blob: 4b23167951aa13cd55bbe5591c58cde9a7d74a4d [file] [log] [blame]
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related semantic analysis.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "clang/Basic/OpenCL.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
/// isOmittedBlockReturnType - Return true if this declarator is missing a
/// return type because this is a omitted return type on a block literal.
static bool isOmittedBlockReturnType(const Declarator &D) {
if (D.getContext() != Declarator::BlockLiteralContext ||
D.getDeclSpec().hasTypeSpecifier())
return false;
if (D.getNumTypeObjects() == 0)
return true; // ^{ ... }
if (D.getNumTypeObjects() == 1 &&
D.getTypeObject(0).Kind == DeclaratorChunk::Function)
return true; // ^(int X, float Y) { ... }
return false;
}
/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
/// doesn't apply to the given type.
static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
QualType type) {
bool useExpansionLoc = false;
unsigned diagID = 0;
switch (attr.getKind()) {
case AttributeList::AT_ObjCGC:
diagID = diag::warn_pointer_attribute_wrong_type;
useExpansionLoc = true;
break;
case AttributeList::AT_ObjCOwnership:
diagID = diag::warn_objc_object_attribute_wrong_type;
useExpansionLoc = true;
break;
default:
// Assume everything else was a function attribute.
diagID = diag::warn_function_attribute_wrong_type;
break;
}
SourceLocation loc = attr.getLoc();
StringRef name = attr.getName()->getName();
// The GC attributes are usually written with macros; special-case them.
if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
if (attr.getParameterName()->isStr("strong")) {
if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
} else if (attr.getParameterName()->isStr("weak")) {
if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
}
}
S.Diag(loc, diagID) << name << type;
}
// objc_gc applies to Objective-C pointers or, otherwise, to the
// smallest available pointer type (i.e. 'void*' in 'void**').
#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
case AttributeList::AT_ObjCGC: \
case AttributeList::AT_ObjCOwnership
// Function type attributes.
#define FUNCTION_TYPE_ATTRS_CASELIST \
case AttributeList::AT_NoReturn: \
case AttributeList::AT_CDecl: \
case AttributeList::AT_FastCall: \
case AttributeList::AT_StdCall: \
case AttributeList::AT_ThisCall: \
case AttributeList::AT_Pascal: \
case AttributeList::AT_Regparm: \
case AttributeList::AT_Pcs: \
case AttributeList::AT_PnaclCall \
namespace {
/// An object which stores processing state for the entire
/// GetTypeForDeclarator process.
class TypeProcessingState {
Sema &sema;
/// The declarator being processed.
Declarator &declarator;
/// The index of the declarator chunk we're currently processing.
/// May be the total number of valid chunks, indicating the
/// DeclSpec.
unsigned chunkIndex;
/// Whether there are non-trivial modifications to the decl spec.
bool trivial;
/// Whether we saved the attributes in the decl spec.
bool hasSavedAttrs;
/// The original set of attributes on the DeclSpec.
SmallVector<AttributeList*, 2> savedAttrs;
/// A list of attributes to diagnose the uselessness of when the
/// processing is complete.
SmallVector<AttributeList*, 2> ignoredTypeAttrs;
public:
TypeProcessingState(Sema &sema, Declarator &declarator)
: sema(sema), declarator(declarator),
chunkIndex(declarator.getNumTypeObjects()),
trivial(true), hasSavedAttrs(false) {}
Sema &getSema() const {
return sema;
}
Declarator &getDeclarator() const {
return declarator;
}
unsigned getCurrentChunkIndex() const {
return chunkIndex;
}
void setCurrentChunkIndex(unsigned idx) {
assert(idx <= declarator.getNumTypeObjects());
chunkIndex = idx;
}
AttributeList *&getCurrentAttrListRef() const {
assert(chunkIndex <= declarator.getNumTypeObjects());
if (chunkIndex == declarator.getNumTypeObjects())
return getMutableDeclSpec().getAttributes().getListRef();
return declarator.getTypeObject(chunkIndex).getAttrListRef();
}
/// Save the current set of attributes on the DeclSpec.
void saveDeclSpecAttrs() {
// Don't try to save them multiple times.
if (hasSavedAttrs) return;
DeclSpec &spec = getMutableDeclSpec();
for (AttributeList *attr = spec.getAttributes().getList(); attr;
attr = attr->getNext())
savedAttrs.push_back(attr);
trivial &= savedAttrs.empty();
hasSavedAttrs = true;
}
/// Record that we had nowhere to put the given type attribute.
/// We will diagnose such attributes later.
void addIgnoredTypeAttr(AttributeList &attr) {
ignoredTypeAttrs.push_back(&attr);
}
/// Diagnose all the ignored type attributes, given that the
/// declarator worked out to the given type.
void diagnoseIgnoredTypeAttrs(QualType type) const {
for (SmallVectorImpl<AttributeList*>::const_iterator
i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
i != e; ++i)
diagnoseBadTypeAttribute(getSema(), **i, type);
}
~TypeProcessingState() {
if (trivial) return;
restoreDeclSpecAttrs();
}
private:
DeclSpec &getMutableDeclSpec() const {
return const_cast<DeclSpec&>(declarator.getDeclSpec());
}
void restoreDeclSpecAttrs() {
assert(hasSavedAttrs);
if (savedAttrs.empty()) {
getMutableDeclSpec().getAttributes().set(0);
return;
}
getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
savedAttrs[i]->setNext(savedAttrs[i+1]);
savedAttrs.back()->setNext(0);
}
};
/// Basically std::pair except that we really want to avoid an
/// implicit operator= for safety concerns. It's also a minor
/// link-time optimization for this to be a private type.
struct AttrAndList {
/// The attribute.
AttributeList &first;
/// The head of the list the attribute is currently in.
AttributeList *&second;
AttrAndList(AttributeList &attr, AttributeList *&head)
: first(attr), second(head) {}
};
}
namespace llvm {
template <> struct isPodLike<AttrAndList> {
static const bool value = true;
};
}
static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
attr.setNext(head);
head = &attr;
}
static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
if (head == &attr) {
head = attr.getNext();
return;
}
AttributeList *cur = head;
while (true) {
assert(cur && cur->getNext() && "ran out of attrs?");
if (cur->getNext() == &attr) {
cur->setNext(attr.getNext());
return;
}
cur = cur->getNext();
}
}
static void moveAttrFromListToList(AttributeList &attr,
AttributeList *&fromList,
AttributeList *&toList) {
spliceAttrOutOfList(attr, fromList);
spliceAttrIntoList(attr, toList);
}
static void processTypeAttrs(TypeProcessingState &state,
QualType &type, bool isDeclSpec,
AttributeList *attrs);
static bool handleFunctionTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type);
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
AttributeList &attr, QualType &type);
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
AttributeList &attr, QualType &type);
static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
AttributeList &attr, QualType &type) {
if (attr.getKind() == AttributeList::AT_ObjCGC)
return handleObjCGCTypeAttr(state, attr, type);
assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
return handleObjCOwnershipTypeAttr(state, attr, type);
}
/// Given that an objc_gc attribute was written somewhere on a
/// declaration *other* than on the declarator itself (for which, use
/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
/// didn't apply in whatever position it was written in, try to move
/// it to a more appropriate position.
static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType type) {
Declarator &declarator = state.getDeclarator();
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
chunk.getAttrListRef());
return;
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
continue;
// Don't walk through these.
case DeclaratorChunk::Reference:
case DeclaratorChunk::Function:
case DeclaratorChunk::MemberPointer:
goto error;
}
}
error:
diagnoseBadTypeAttribute(state.getSema(), attr, type);
}
/// Distribute an objc_gc type attribute that was written on the
/// declarator.
static void
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
AttributeList &attr,
QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// objc_gc goes on the innermost pointer to something that's not a
// pointer.
unsigned innermost = -1U;
bool considerDeclSpec = true;
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
innermost = i;
continue;
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
continue;
case DeclaratorChunk::Function:
considerDeclSpec = false;
goto done;
}
}
done:
// That might actually be the decl spec if we weren't blocked by
// anything in the declarator.
if (considerDeclSpec) {
if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
// Splice the attribute into the decl spec. Prevents the
// attribute from being applied multiple times and gives
// the source-location-filler something to work with.
state.saveDeclSpecAttrs();
moveAttrFromListToList(attr, declarator.getAttrListRef(),
declarator.getMutableDeclSpec().getAttributes().getListRef());
return;
}
}
// Otherwise, if we found an appropriate chunk, splice the attribute
// into it.
if (innermost != -1U) {
moveAttrFromListToList(attr, declarator.getAttrListRef(),
declarator.getTypeObject(innermost).getAttrListRef());
return;
}
// Otherwise, diagnose when we're done building the type.
spliceAttrOutOfList(attr, declarator.getAttrListRef());
state.addIgnoredTypeAttr(attr);
}
/// A function type attribute was written somewhere in a declaration
/// *other* than on the declarator itself or in the decl spec. Given
/// that it didn't apply in whatever position it was written in, try
/// to move it to a more appropriate position.
static void distributeFunctionTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType type) {
Declarator &declarator = state.getDeclarator();
// Try to push the attribute from the return type of a function to
// the function itself.
