_MEM_WRITE; |
| } |
| |
| void StringChunk::writeTo(uint8_t *buf) const { |
| memcpy(buf, str.data(), str.size()); |
| buf[str.size()] = '\0'; |
| } |
| |
| ImportThunkChunkX64::ImportThunkChunkX64(Defined *s) : ImportThunkChunk(s) { |
| // Intel Optimization Manual says that all branch targets |
| // should be 16-byte aligned. MSVC linker does this too. |
| setAlignment(16); |
| } |
| |
| void ImportThunkChunkX64::writeTo(uint8_t *buf) const { |
| memcpy(buf, importThunkX86, sizeof(importThunkX86)); |
| // The first two bytes is a JMP instruction. Fill its operand. |
| write32le(buf + 2, impSymbol->getRVA() - rva - getSize()); |
| } |
| |
| void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) { |
| res->emplace_back(getRVA() + 2); |
| } |
| |
| void ImportThunkChunkX86::writeTo(uint8_t *buf) const { |
| memcpy(buf, importThunkX86, sizeof(importThunkX86)); |
| // The first two bytes is a JMP instruction. Fill its operand. |
| write32le(buf + 2, |
| impSymbol->getRVA() + config->imageBase); |
| } |
| |
| void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) { |
| res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); |
| } |
| |
| void ImportThunkChunkARM::writeTo(uint8_t *buf) const { |
| memcpy(buf, importThunkARM, sizeof(importThunkARM)); |
| // Fix mov.w and mov.t operands. |
| applyMOV32T(buf, impSymbol->getRVA() + config->imageBase); |
| } |
| |
| void ImportThunkChunkARM64::writeTo(uint8_t *buf) const { |
| int64_t off = impSymbol->getRVA() & 0xfff; |
| memcpy(buf, importThunkARM64, sizeof(importThunkARM64)); |
| applyArm64Addr(buf, impSymbol->getRVA(), rva, 12); |
| applyArm64Ldr(buf + 4, off); |
| } |
| |
| // A Thumb2, PIC, non-interworking range extension thunk. |
| const uint8_t armThunk[] = { |
| 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4) |
| 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4) |
| 0xe7, 0x44, // L1: add pc, ip |
| }; |
| |
| size_t RangeExtensionThunkARM::getSize() const { |
| assert(config->machine == ARMNT); |
| return sizeof(armThunk); |
| } |
| |
| void RangeExtensionThunkARM::writeTo(uint8_t *buf) const { |
| assert(config->machine == ARMNT); |
| uint64_t offset = target->getRVA() - rva - 12; |
| memcpy(buf, armThunk, sizeof(armThunk)); |
| applyMOV32T(buf, uint32_t(offset)); |
| } |
| |
| // A position independent ARM64 adrp+add thunk, with a maximum range of |
| // +/- 4 GB, which is enough for any PE-COFF. |
| const uint8_t arm64Thunk[] = { |
| 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest |
| 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest |
| 0x00, 0x02, 0x1f, 0xd6, // br x16 |
| }; |
| |
| size_t RangeExtensionThunkARM64::getSize() const { |
| assert(config->machine == ARM64); |
| return sizeof(arm64Thunk); |
| } |
| |
| void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const { |
| assert(config->machine == ARM64); |
| memcpy(buf, arm64Thunk, sizeof(arm64Thunk)); |
| applyArm64Addr(buf + 0, target->getRVA(), rva, 12); |
| applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0); |
| } |
| |
| void LocalImportChunk::getBaserels(std::vector<Baserel> *res) { |
| res->emplace_back(getRVA()); |
| } |
| |
| size_t LocalImportChunk::getSize() const { return config->wordsize; } |
| |
| void LocalImportChunk::writeTo(uint8_t *buf) const { |
| if (config->is64()) { |
| write64le(buf, sym->getRVA() + config->imageBase); |
| } else { |
| write32le(buf, sym->getRVA() + config->imageBase); |
| } |
| } |
| |
| void RVATableChunk::writeTo(uint8_t *buf) const { |
| ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf); |
| size_t cnt = 0; |
| for (const ChunkAndOffset &co : syms) |
| begin[cnt++] = co.inputChunk->getRVA() + co.offset; |
| std::sort(begin, begin + cnt); |
| assert(std::unique(begin, begin + cnt) == begin + cnt && |
| "RVA tables should be de-duplicated"); |
| } |
| |
| // MinGW specific, for the "automatic import of variables from DLLs" feature. |
| size_t PseudoRelocTableChunk::getSize() const { |
| if (relocs.empty()) |
| return 0; |
| return 12 + 12 * relocs.size(); |
| } |
| |
| // MinGW specific. |
| void PseudoRelocTableChunk::writeTo(uint8_t *buf) const { |
| if (relocs.empty()) |
| return; |
| |
| ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf); |
| // This is the list header, to signal the runtime pseudo relocation v2 |
| // format. |
| table[0] = 0; |
| table[1] = 0; |
| table[2] = 1; |
| |
| size_t idx = 3; |
| for (const RuntimePseudoReloc &rpr : relocs) { |
| table[idx + 0] = rpr.sym->getRVA(); |
| table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset; |
