blob: 42cde35106d7b1da2c150f623f8cfef6126a4e6a [file] [log] [blame]
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "math32.h"
__attribute__((overloadable)) float
tanh(float x)
{
// The definition of tanh(x) is sinh(x)/cosh(x), which is also equivalent
// to the following three formulae:
// 1. (exp(x) - exp(-x))/(exp(x) + exp(-x))
// 2. (1 - (2/(exp(2*x) + 1 )))
// 3. (exp(2*x) - 1)/(exp(2*x) + 1)
// but computationally, some formulae are better on some ranges.
const float large_threshold = 0x1.0a2b24p+3f;
uint ux = as_uint(x);
uint aux = ux & EXSIGNBIT_SP32;
uint xs = ux ^ aux;
float y = as_float(aux);
float y2 = y*y;
float a1 = mad(y2,
mad(y2, 0.4891631088530669873e-4F, -0.14628356048797849e-2F),
-0.28192806108402678e0F);
float b1 = mad(y2, 0.3427017942262751343e0F, 0.845784192581041099e0F);
float a2 = mad(y2,
mad(y2, 0.3827534993599483396e-4F, -0.12325644183611929e-2F),
-0.24069858695196524e0F);
float b2 = mad(y2, 0.292529068698052819e0F, 0.72209738473684982e0F);
int c = y < 0.9f;
float a = c ? a1 : a2;
float b = c ? b1 : b2;
float zlo = mad(MATH_DIVIDE(a, b), y*y2, y);
float p = exp(2.0f * y) + 1.0f;
float zhi = 1.0F - MATH_DIVIDE(2.0F, p);
float z = y <= 1.0f ? zlo : zhi;
z = as_float(xs | as_uint(z));
// Edge cases
float sone = as_float(0x3f800000U | xs);
z = y > large_threshold ? sone : z;
z = aux < 0x39000000 | aux > 0x7f800000 ? x : z;
return z;
}