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Function:
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
chunk.getAttrListRef());
return;
case DeclaratorChunk::Paren:
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
continue;
}
}
diagnoseBadTypeAttribute(state.getSema(), attr, type);
}
/// Try to distribute a function type attribute to the innermost
/// function chunk or type. Returns true if the attribute was
/// distributed, false if no location was found.
static bool
distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
AttributeList &attr,
AttributeList *&attrList,
QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// Put it on the innermost function chunk, if there is one.
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
if (chunk.Kind != DeclaratorChunk::Function) continue;
moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
return true;
}
if (handleFunctionTypeAttr(state, attr, declSpecType)) {
spliceAttrOutOfList(attr, attrList);
return true;
}
return false;
}
/// A function type attribute was written in the decl spec. Try to
/// apply it somewhere.
static void
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
AttributeList &attr,
QualType &declSpecType) {
state.saveDeclSpecAttrs();
// Try to distribute to the innermost.
if (distributeFunctionTypeAttrToInnermost(state, attr,
state.getCurrentAttrListRef(),
declSpecType))
return;
// If that failed, diagnose the bad attribute when the declarator is
// fully built.
state.addIgnoredTypeAttr(attr);
}
/// A function type attribute was written on the declarator. Try to
/// apply it somewhere.
static void
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
AttributeList &attr,
QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// Try to distribute to the innermost.
if (distributeFunctionTypeAttrToInnermost(state, attr,
declarator.getAttrListRef(),
declSpecType))
return;
// If that failed, diagnose the bad attribute when the declarator is
// fully built.
spliceAttrOutOfList(attr, declarator.getAttrListRef());
state.addIgnoredTypeAttr(attr);
}
/// \brief Given that there are attributes written on the declarator
/// itself, try to distribute any type attributes to the appropriate
/// declarator chunk.
///
/// These are attributes like the following:
/// int f ATTR;
/// int (f ATTR)();
/// but not necessarily this:
/// int f() ATTR;
static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
QualType &declSpecType) {
// Collect all the type attributes from the declarator itself.
assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
AttributeList *attr = state.getDeclarator().getAttributes();
AttributeList *next;
do {
next = attr->getNext();
switch (attr->getKind()) {
OBJC_POINTER_TYPE_ATTRS_CASELIST:
distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
break;
case AttributeList::AT_NSReturnsRetained:
if (!state.getSema().getLangOpts().ObjCAutoRefCount)
break;
// fallthrough
FUNCTION_TYPE_ATTRS_CASELIST:
distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
break;
default:
break;
}
} while ((attr = next));
}
/// Add a synthetic '()' to a block-literal declarator if it is
/// required, given the return type.
static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
QualType declSpecType) {
Declarator &declarator = state.getDeclarator();
// First, check whether the declarator would produce a function,
// i.e. whether the innermost semantic chunk is a function.
if (declarator.isFunctionDeclarator()) {
// If so, make that declarator a prototyped declarator.
declarator.getFunctionTypeInfo().hasPrototype = true;
return;
}
// If there are any type objects, the type as written won't name a
// function, regardless of the decl spec type. This is because a
// block signature declarator is always an abstract-declarator, and
// abstract-declarators can't just be parentheses chunks. Therefore
// we need to build a function chunk unless there are no type
// objects and the decl spec type is a function.
if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
return;
// Note that there *are* cases with invalid declarators where
// declarators consist solely of parentheses. In general, these
// occur only in failed efforts to make function declarators, so
// faking up the function chunk is still the right thing to do.
// Otherwise, we need to fake up a function declarator.
SourceLocation loc = declarator.getLocStart();
// ...and *prepend* it to the declarator.
SourceLocation NoLoc;
declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
/*HasProto=*/true,
/*IsAmbiguous=*/false,
/*LParenLoc=*/NoLoc,
/*ArgInfo=*/0,
/*NumArgs=*/0,
/*EllipsisLoc=*/NoLoc,
/*RParenLoc=*/NoLoc,
/*TypeQuals=*/0,
/*RefQualifierIsLvalueRef=*/true,
/*RefQualifierLoc=*/NoLoc,
/*ConstQualifierLoc=*/NoLoc,
/*VolatileQualifierLoc=*/NoLoc,
/*MutableLoc=*/NoLoc,
EST_None,
/*ESpecLoc=*/NoLoc,
/*Exceptions=*/0,
/*ExceptionRanges=*/0,
/*NumExceptions=*/0,
/*NoexceptExpr=*/0,
loc, loc, declarator));
// For consistency, make sure the state still has us as processing
// the decl spec.
assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
state.setCurrentChunkIndex(declarator.getNumTypeObjects());
}
/// \brief Convert the specified declspec to the appropriate type
/// object.
/// \param state Specifies the declarator containing the declaration specifier
/// to be converted, along with other associated processing state.
/// \returns The type described by the declaration specifiers. This function
/// never returns null.
static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
// checking.
Sema &S = state.getSema();
Declarator &declarator = state.getDeclarator();
const DeclSpec &DS = declarator.getDeclSpec();
SourceLocation DeclLoc = declarator.getIdentifierLoc();
if (DeclLoc.isInvalid())
DeclLoc = DS.getLocStart();
ASTContext &Context = S.Context;
QualType Result;
switch (DS.getTypeSpecType()) {
case DeclSpec::TST_void:
Result = Context.VoidTy;
break;
case DeclSpec::TST_char:
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
Result = Context.CharTy;
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
Result = Context.SignedCharTy;
else {
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
"Unknown TSS value");
Result = Context.UnsignedCharTy;
}
break;
case DeclSpec::TST_wchar:
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
Result = Context.WCharTy;
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
<< DS.getSpecifierName(DS.getTypeSpecType());
Result = Context.getSignedWCharType();
} else {
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
"Unknown TSS value");
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
<< DS.getSpecifierName(DS.getTypeSpecType());
Result = Context.getUnsignedWCharType();
}
break;
case DeclSpec::TST_char16:
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value");
Result = Context.Char16Ty;
break;
case DeclSpec::TST_char32:
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value");
Result = Context.Char32Ty;
break;
case DeclSpec::TST_unspecified:
// "<proto1,proto2>" is an objc qualified ID with a missing id.
if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
(ObjCProtocolDecl*const*)PQ,
DS.getNumProtocolQualifiers());
Result = Context.getObjCObjectPointerType(Result);
break;
}
// If this is a missing declspec in a block literal return context, then it
// is inferred from the return statements inside the block.
// The declspec is always missing in a lambda expr context; it is either
// specified with a trailing return type or inferred.
if (declarator.getContext() == Declarator::LambdaExprContext ||
isOmittedBlockReturnType(declarator)) {
Result = Context.DependentTy;
break;
}
// Unspecified typespec defaults to int in C90. However, the C90 grammar
// [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
// type-qualifier, or storage-class-specifier. If not, emit an extwarn.
// Note that the one exception to this is function definitions, which are
// allowed to be completely missing a declspec. This is handled in the
// parser already though by it pretending to have seen an 'int' in this
// case.
if (S.getLangOpts().ImplicitInt) {
// In C89 mode, we only warn if there is a completely missing declspec
// when one is not allowed.
if (DS.isEmpty()) {
S.Diag(DeclLoc, diag::ext_missing_declspec)
<< DS.getSourceRange()
<< FixItHint::CreateInsertion(DS.getLocStart(), "int");
}
} else if (!DS.hasTypeSpecifier()) {
// C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
// "At least one type specifier shall be given in the declaration
// specifiers in each declaration, and in the specifier-qualifier list in
// each struct declaration and type name."
// FIXME: Does Microsoft really have the implicit int extension in C++?
if (S.getLangOpts().CPlusPlus &&
!S.getLangOpts().MicrosoftExt) {
S.Diag(DeclLoc, diag::err_missing_type_specifier)
<< DS.getSourceRange();
// When this occurs in C++ code, often something is very broken with the
// value being declared, poison it as invalid so we don't get chains of
// errors.
declarator.setInvalidType(true);
} else {
S.Diag(DeclLoc, diag::ext_missing_type_specifier)
<< DS.getSourceRange();
}
}
// FALL THROUGH.
case DeclSpec::TST_int: {
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
case DeclSpec::TSW_short: Result = Context.ShortTy; break;
case DeclSpec::TSW_long: Result = Context.LongTy; break;
case DeclSpec::TSW_longlong:
Result = Context.LongLongTy;
// 'long long' is a C99 or C++11 feature.
if (!S.getLangOpts().C99) {
if (S.getLangOpts().CPlusPlus)
S.Diag(DS.getTypeSpecWidthLoc(),
S.getLangOpts().CPlusPlus0x ?