| table[idx + 2] = rpr.flags; |
| idx += 3; |
| } |
| } |
| |
| // Windows-specific. This class represents a block in .reloc section. |
| // The format is described here. |
| // |
| // On Windows, each DLL is linked against a fixed base address and |
| // usually loaded to that address. However, if there's already another |
| // DLL that overlaps, the loader has to relocate it. To do that, DLLs |
| // contain .reloc sections which contain offsets that need to be fixed |
| // up at runtime. If the loader finds that a DLL cannot be loaded to its |
| // desired base address, it loads it to somewhere else, and add <actual |
| // base address> - <desired base address> to each offset that is |
| // specified by the .reloc section. In ELF terms, .reloc sections |
| // contain relative relocations in REL format (as opposed to RELA.) |
| // |
| // This already significantly reduces the size of relocations compared |
| // to ELF .rel.dyn, but Windows does more to reduce it (probably because |
| // it was invented for PCs in the late '80s or early '90s.) Offsets in |
| // .reloc are grouped by page where the page size is 12 bits, and |
| // offsets sharing the same page address are stored consecutively to |
| // represent them with less space. This is very similar to the page |
| // table which is grouped by (multiple stages of) pages. |
| // |
| // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, |
| // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 |
| // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they |
| // are represented like this: |
| // |
| // 0x00000 -- page address (4 bytes) |
| // 16 -- size of this block (4 bytes) |
| // 0xA030 -- entries (2 bytes each) |
| // 0xA500 |
| // 0xA700 |
| // 0xAA00 |
| // 0x20000 -- page address (4 bytes) |
| // 12 -- size of this block (4 bytes) |
| // 0xA004 -- entries (2 bytes each) |
| // 0xA008 |
| // |
| // Usually we have a lot of relocations for each page, so the number of |
| // bytes for one .reloc entry is close to 2 bytes on average. |
| BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) { |
| // Block header consists of 4 byte page RVA and 4 byte block size. |
| // Each entry is 2 byte. Last entry may be padding. |
| data.resize(alignTo((end - begin) * 2 + 8, 4)); |
| uint8_t *p = data.data(); |
| write32le(p, page); |
| write32le(p + 4, data.size()); |
| p += 8; |
| for (Baserel *i = begin; i != end; ++i) { |
| write16le(p, (i->type << 12) | (i->rva - page)); |
| p += 2; |
| } |
| } |
| |
| void BaserelChunk::writeTo(uint8_t *buf) const { |
| memcpy(buf, data.data(), data.size()); |
| } |
| |
| uint8_t Baserel::getDefaultType() { |
| switch (config->machine) { |
| case AMD64: |
| case ARM64: |
| return IMAGE_REL_BASED_DIR64; |
| case I386: |
| case ARMNT: |
| return IMAGE_REL_BASED_HIGHLOW; |
| default: |
| llvm_unreachable("unknown machine type"); |
| } |
| } |
| |
| MergeChunk *MergeChunk::instances[Log2MaxSectionAlignment + 1] = {}; |
| |
| MergeChunk::MergeChunk(uint32_t alignment) |
| : builder(StringTableBuilder::RAW, alignment) { |
| setAlignment(alignment); |
| } |
| |
| void MergeChunk::addSection(SectionChunk *c) { |
| assert(isPowerOf2_32(c->getAlignment())); |
| uint8_t p2Align = llvm::Log2_32(c->getAlignment()); |
| assert(p2Align < array_lengthof(instances)); |
| auto *&mc = instances[p2Align]; |
| if (!mc) |
| mc = make<MergeChunk>(c->getAlignment()); |
| mc->sections.push_back(c); |
| } |
| |
| void MergeChunk::finalizeContents() { |
| assert(!finalized && "should only finalize once"); |
| for (SectionChunk *c : sections) |
| if (c->live) |
| builder.add(toStringRef(c->getContents())); |
| builder.finalize(); |
| finalized = true; |
| } |
| |
| void MergeChunk::assignSubsectionRVAs() { |
| for (SectionChunk *c : sections) { |
| if (!c->live) |
| continue; |
| size_t off = builder.getOffset(toStringRef(c->getContents())); |
| c->setRVA(rva + off); |
| } |
| } |
| |
| uint32_t MergeChunk::getOutputCharacteristics() const { |
| return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; |
| } |
| |
| size_t MergeChunk::getSize() const { |
| return builder.getSize(); |
| } |
| |
| void MergeChunk::writeTo(uint8_t *buf) const { |
| builder.write(buf); |
| } |
| |
| // MinGW specific. |
| size_t AbsolutePointerChunk::getSize() const { return config->wordsize; } |
| |
| void AbsolutePointerChunk::writeTo(uint8_t *buf) const { |
| if (config->is64()) { |
| write64le(buf, value); |
| } else { |
| write32le(buf, value); |
| } |
| } |
| |
| } // namespace coff |
| } // namespace lld |