blob: 70bf22c4218cc74fd5d089f9c0ac139e2d41ecb4 [file] [log] [blame]
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "math64.h"
__attribute__((overloadable)) double
asinpi(double x)
{
// Computes arcsin(x).
// The argument is first reduced by noting that arcsin(x)
// is invalid for abs(x) > 1 and arcsin(-x) = -arcsin(x).
// For denormal and small arguments arcsin(x) = x to machine
// accuracy. Remaining argument ranges are handled as follows.
// For abs(x) <= 0.5 use
// arcsin(x) = x + x^3*R(x^2)
// where R(x^2) is a rational minimax approximation to
// (arcsin(x) - x)/x^3.
// For abs(x) > 0.5 exploit the identity:
// arcsin(x) = pi/2 - 2*arcsin(sqrt(1-x)/2)
// together with the above rational approximation, and
// reconstruct the terms carefully.
const double pi = 0x1.921fb54442d18p+1;
const double piby2_tail = 6.1232339957367660e-17; /* 0x3c91a62633145c07 */
const double hpiby2_head = 7.8539816339744831e-01; /* 0x3fe921fb54442d18 */
double y = fabs(x);
int xneg = as_int2(x).hi < 0;
int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64;
// abs(x) >= 0.5
int transform = xexp >= -1;
double rt = 0.5 * (1.0 - y);
double y2 = y * y;
double r = transform ? rt : y2;
// Use a rational approximation for [0.0, 0.5]
double un = fma(r,
fma(r,
fma(r,
fma(r,
fma(r, 0.0000482901920344786991880522822991,
0.00109242697235074662306043804220),
-0.0549989809235685841612020091328),
0.275558175256937652532686256258),
-0.445017216867635649900123110649),
0.227485835556935010735943483075);
double ud = fma(r,
fma(r,
fma(r,
fma(r, 0.105869422087204370341222318533,
-0.943639137032492685763471240072),
2.76568859157270989520376345954),
-3.28431505720958658909889444194),
1.36491501334161032038194214209);
double u = r * MATH_DIVIDE(un, ud);
// Reconstruct asin carefully in transformed region
double s = sqrt(r);
double sh = as_double(as_ulong(s) & 0xffffffff00000000UL);
double c = MATH_DIVIDE(fma(-sh, sh, r), s + sh);
double p = fma(2.0*s, u, -fma(-2.0, c, piby2_tail));
double q = fma(-2.0, sh, hpiby2_head);
double vt = hpiby2_head - (p - q);
double v = fma(y, u, y);
v = transform ? vt : v;
v = xexp < -28 ? y : v;
v = MATH_DIVIDE(v, pi);
v = xexp >= 0 ? as_double(QNANBITPATT_DP64) : v;
v = y == 1.0 ? 0.5 : v;
return xneg ? -v : v;
}