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
else
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
}
break;
}
} else {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
case DeclSpec::TSW_longlong:
Result = Context.UnsignedLongLongTy;
// 'long long' is a C99 or C++11 feature.
if (!S.getLangOpts().C99) {
if (S.getLangOpts().CPlusPlus)
S.Diag(DS.getTypeSpecWidthLoc(),
S.getLangOpts().CPlusPlus0x ?
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
else
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
}
break;
}
}
break;
}
case DeclSpec::TST_int128:
if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
Result = Context.UnsignedInt128Ty;
else
Result = Context.Int128Ty;
break;
case DeclSpec::TST_half: Result = Context.HalfTy; break;
case DeclSpec::TST_float: Result = Context.FloatTy; break;
case DeclSpec::TST_double:
if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
Result = Context.LongDoubleTy;
else
Result = Context.DoubleTy;
if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
declarator.setInvalidType(true);
}
break;
case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
case DeclSpec::TST_decimal32: // _Decimal32
case DeclSpec::TST_decimal64: // _Decimal64
case DeclSpec::TST_decimal128: // _Decimal128
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
case DeclSpec::TST_class:
case DeclSpec::TST_enum:
case DeclSpec::TST_union:
case DeclSpec::TST_struct:
case DeclSpec::TST_interface: {
TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
if (!D) {
// This can happen in C++ with ambiguous lookups.
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
}
// If the type is deprecated or unavailable, diagnose it.
S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
// TypeQuals handled by caller.
Result = Context.getTypeDeclType(D);
// In both C and C++, make an ElaboratedType.
ElaboratedTypeKeyword Keyword
= ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
break;
}
case DeclSpec::TST_typename: {
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == 0 &&
"Can't handle qualifiers on typedef names yet!");
Result = S.GetTypeFromParser(DS.getRepAsType());
if (Result.isNull())
declarator.setInvalidType(true);
else if (DeclSpec::ProtocolQualifierListTy PQ
= DS.getProtocolQualifiers()) {
if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
// Silently drop any existing protocol qualifiers.
// TODO: determine whether that's the right thing to do.
if (ObjT->getNumProtocols())
Result = ObjT->getBaseType();
if (DS.getNumProtocolQualifiers())
Result = Context.getObjCObjectType(Result,
(ObjCProtocolDecl*const*) PQ,
DS.getNumProtocolQualifiers());
} else if (Result->isObjCIdType()) {
// id<protocol-list>
Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
(ObjCProtocolDecl*const*) PQ,
DS.getNumProtocolQualifiers());
Result = Context.getObjCObjectPointerType(Result);
} else if (Result->isObjCClassType()) {
// Class<protocol-list>
Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
(ObjCProtocolDecl*const*) PQ,
DS.getNumProtocolQualifiers());
Result = Context.getObjCObjectPointerType(Result);
} else {
S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
<< DS.getSourceRange();
declarator.setInvalidType(true);
}
}
// TypeQuals handled by caller.
break;
}
case DeclSpec::TST_typeofType:
// FIXME: Preserve type source info.
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for typeof?");
if (!Result->isDependentType())
if (const TagType *TT = Result->getAs<TagType>())
S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
// TypeQuals handled by caller.
Result = Context.getTypeOfType(Result);
break;
case DeclSpec::TST_typeofExpr: {
Expr *E = DS.getRepAsExpr();
assert(E && "Didn't get an expression for typeof?");
// TypeQuals handled by caller.
Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
}
case DeclSpec::TST_decltype: {
Expr *E = DS.getRepAsExpr();
assert(E && "Didn't get an expression for decltype?");
// TypeQuals handled by caller.
Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
}
case DeclSpec::TST_underlyingType:
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
Result = S.BuildUnaryTransformType(Result,
UnaryTransformType::EnumUnderlyingType,
DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
case DeclSpec::TST_auto: {
// TypeQuals handled by caller.
Result = Context.getAutoType(QualType());
break;
}
case DeclSpec::TST_unknown_anytype:
Result = Context.UnknownAnyTy;
break;
case DeclSpec::TST_atomic:
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for _Atomic?");
Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
case DeclSpec::TST_error:
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
}
// Handle complex types.
if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
if (S.getLangOpts().Freestanding)
S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
Result = Context.getComplexType(Result);
} else if (DS.isTypeAltiVecVector()) {
unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
VectorType::VectorKind VecKind = VectorType::AltiVecVector;
if (DS.isTypeAltiVecPixel())
VecKind = VectorType::AltiVecPixel;
else if (DS.isTypeAltiVecBool())
VecKind = VectorType::AltiVecBool;
Result = Context.getVectorType(Result, 128/typeSize, VecKind);
}
// FIXME: Imaginary.
if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
// Before we process any type attributes, synthesize a block literal
// function declarator if necessary.
if (declarator.getContext() == Declarator::BlockLiteralContext)
maybeSynthesizeBlockSignature(state, Result);
// Apply any type attributes from the decl spec. This may cause the
// list of type attributes to be temporarily saved while the type
// attributes are pushed around.
if (AttributeList *attrs = DS.getAttributes().getList())
processTypeAttrs(state, Result, true, attrs);
// Apply const/volatile/restrict qualifiers to T.
if (unsigned TypeQuals = DS.getTypeQualifiers()) {
// Enforce C99 6.7.3p2: "Types other than pointer types derived from object
// or incomplete types shall not be restrict-qualified." C++ also allows
// restrict-qualified references.
if (TypeQuals & DeclSpec::TQ_restrict) {
if (Result->isAnyPointerType() || Result->isReferenceType()) {
QualType EltTy;
if (Result->isObjCObjectPointerType())
EltTy = Result;
else
EltTy = Result->isPointerType() ?
Result->getAs<PointerType>()->getPointeeType() :
Result->getAs<ReferenceType>()->getPointeeType();
// If we have a pointer or reference, the pointee must have an object
// incomplete type.
if (!EltTy->isIncompleteOrObjectType()) {
S.Diag(DS.getRestrictSpecLoc(),
diag::err_typecheck_invalid_restrict_invalid_pointee)
<< EltTy << DS.getSourceRange();
TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
}
} else {
S.Diag(DS.getRestrictSpecLoc(),
diag::err_typecheck_invalid_restrict_not_pointer)
<< Result << DS.getSourceRange();
TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
}
}
// Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
// of a function type includes any type qualifiers, the behavior is
// undefined."
if (Result->isFunctionType() && TypeQuals) {
// Get some location to point at, either the C or V location.
SourceLocation Loc;
if (TypeQuals & DeclSpec::TQ_const)
Loc = DS.getConstSpecLoc();
else if (TypeQuals & DeclSpec::TQ_volatile)
Loc = DS.getVolatileSpecLoc();
else {
assert((TypeQuals & DeclSpec::TQ_restrict) &&
"Has CVR quals but not C, V, or R?");
Loc = DS.getRestrictSpecLoc();
}
S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
<< Result << DS.getSourceRange();
}
// C++ [dcl.ref]p1:
// Cv-qualified references are ill-formed except when the
// cv-qualifiers are introduced through the use of a typedef
// (7.1.3) or of a template type argument (14.3), in which
// case the cv-qualifiers are ignored.
// FIXME: Shouldn't we be checking SCS_typedef here?
if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
TypeQuals && Result->isReferenceType()) {
TypeQuals &= ~DeclSpec::TQ_const;
TypeQuals &= ~DeclSpec::TQ_volatile;
}
// C90 6.5.3 constraints: "The same type qualifier shall not appear more
// than once in the same specifier-list or qualifier-list, either directly
// or via one or more typedefs."
if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
&& TypeQuals & Result.getCVRQualifiers()) {
if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
<< "const";
}
if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
<< "volatile";
}
// C90 doesn't have restrict, so it doesn't force us to produce a warning
// in this case.
