blob: 9f0c688a3d850966672214caf12fad6ce16358ac [file] [log] [blame]
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "math64.h"
// Algorithm:
//
// x = (2^m)*A
// x = (2^m)*(G+g) with (1 <= G < 2) and (g <= 2^(-8))
// x = (2^m)*2*(G/2+g/2)
// x = (2^m)*2*(F+f) with (0.5 <= F < 1) and (f <= 2^(-9))
//
// Y = (2^(-1))*(2^(-m))*(2^m)*A
// Now, range of Y is: 0.5 <= Y < 1
//
// F = 0x100 + (first 7 mantissa bits) + (8th mantissa bit)
// Now, range of F is: 128 <= F <= 256
// F = F / 256
// Now, range of F is: 0.5 <= F <= 1
//
// f = (Y-F), with (f <= 2^(-9))
//
// cbrt(x) = cbrt(2^m) * cbrt(2) * cbrt(F+f)
// cbrt(x) = cbrt(2^m) * cbrt(2) * cbrt(F) + cbrt(1+(f/F))
// cbrt(x) = cbrt(2^m) * cbrt(2*F) * cbrt(1+r)
//
// r = (f/F), with (r <= 2^(-8))
// r = f*(1/F) with (1/F) precomputed to avoid division
//
// cbrt(x) = cbrt(2^m) * cbrt(G) * (1+poly)
//
// poly = c1*r + c2*(r^2) + c3*(r^3) + c4*(r^4) + c5*(r^5) + c6*(r^6)
__attribute__((overloadable)) double
cbrt(double x)
{
USE_TABLE(double, p_inv, CBRT_TBL_INV);
USE_TABLE(double2, p_cbrt, CBRT_TBL);
USE_TABLE(double2, p_rem, CBRT_TBL_REM);
int return_x = isinf(x) | isnan(x) | x == 0.0;
ulong ux = as_ulong(fabs(x));
int m = (as_int2(ux).hi >> 20) - 1023;
// Treat subnormals
ulong uxs = as_ulong(as_double(0x3ff0000000000000UL | ux) - 1.0);
int ms = m + (as_int2(uxs).hi >> 20) - 1022;
int c = m == -1023;
ux = c ? uxs : ux;
m = c ? ms : m;
int mby3 = m / 3;
int rem = m - 3*mby3;
double mf = as_double((ulong)(mby3 + 1023) << 52);
ux &= 0x000fffffffffffffUL;
double Y = as_double(0x3fe0000000000000UL | ux);
// nearest integer
int index = as_int2(ux).hi >> 11;
index = (0x100 | (index >> 1)) + (index & 1);
double F = (double)index * 0x1.0p-9;
double f = Y - F;
double r = f * p_inv[index-256];
double z = r * fma(r,
fma(r,
fma(r,
fma(r,
fma(r, -0x1.8090d6221a247p-6, 0x1.ee7113506ac13p-6),
-0x1.511e8d2b3183bp-5),
0x1.f9add3c0ca458p-5),
-0x1.c71c71c71c71cp-4),
0x1.5555555555555p-2);
double2 tv = p_rem[rem+2];
double Rem_h = tv.s0;
double Rem_t = tv.s1;
tv = p_cbrt[index-256];
double F_h = tv.s0;
double F_t = tv.s1;
double b_h = F_h * Rem_h;
double b_t = fma(Rem_t, F_h, fma(F_t, Rem_h, F_t*Rem_t));
double ans = fma(z, b_h, fma(z, b_t, b_t)) + b_h;
ans = copysign(ans*mf, x);
return return_x ? x : ans;
}