}
Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
Result = Context.getQualifiedType(Result, Quals);
}
return Result;
}
static std::string getPrintableNameForEntity(DeclarationName Entity) {
if (Entity)
return Entity.getAsString();
return "type name";
}
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
Qualifiers Qs) {
// Enforce C99 6.7.3p2: "Types other than pointer types derived from
// object or incomplete types shall not be restrict-qualified."
if (Qs.hasRestrict()) {
unsigned DiagID = 0;
QualType ProblemTy;
const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
}
} else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
ProblemTy = T->getAs<PointerType>()->getPointeeType();
}
} else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
ProblemTy = T->getAs<PointerType>()->getPointeeType();
}
} else if (!Ty->isDependentType()) {
// FIXME: this deserves a proper diagnostic
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
ProblemTy = T;
}
if (DiagID) {
Diag(Loc, DiagID) << ProblemTy;
Qs.removeRestrict();
}
}
return Context.getQualifiedType(T, Qs);
}
/// \brief Build a paren type including \p T.
QualType Sema::BuildParenType(QualType T) {
return Context.getParenType(T);
}
/// Given that we're building a pointer or reference to the given
static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
SourceLocation loc,
bool isReference) {
// Bail out if retention is unrequired or already specified.
if (!type->isObjCLifetimeType() ||
type.getObjCLifetime() != Qualifiers::OCL_None)
return type;
Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
// If the object type is const-qualified, we can safely use
// __unsafe_unretained. This is safe (because there are no read
// barriers), and it'll be safe to coerce anything but __weak* to
// the resulting type.
if (type.isConstQualified()) {
implicitLifetime = Qualifiers::OCL_ExplicitNone;
// Otherwise, check whether the static type does not require
// retaining. This currently only triggers for Class (possibly
// protocol-qualifed, and arrays thereof).
} else if (type->isObjCARCImplicitlyUnretainedType()) {
implicitLifetime = Qualifiers::OCL_ExplicitNone;
// If we are in an unevaluated context, like sizeof, skip adding a
// qualification.
} else if (S.isUnevaluatedContext()) {
return type;
// If that failed, give an error and recover using __strong. __strong
// is the option most likely to prevent spurious second-order diagnostics,
// like when binding a reference to a field.
} else {
// These types can show up in private ivars in system headers, so
// we need this to not be an error in those cases. Instead we
// want to delay.
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
S.DelayedDiagnostics.add(
sema::DelayedDiagnostic::makeForbiddenType(loc,
diag::err_arc_indirect_no_ownership, type, isReference));
} else {
S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
}
implicitLifetime = Qualifiers::OCL_Strong;
}
assert(implicitLifetime && "didn't infer any lifetime!");
Qualifiers qs;
qs.addObjCLifetime(implicitLifetime);
return S.Context.getQualifiedType(type, qs);
}
/// \brief Build a pointer type.
///
/// \param T The type to which we'll be building a pointer.
///
/// \param Loc The location of the entity whose type involves this
/// pointer type or, if there is no such entity, the location of the
/// type that will have pointer type.
///
/// \param Entity The name of the entity that involves the pointer
/// type, if known.
///
/// \returns A suitable pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildPointerType(QualType T,
SourceLocation Loc, DeclarationName Entity) {
if (T->isReferenceType()) {
// C++ 8.3.2p4: There shall be no ... pointers to references ...
Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
// In ARC, it is forbidden to build pointers to unqualified pointers.
if (getLangOpts().ObjCAutoRefCount)
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
// Build the pointer type.
return Context.getPointerType(T);
}
/// \brief Build a reference type.
///
/// \param T The type to which we'll be building a reference.
///
/// \param Loc The location of the entity whose type involves this
/// reference type or, if there is no such entity, the location of the
/// type that will have reference type.
///
/// \param Entity The name of the entity that involves the reference
/// type, if known.
///
/// \returns A suitable reference type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
SourceLocation Loc,
DeclarationName Entity) {
assert(Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type");
// C++0x [dcl.ref]p6:
// If a typedef (7.1.3), a type template-parameter (14.3.1), or a
// decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
// type T, an attempt to create the type "lvalue reference to cv TR" creates
// the type "lvalue reference to T", while an attempt to create the type
// "rvalue reference to cv TR" creates the type TR.
bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
// C++ [dcl.ref]p4: There shall be no references to references.
//
// According to C++ DR 106, references to references are only
// diagnosed when they are written directly (e.g., "int & &"),
// but not when they happen via a typedef:
//
// typedef int& intref;
// typedef intref& intref2;
//
// Parser::ParseDeclaratorInternal diagnoses the case where
// references are written directly; here, we handle the
// collapsing of references-to-references as described in C++0x.
// DR 106 and 540 introduce reference-collapsing into C++98/03.
// C++ [dcl.ref]p1:
// A declarator that specifies the type "reference to cv void"
// is ill-formed.
if (T->isVoidType()) {
Diag(Loc, diag::err_reference_to_void);
return QualType();
}
// In ARC, it is forbidden to build references to unqualified pointers.
if (getLangOpts().ObjCAutoRefCount)
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
// Handle restrict on references.
if (LValueRef)
return Context.getLValueReferenceType(T, SpelledAsLValue);
return Context.getRValueReferenceType(T);
}
/// Check whether the specified array size makes the array type a VLA. If so,
/// return true, if not, return the size of the array in SizeVal.
static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
// If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
// (like gnu99, but not c99) accept any evaluatable value as an extension.
class VLADiagnoser : public Sema::VerifyICEDiagnoser {
public:
VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
}
virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
}
} Diagnoser;
return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
S.LangOpts.GNUMode).isInvalid();
}
/// \brief Build an array type.
///
/// \param T The type of each element in the array.
///
/// \param ASM C99 array size modifier (e.g., '*', 'static').
///
/// \param ArraySize Expression describing the size of the array.
///
/// \param Brackets The range from the opening '[' to the closing ']'.
///
/// \param Entity The name of the entity that involves the array
/// type, if known.
///
/// \returns A suitable array type, if there are no errors. Otherwise,
/// returns a NULL type.
QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
Expr *ArraySize, unsigned Quals,
SourceRange Brackets, DeclarationName Entity) {
SourceLocation Loc = Brackets.getBegin();
if (getLangOpts().CPlusPlus) {
// C++ [dcl.array]p1:
// T is called the array element type; this type shall not be a reference
// type, the (possibly cv-qualified) type void, a function type or an
// abstract class type.
//
// C++ [dcl.array]p3:
// When several "array of" specifications are adjacent, [...] only the
// first of the constant expressions that specify the bounds of the arrays
// may be omitted.
//
// Note: function types are handled in the common path with C.
if (T->isReferenceType()) {
Diag(Loc, diag::err_illegal_decl_array_of_references)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (T->isVoidType() || T->isIncompleteArrayType()) {
Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
return QualType();
}
if (RequireNonAbstractType(Brackets.getBegin(), T,
diag::err_array_of_abstract_type))
return QualType();
} else {
// C99 6.7.5.2p1: If the element type is an incomplete or function type,
// reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
if (RequireCompleteType(Loc, T,
diag::err_illegal_decl_array_incomplete_type))
return QualType();
}
if (T->isFunctionType()) {
Diag(Loc, diag::err_illegal_decl_array_of_functions)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (T->getContainedAutoType()) {
Diag(Loc, diag::err_illegal_decl_array_of_auto)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (const RecordType *EltTy = T->getAs<RecordType>()) {
// If the element type is a struct or union that contains a variadic
// array, accept it as a GNU extension: C99 6.7.2.1p2.
if (EltTy->getDecl()->hasFlexibleArrayMember())
Diag(Loc, diag::ext_flexible_array_in_array) << T;
} else if (T->isObjCObjectType()) {
Diag(Loc, diag::err_objc_array_of_interfaces) << T;
return QualType();
}
// Do placeholder conversions on the array size expression.
if (ArraySize && ArraySize->hasPlaceholderType()) {
ExprResult Result = CheckPlaceholderExpr(ArraySize);
if (Result.isInvalid()) return QualType();
ArraySize = Result.take();
}
// Do lvalue-to-rvalue conversions on the array size expression.
if (ArraySize && !ArraySize->isRValue()) {
ExprResult Result = DefaultLvalueConversion(ArraySize);
if (Result.isInvalid())
return QualType();
ArraySize = Result.take();
}
// C99 6.7.5.2p1: The size expression shall have integer type.
// C++11 allows contextual conversions to such types.
if (!getLangOpts().CPlusPlus0x &&
ArraySize && !ArraySize->isTypeDependent() &&
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
<< ArraySize->getType() << ArraySize->getSourceRange();
return QualType();
}
llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
if (!ArraySize) {
if (ASM == ArrayType::Star)
T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
else
T = Context.getIncompleteArrayType(T, ASM, Quals);
} else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
} else if ((!T->isDependentType() && !T->isIncompleteType() &&
!T->isConstantSizeType()) ||
isArraySizeVLA(*this, ArraySize, ConstVal)) {
// Even in C++11, don't allow contextual conversions in the array bound
// of a VLA.
if (getLangOpts().CPlusPlus0x &&
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
<< ArraySize->getType() << ArraySize->getSourceRange();
return QualType();
}
// C99: an array with an element type that has a non-constant-size is a VLA.
// C99: an array with a non-ICE size is a VLA. We accept any expression
// that we can fold to a non-zero positive value as an extension.
T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
} else {
// C99 6.7.5.2p1: If the expression is a constant expression, it shall
// have a value greater than zero.
if (ConstVal.isSigned() && ConstVal.isNegative()) {
if (Entity)
Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
<< getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
else
Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
<< ArraySize->getSourceRange();
return QualType();
}
if (ConstVal == 0) {
// GCC accepts zero sized static arrays. We allow them when
// we're not in a SFINAE context.
Diag(ArraySize->getLocStart(),
isSFINAEContext()? diag::err_typecheck_zero_array_size
: diag::ext_typecheck_zero_array_size)
<< ArraySize->getSourceRange();
if (ASM == ArrayType::Static) {
Diag(ArraySize->getLocStart(),
diag::warn_typecheck_zero_static_array_size)
<< ArraySize->getSourceRange();
ASM = ArrayType::Normal;
}
} else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
!T->isIncompleteType()) {
// Is the array too large?
unsigned ActiveSizeBits
= ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
Diag(ArraySize->getLocStart(), diag::err_array_too_large)
<< ConstVal.toString(10)
<< ArraySize->getSourceRange();
}
T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
}
// If this is not C99, extwarn about VLA's and C99 array size modifiers.
if (!getLangOpts().C99) {
if (T->isVariableArrayType()) {
// Prohibit the use of non-POD types in VLAs.
QualType BaseT = Context.getBaseElementType(T);
if (!T->isDependentType() &&
!BaseT.isPODType(Context) &&
!BaseT->isObjCLifetimeType()) {
Diag(Loc, diag::err_vla_non_pod)
<< BaseT;
return QualType();
}
// Prohibit the use of VLAs during template argument deduction.
else if (isSFINAEContext()) {
Diag(Loc, diag::err_vla_in_sfinae);
return QualType();
}
// Just extwarn about VLAs.
else
Diag(Loc, diag::ext_vla);
} else if (ASM != ArrayType::Normal || Quals != 0)
Diag(Loc,
getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
: diag::ext_c99_array_usage) << ASM;
}
return T;
}
/// \brief Build an ext-vector type.
///
/// Run the required checks for the extended vector type.
QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
SourceLocation AttrLoc) {
// unlike gcc's vector_size attribute, we do not allow vectors to be defined
// in conjunction with complex types (pointers, arrays, functions, etc.).
if (!T->isDependentType() &&
!T->isIntegerType() && !T->isRealFloatingType()) {
Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
return QualType();
}
if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
llvm::APSInt vecSize(32);
if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
Diag(AttrLoc, diag::err_attribute_argument_not_int)
<< "ext_vector_type" << ArraySize->getSourceRange();
return QualType();
}
// unlike gcc's vector_size attribute, the size is specified as the
// number of elements, not the number of bytes.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
if (vectorSize == 0) {
Diag(AttrLoc, diag::err_attribute_zero_size)
<< ArraySize->getSourceRange();
return QualType();
}
return Context.getExtVectorType(T, vectorSize);
}
return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
}
/// \brief Build a function type.
///
/// This routine checks the function type according to C++ rules and
/// under the assumption that the result type and parameter types have
/// just been instantiated from a template. It therefore duplicates
/// some of the behavior of GetTypeForDeclarator, but in a much
/// simpler form that is only suitable for this narrow use case.
///
/// \param T The return type of the function.
///
/// \param ParamTypes The parameter types of the function. This array
/// will be modified to account for adjustments to the types of the
/// function parameters.
///
/// \param NumParamTypes The number of parameter types in ParamTypes.
///
/// \param Variadic Whether this is a variadic function type.
///
/// \param HasTrailingReturn Whether this function has a trailing return type.
///
/// \param Quals The cvr-qualifiers to be applied to the function type.
///
/// \param Loc The location of the entity whose type involves this
/// function type or, if there is no such entity, the location of the
/// type that will have function type.
///
/// \param Entity The name of the entity that involves the function
/// type, if known.
///
/// \returns A suitable function type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildFunctionType(QualType T,
QualType *ParamTypes,
unsigned NumParamTypes,
bool Variadic, bool HasTrailingReturn,
unsigned Quals,
RefQualifierKind RefQualifier,
SourceLocation Loc, DeclarationName Entity,
FunctionType::ExtInfo Info) {
if (T->isArrayType() || T->isFunctionType()) {
Diag(Loc, diag::err_func_returning_array_function)
<< T->isFunctionType() << T;
return QualType();
}
// Functions cannot return half FP.
if (T->isHalfType()) {
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
FixItHint::CreateInsertion(Loc, "*");
return QualType();
}
bool Invalid = false;
for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
// FIXME: Loc is too inprecise here, should use proper locations for args.
QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
if (ParamType->isVoidType()) {
Diag(Loc, diag::err_param_with_void_type);
Invalid = true;
} else if (ParamType->isHalfType()) {
// Disallow half FP arguments.
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
FixItHint::CreateInsertion(Loc, "*");
Invalid = true;
}
ParamTypes[Idx] = ParamType;
}
if (Invalid)
return QualType();
FunctionProtoType::ExtProtoInfo EPI;
EPI.Variadic = Variadic;
EPI.HasTrailingReturn = HasTrailingReturn;
EPI.TypeQuals = Quals;
EPI.RefQualifier = RefQualifier;
EPI.ExtInfo = Info;
return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
}
/// \brief Build a member pointer type \c T Class::*.
///
/// \param T the type to which the member pointer refers.
/// \param Class the class type into which the member pointer points.
/// \param Loc the location where this type begins
/// \param Entity the name of the entity that will have this member pointer type
///
/// \returns a member pointer type, if successful, or a NULL type if there was
/// an error.
QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
SourceLocation Loc,
DeclarationName Entity) {
// Verify that we're not building a pointer to pointer to function with
// exception specification.
if (CheckDistantExceptionSpec(T)) {
Diag(Loc, diag::err_distant_exception_spec);
// FIXME: If we're doing this as part of template instantiation,
// we should return immediately.
// Build the type anyway, but use the canonical type so that the
// exception specifiers are stripped off.
T = Context.getCanonicalType(T);
}
// C++ 8.3.3p3: A pointer to member shall not point to ... a member
// with reference type, or "cv void."
if (T->isReferenceType()) {
Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
<< (Entity? Entity.getAsString() : "type name") << T;
return QualType();
}
if (T->isVoidType()) {
Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
<< (Entity? Entity.getAsString() : "type name");
return QualType();
}
if (!Class->isDependentType() && !Class->isRecordType()) {
Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
return QualType();
}
// In the Microsoft ABI, the class is allowed to be an incomplete
// type. In such cases, the compiler makes a worst-case assumption.
// We make no such assumption right now, so emit an error if the
// class isn't a complete type.
if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
RequireCompleteType(Loc, Class, diag::err_incomplete_type))
return QualType();
return Context.getMemberPointerType(T, Class.getTypePtr());
}
/// \brief Build a block pointer type.
///
/// \param T The type to which we'll be building a block pointer.
///
/// \param Loc The source location, used for diagnostics.
///
/// \param Entity The name of the entity that involves the block pointer
/// type, if known.
///
/// \returns A suitable block pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildBlockPointerType(QualType T,
SourceLocation Loc,
DeclarationName Entity) {
if (!T->isFunctionType()) {
Diag(Loc, diag::err_nonfunction_block_type);
return QualType();
}
return Context.getBlockPointerType(T);
}
QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
QualType QT = Ty.get();
if (QT.isNull()) {
if (TInfo) *TInfo = 0;
return QualType();
}
TypeSourceInfo *DI = 0;
if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
QT = LIT->getType();
DI = LIT->getTypeSourceInfo();
}
if (TInfo) *TInfo = DI;
return QT;
}
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
Qualifiers::ObjCLifetime ownership,
unsigned chunkIndex);
/// Given that this is the declaration of a parameter under ARC,
/// attempt to infer attributes and such for pointer-to-whatever
/// types.
static void inferARCWriteback(TypeProcessingState &state,
QualType &declSpecType) {
Sema &S = state.getSema();
Declarator &declarator = state.getDeclarator();
// TODO: should we care about decl qualifiers?
// Check whether the declarator has the expected form. We walk
// from the inside out in order to make the block logic work.
unsigned outermostPointerIndex = 0;
bool isBlockPointer = false;
unsigned numPointers = 0;
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = i;
DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
switch (chunk.Kind) {
case DeclaratorChunk::Paren:
// Ignore parens.
break;
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pointer:
// Count the number of pointers. Treat references
// interchangeably as pointers; if they're mis-ordered, normal
// type building will discover that.
outermostPointerIndex = chunkIndex;
numPointers++;
break;
case DeclaratorChunk::BlockPointer:
// If we have a pointer to block pointer, that's an acceptable
// indirect reference; anything else is not an application of
// the rules.
if (numPointers != 1) return;
numPointers++;
outermostPointerIndex = chunkIndex;
isBlockPointer = true;
// We don't care about pointer structure in return values here.
goto done;
case DeclaratorChunk::Array: // suppress if written (id[])?
case DeclaratorChunk::Function:
case DeclaratorChunk::MemberPointer:
return;
}
}
done:
// If we have *one* pointer, then we want to throw the qualifier on
// the declaration-specifiers, which means that it needs to be a
// retainable object type.
if (numPointers == 1) {
// If it's not a retainable object type, the rule doesn't apply.
if (!declSpecType->isObjCRetainableType()) return;
// If it already has lifetime, don't do anything.
if (declSpecType.getObjCLifetime()) return;
// Otherwise, modify the type in-place.
Qualifiers qs;
if (declSpecType->isObjCARCImplicitlyUnretainedType())
qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
else
qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
declSpecType = S.Context.getQualifiedType(declSpecType, qs);
// If we have *two* pointers, then we want to throw the qualifier on
// the outermost pointer.
} else if (numPointers == 2) {
// If we don't have a block pointer, we need to check whether the
// declaration-specifiers gave us something that will turn into a
// retainable object pointer after we slap the first pointer on it.
if (!isBlockPointer && !declSpecType->isObjCObjectType())
return;
// Look for an explicit lifetime attribute there.
DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
if (chunk.Kind != DeclaratorChunk::Pointer &&
chunk.Kind != DeclaratorChunk::BlockPointer)
return;
for (const AttributeList *attr = chunk.getAttrs(); attr;
attr = attr->getNext())
if (attr->getKind() == AttributeList::AT_ObjCOwnership)
return;
transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
outermostPointerIndex);
// Any other number of pointers/references does not trigger the rule.
} else return;
// TODO: mark whether we did this inference?
}
static void DiagnoseIgnoredQualifiers(unsigned Quals,
SourceLocation ConstQualLoc,
SourceLocation VolatileQualLoc,
SourceLocation RestrictQualLoc,
Sema& S) {
std::string QualStr;
unsigned NumQuals = 0;
SourceLocation Loc;
FixItHint ConstFixIt;
FixItHint VolatileFixIt;
FixItHint RestrictFixIt;
const SourceManager &SM = S.getSourceManager();
// FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
// find a range and grow it to encompass all the qualifiers, regardless of
// the order in which they textually appear.
if (Quals & Qualifiers::Const) {
ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
QualStr = "const";
++NumQuals;
if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
Loc = ConstQualLoc;
}
if (Quals & Qualifiers::Volatile) {
VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
QualStr += (NumQuals == 0 ? "volatile" : " volatile");
++NumQuals;
if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
Loc = VolatileQualLoc;
}
if (Quals & Qualifiers::Restrict) {
RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
QualStr += (NumQuals == 0 ? "restrict" : " restrict");
++NumQuals;
if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
Loc = RestrictQualLoc;
}
assert(NumQuals > 0 && "No known qualifiers?");
S.Diag(Loc, diag::warn_qual_return_type)
<< QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
}
static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
TypeSourceInfo *&ReturnTypeInfo) {
Sema &SemaRef = state.getSema();
Declarator &D = state.getDeclarator();
QualType T;
ReturnTypeInfo = 0;
// The TagDecl owned by the DeclSpec.
TagDecl *OwnedTagDecl = 0;
switch (D.getName().getKind()) {
case UnqualifiedId::IK_ImplicitSelfParam:
case UnqualifiedId::IK_OperatorFunctionId:
case UnqualifiedId::IK_Identifier:
case UnqualifiedId::IK_LiteralOperatorId:
case UnqualifiedId::IK_TemplateId:
T = ConvertDeclSpecToType(state);
if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
// Owned declaration is embedded in declarator.
OwnedTagDecl->setEmbeddedInDeclarator(true);
}
break;
case UnqualifiedId::IK_ConstructorName:
case UnqualifiedId::IK_ConstructorTemplateId:
case UnqualifiedId::IK_DestructorName:
// Constructors and destructors don't have return types. Use
// "void" instead.
T = SemaRef.Context.VoidTy;
if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
processTypeAttrs(state, T, true, attrs);
break;
case UnqualifiedId::IK_ConversionFunctionId:
// The result type of a conversion function is the type that it
// converts to.
T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
&ReturnTypeInfo);
break;
}
if (D.getAttributes())
distributeTypeAttrsFromDeclarator(state, T);
// C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
// In C++11, a function declarator using 'auto' must have a trailing return
// type (this is checked later) and we can skip this. In other languages
// using auto, we need to check regardless.
if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
(!SemaRef.getLangOpts().CPlusPlus0x || !D.isFunctionDeclarator())) {
int Error = -1;
switch (D.getContext()) {
case Declarator::KNRTypeListContext:
llvm_unreachable("K&R type lists aren't allowed in C++");
case Declarator::LambdaExprContext:
llvm_unreachable("Can't specify a type specifier in lambda grammar");
case Declarator::ObjCParameterContext:
case Declarator::ObjCResultContext:
case Declarator::PrototypeContext:
Error = 0; // Function prototype
break;
case Declarator::MemberContext:
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
break;
switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
case TTK_Enum: llvm_unreachable("unhandled tag kind");
case TTK_Struct: Error = 1; /* Struct member */ break;
case TTK_Union: Error = 2; /* Union member */ break;
case TTK_Class: Error = 3; /* Class member */ break;
case TTK_Interface: Error = 4; /* Interface member */ break;
}
break;
case Declarator::CXXCatchContext:
case Declarator::ObjCCatchContext:
Error = 5; // Exception declaration
break;
case Declarator::TemplateParamContext:
Error = 6; // Template parameter
break;
case Declarator::BlockLiteralContext:
Error = 7; // Block literal
break;
case Declarator::TemplateTypeArgContext:
Error = 8; // Template type argument
break;
case Declarator::AliasDeclContext:
case Declarator::AliasTemplateContext:
Error = 10; // Type alias
break;
case Declarator::TrailingReturnContext:
Error = 11; // Function return type
break;
case Declarator::TypeNameContext:
Error = 12; // Generic
break;
case Declarator::FileContext:
case Declarator::BlockContext:
case Declarator::ForContext:
case Declarator::ConditionContext:
case Declarator::CXXNewContext:
break;
}
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
Error = 9;
// In Objective-C it is an error to use 'auto' on a function declarator.
if (D.isFunctionDeclarator())
Error = 11;
// C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
// contains a trailing return type. That is only legal at the outermost
// level. Check all declarator chunks (outermost first) anyway, to give
// better diagnostics.
if (SemaRef.getLangOpts().CPlusPlus0x && Error != -1) {
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = e - i - 1;
state.setCurrentChunkIndex(chunkIndex);
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
if (DeclType.Kind == DeclaratorChunk::Function) {
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
if (FTI.hasTrailingReturnType()) {
Error = -1;
break;
}
}
}
}
if (Error != -1) {
SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::err_auto_not_allowed)
<< Error;
T = SemaRef.Context.IntTy;
D.setInvalidType(true);
} else
SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::warn_cxx98_compat_auto_type_specifier);
}
if (SemaRef.getLangOpts().CPlusPlus &&
OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
// Check the contexts where C++ forbids the declaration of a new class
// or enumeration in a type-specifier-seq.
switch (D.getContext()) {
case Declarator::TrailingReturnContext:
// Class and enumeration definitions are syntactically not allowed in
// trailing return types.
llvm_unreachable("parser should not have allowed this");
break;
case Declarator::FileContext:
case Declarator::MemberContext:
case Declarator::BlockContext:
case Declarator::ForContext:
case Declarator::BlockLiteralContext:
case Declarator::LambdaExprContext:
// C++11 [dcl.type]p3:
// A type-specifier-seq shall not define a class or enumeration unless
// it appears in the type-id of an alias-declaration (7.1.3) that is not
// the declaration of a template-declaration.
case Declarator::AliasDeclContext:
break;
case Declarator::AliasTemplateContext:
SemaRef.Diag(OwnedTagDecl->getLocation(),
diag::err_type_defined_in_alias_template)
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
break;
case Declarator::TypeNameContext:
case Declarator::TemplateParamContext:
case Declarator::CXXNewContext:
case Declarator::CXXCatchContext:
case Declarator::ObjCCatchContext:
case Declarator::TemplateTypeArgContext:
SemaRef.Diag(OwnedTagDecl->getLocation(),
diag::err_type_defined_in_type_specifier)
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
break;
case Declarator::PrototypeContext:
case Declarator::ObjCParameterContext:
case Declarator::ObjCResultContext:
case Declarator::KNRTypeListContext:
// C++ [dcl.fct]p6:
// Types shall not be defined in return or parameter types.
SemaRef.Diag(OwnedTagDecl->getLocation(),
diag::err_type_defined_in_param_type)
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
break;
case Declarator::ConditionContext:
// C++ 6.4p2:
// The type-specifier-seq shall not contain typedef and shall not declare
// a new class or enumeration.
SemaRef.Diag(OwnedTagDecl->getLocation(),
diag::err_type_defined_in_condition);
break;
}
}
return T;
}
static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
std::string Quals =
Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
switch (FnTy->getRefQualifier()) {
case RQ_None:
break;
case RQ_LValue:
if (!Quals.empty())
Quals += ' ';
Quals += '&';
break;
case RQ_RValue:
if (!Quals.empty())
Quals += ' ';
Quals += "&&";
break;
}
return Quals;
}
/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
/// can be contained within the declarator chunk DeclType, and produce an
/// appropriate diagnostic if not.
static void checkQualifiedFunction(Sema &S, QualType T,
DeclaratorChunk &DeclType) {
// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
// cv-qualifier or a ref-qualifier can only appear at the topmost level
// of a type.
int DiagKind = -1;
switch (DeclType.Kind) {
case DeclaratorChunk::Paren:
case DeclaratorChunk::MemberPointer:
// These cases are permitted.
return;
case DeclaratorChunk::Array:
case DeclaratorChunk::Function:
// These cases don't allow function types at all; no need to diagnose the
// qualifiers separately.
return;
case DeclaratorChunk::BlockPointer:
DiagKind = 0;
break;
case DeclaratorChunk::Pointer:
DiagKind = 1;
break;
case DeclaratorChunk::Reference:
DiagKind = 2;
break;
}
assert(DiagKind != -1);
S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
<< DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
<< getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
}
/// Produce an approprioate diagnostic for an ambiguity between a function
/// declarator and a C++ direct-initializer.
static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
DeclaratorChunk &DeclType, QualType RT) {
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
// If the return type is void there is no ambiguity.
if (RT->isVoidType())
return;
// An initializer for a non-class type can have at most one argument.
if (!RT->isRecordType() && FTI.NumArgs > 1)
return;
// An initializer for a reference must have exactly one argument.
if (RT->isReferenceType() && FTI.NumArgs != 1)
return;
// Only warn if this declarator is declaring a function at block scope, and
// doesn't have a storage class (such as 'extern') specified.
if (!D.isFunctionDeclarator() ||
D.getFunctionDefinitionKind() != FDK_Declaration ||
!S.CurContext->isFunctionOrMethod() ||
D.getDeclSpec().getStorageClassSpecAsWritten()
!= DeclSpec::SCS_unspecified)
return;
// Inside a condition, a direct initializer is not permitted. We allow one to
// be parsed in order to give better diagnostics in condition parsing.
if (D.getContext() == Declarator::ConditionContext)
return;
SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
S.Diag(DeclType.Loc,
FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
: diag::warn_empty_parens_are_function_decl)
<< ParenRange;
// If the declaration looks like:
// T var1,
// f();
// and name lookup finds a function named 'f', then the ',' was
// probably intended to be a ';'.
if (!D.isFirstDeclarator() && D.getIdentifier()) {
FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
if (Comma.getFileID() != Name.getFileID() ||
Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
LookupResult Result(S, D.getIdentifier(), SourceLocation(),
Sema::LookupOrdinaryName);
if (S.LookupName(Result, S.getCurScope()))
S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
<< FixItHint::CreateReplacement(D.getCommaLoc(), ";")
<< D.getIdentifier();
}
}
if (FTI.NumArgs > 0) {
// For a declaration with parameters, eg. "T var(T());", suggest adding parens
// around the first parameter to turn the declaration into a variable
// declaration.
SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
SourceLocation B = Range.getBegin();
SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
// FIXME: Maybe we should suggest adding braces instead of parens
// in C++11 for classes that don't have an initializer_list constructor.
S.Diag(B, diag::note_additional_parens_for_variable_declaration)
<< FixItHint::CreateInsertion(B, "(")
<< FixItHint::CreateInsertion(E, ")");
} else {
// For a declaration without parameters, eg. "T var();", suggest replacing the
// parens with an initializer to turn the declaration into a variable
// declaration.
const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
// Empty parens mean value-initialization, and no parens mean
// default initialization. These are equivalent if the default
// constructor is user-provided or if zero-initialization is a
// no-op.
if (RD && RD->hasDefinition() &&
(RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
<< FixItHint::CreateRemoval(ParenRange);
else {
std::string Init = S.getFixItZeroInitializerForType(RT);
if (Init.empty() && S.LangOpts.CPlusPlus0x)
Init = "{}";
if (!Init.empty())
S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
<< FixItHint::CreateReplacement(ParenRange, Init);
}
}
}
static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
QualType declSpecType,
TypeSourceInfo *TInfo) {
QualType T = declSpecType;
Declarator &D = state.getDeclarator();
Sema &S = state.getSema();
ASTContext &Context = S.Context;
const LangOptions &LangOpts = S.getLangOpts();
// The name we're declaring, if any.
DeclarationName Name;
if (D.getIdentifier())
Name = D.getIdentifier();
// Does this declaration declare a typedef-name?
bool IsTypedefName =
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
D.getContext() == Declarator::AliasDeclContext ||
D.getContext() == Declarator::AliasTemplateContext;
// Does T refer to a function type with a cv-qualifier or a ref-qualifier?
bool IsQualifiedFunction = T->isFunctionProtoType() &&
(T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
// Walk the DeclTypeInfo, building the recursive type as we go.
// DeclTypeInfos are ordered from the identifier out, which is
// opposite of what we want :).
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = e - i - 1;
state.setCurrentChunkIndex(chunkIndex);
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
if (IsQualifiedFunction) {
checkQualifiedFunction(S, T, DeclType);
IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
}
switch (DeclType.Kind) {
case DeclaratorChunk::Paren:
T = S.BuildParenType(T);
break;
case DeclaratorChunk::BlockPointer:
// If blocks are disabled, emit an error.
if (!LangOpts.Blocks)
S.Diag(DeclType.Loc, diag::err_blocks_disable);
T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
if (DeclType.Cls.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
break;
case DeclaratorChunk::Pointer:
// Verify that we're not building a pointer to pointer to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
T = Context.getObjCObjectPointerType(T);
if (DeclType.Ptr.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
break;
}
T = S.BuildPointerType(T, DeclType.Loc, Name);
if (DeclType.Ptr.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
break;
case DeclaratorChunk::Reference: {
// Verify that we're not building a reference to pointer to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
Qualifiers Quals;
if (DeclType.Ref.HasRestrict)
T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
break;
}
case DeclaratorChunk::Array: {
// Verify that we're not building an array of pointers to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
ArrayType::ArraySizeModifier ASM;
if (ATI.isStar)
ASM = ArrayType::Star;
else if (ATI.hasStatic)
ASM = ArrayType::Static;
else
ASM = ArrayType::Normal;
if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
// FIXME: This check isn't quite right: it allows star in prototypes
// for function definitions, and disallows some edge cases detailed
// in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
ASM = ArrayType::Normal;
D.setInvalidType(true);
}
// C99 6.7.5.2p1: The optional type qualifiers and the keyword static
// shall appear only in a declaration of a function parameter with an
// array type, ...
if (ASM == ArrayType::Static || ATI.TypeQuals) {
if (!(D.isPrototypeContext() ||
D.getContext() == Declarator::KNRTypeListContext)) {
S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
// Remove the 'static' and the type qualifiers.
if (ASM == ArrayType::Static)
ASM = ArrayType::Normal;
ATI.TypeQuals = 0;
D.setInvalidType(true);
}
// C99 6.7.5.2p1: ... and then only in the outermost array type
// derivation.
unsigned x = chunkIndex;
while (x != 0) {
// Walk outwards along the declarator chunks.
x--;
const DeclaratorChunk &DC = D.getTypeObject(x);
switch (DC.Kind) {
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Array:
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
if (ASM == ArrayType::Static)
ASM = ArrayType::Normal;
ATI.TypeQuals = 0;
D.setInvalidType(true);
break;
case DeclaratorChunk::Function:
case DeclaratorChunk::BlockPointer:
// These are invalid anyway, so just ignore.
break;
}
}
}
T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
break;
}
case DeclaratorChunk::Function: {
// If the function declarator has a prototype (i.e. it is not () and
// does not have a K&R-style identifier list), then the arguments are part
// of the type, otherwise the argument list is ().
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
// Check for auto functions and trailing return type and adjust the
// return type accordingly.
if (!D.isInvalidType()) {
// trailing-return-type is only required if we're declaring a function,
// and not, for instance, a pointer to a function.
if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
!FTI.hasTrailingReturnType() && chunkIndex == 0) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::err_auto_missing_trailing_return);
T = Context.IntTy;
D.setInvalidType(true);
} else if (FTI.hasTrailingReturnType()) {
// T must be exactly 'auto' at this point. See CWG issue 681.
if (isa<ParenType>(T)) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::err_trailing_return_in_parens)
<< T << D.getDeclSpec().getSourceRange();
D.setInvalidType(true);
} else if (D.getContext() != Declarator::LambdaExprContext &&
(T.hasQualifiers() || !isa<AutoType>(T))) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::err_trailing_return_without_auto)
<< T << D.getDeclSpec().getSourceRange();
D.setInvalidType(true);
}
T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
if (T.isNull()) {
// An error occurred parsing the trailing return type.
T = Context.IntTy;
D.setInvalidType(true);
}
}
}
// C99 6.7.5.3p1: The return type may not be a function or array type.
// For conversion functions, we'll diagnose this particular error later.
if ((T->isArrayType() || T->isFunctionType()) &&
(D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
unsigned diagID = diag::err_func_returning_array_function;
// Last processing chunk in block context means this function chunk
// represents the block.
if (chunkIndex == 0 &&
D.getContext() == Declarator::BlockLiteralContext)
diagID = diag::err_block_returning_array_function;
S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
T = Context.IntTy;
D.setInvalidType(true);
}
// Do not allow returning half FP value.
// FIXME: This really should be in BuildFunctionType.
if (T->isHalfType()) {
S.Diag(D.getIdentifierLoc(),
diag::err_parameters_retval_cannot_have_fp16_type) << 1
<< FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
D.setInvalidType(true);
}
// cv-qualifiers on return types are pointless except when the type is a
// class type in C++.
if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
(D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
(!LangOpts.CPlusPlus || !T->isDependentType())) {
assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
DiagnoseIgnoredQualifiers(PTI.TypeQuals,
SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
S);
} else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
(!LangOpts.CPlusPlus ||
(!T->isDependentType() && !T->isRecordType()))) {
DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
D.getDeclSpec().getConstSpecLoc(),
D.getDeclSpec().getVolatileSpecLoc(),
D.getDeclSpec().getRestrictSpecLoc(),
S);
}
if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
// C++ [dcl.fct]p6:
// Types shall not be defined in return or parameter types.
TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
if (Tag->isCompleteDefinition())
S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
<< Context.getTypeDeclType(Tag);
}
// Exception specs are not allowed in typedefs. Complain, but add it
// anyway.
if (IsTypedefName && FTI.getExceptionSpecType())
S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
<< (D.getContext() == Declarator::AliasDeclContext ||
D.getContext() == Declarator::AliasTemplateContext);
// If we see "T var();" or "T var(T());" at block scope, it is probably
// an attempt to initialize a variable, not a function declaration.
if (FTI.isAmbiguous)
warnAboutAmbiguousFunction(S, D, DeclType, T);
if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
// Simple void foo(), where the incoming T is the result type.
T = Context.getFunctionNoProtoType(T);
} else {
// We allow a zero-parameter variadic function in C if the
// function is marked with the "overloadable" attribute. Scan
// for this attribute now.
if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
bool Overloadable = false;
for (const AttributeList *Attrs = D.getAttributes();
Attrs; Attrs = Attrs->getNext()) {
if (Attrs->getKind() == AttributeList::AT_Overloadable) {
Overloadable = true;
break;
}
}
if (!Overloadable)
S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
}
if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
// definition.
S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
D.setInvalidType(true);
break;
}
FunctionProtoType::ExtProtoInfo EPI;
EPI.Variadic = FTI.isVariadic;
EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
EPI.TypeQuals = FTI.TypeQuals;
EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
: FTI.RefQualifierIsLValueRef? RQ_LValue
: RQ_RValue;
// Otherwise, we have a function with an argument list that is
// potentially variadic.
SmallVector<QualType, 16> ArgTys;
ArgTys.reserve(FTI.NumArgs);
SmallVector<bool, 16> ConsumedArguments;
ConsumedArguments.reserve(FTI.NumArgs);
bool HasAnyConsumedArguments = false;
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
QualType ArgTy = Param->getType();
assert(!ArgTy.isNull() && "Couldn't parse type?");
// Adjust the parameter type.
assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
"Unadjusted type?");
// Look for 'void'. void is allowed only as a single argument to a
// function with no other parameters (C99 6.7.5.3p10). We record
// int(void) as a FunctionProtoType with an empty argument list.
if (ArgTy->isVoidType()) {
// If this is something like 'float(int, void)', reject it. 'void'
// is an incomplete type (C99 6.2.5p19) and function decls cannot
// have arguments of incomplete type.
if (FTI.NumArgs != 1 || FTI.isVariadic) {
S.Diag(DeclType.Loc, diag::err_void_only_param);
ArgTy = Context.IntTy;
Param->setType(ArgTy);
} else if (FTI.ArgInfo[i].Ident) {
// Reject, but continue to parse 'int(void abc)'.
S.Diag(FTI.ArgInfo[i].IdentLoc,
diag::err_param_with_void_type);
ArgTy = Context.IntTy;
Param->setType(ArgTy);
} else {
// Reject, but continue to parse 'float(const void)'.
if (ArgTy.hasQualifiers())
S.Diag(DeclType.Loc, diag::err_void_param_qualified);
// Do not add 'void' to the ArgTys list.
break;
}
} else if (ArgTy->isHalfType()) {
// Disallow half FP arguments.
// FIXME: This really should be in BuildFunctionType.
S.Diag(Param->getLocation(),
diag::err_parameters_retval_cannot_have_fp16_type) << 0
<< FixItHint::CreateInsertion(Param->getLocation(), "*");
D.setInvalidType();
} else if (!FTI.hasPrototype) {
if (ArgTy->isPromotableIntegerType()) {
ArgTy = Context.getPromotedIntegerType(ArgTy);
Param->setKNRPromoted(true);
} else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
if (BTy->getKind() == BuiltinType::Float) {
ArgTy = Context.DoubleTy;
Param->setKNRPromoted(true);
}
}
}
if (LangOpts.ObjCAutoRefCount) {
bool Consumed = Param->hasAttr<NSConsumedAttr>();
ConsumedArguments.push_back(Consumed);
HasAnyConsumedArguments |= Consumed;
}
ArgTys.push_back(ArgTy);
}
if (HasAnyConsumedArguments)
EPI.ConsumedArguments = ConsumedArguments.data();
SmallVector<QualType, 4> Exceptions;
SmallVector<ParsedType, 2> DynamicExceptions;
SmallVector<SourceRange, 2> DynamicExceptionRanges;
Expr *NoexceptExpr = 0;
if (FTI.getExceptionSpecType() == EST_Dynamic) {
// FIXME: It's rather inefficient to have to split into two vectors
// here.
unsigned N = FTI.NumExceptions;
DynamicExceptions.reserve(N);
DynamicExceptionRanges.reserve(N);
for (unsigned I = 0; I != N; ++I) {
DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
}
} else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
NoexceptExpr = FTI.NoexceptExpr;
}
S.checkExceptionSpecification(FTI.getExceptionSpecType(),
DynamicExceptions,
DynamicExceptionRanges,
NoexceptExpr,
Exceptions,
EPI);
T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
}
break;
}
case DeclaratorChunk::MemberPointer:
// The scope spec must refer to a class, or be dependent.
CXXScopeSpec &SS = DeclType.Mem.Scope();
QualType ClsType;
if (SS.isInvalid()) {
// Avoid emitting extra errors if we already errored on the scope.
D.setInvalidType(true);
} else if (S.isDependentScopeSpecifier(SS) ||
dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
NestedNameSpecifier *NNS
= static_cast<NestedNameSpecifier*>(SS.getScopeRep());
NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
NNS->getAsIdentifier());
break;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
llvm_unreachable("Nested-name-specifier must name a type");
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
ClsType = QualType(NNS->getAsType(), 0);
// Note: if the NNS has a prefix and ClsType is a nondependent
// TemplateSpecializationType, then the NNS prefix is NOT included
// in ClsType; hence we wrap ClsType into an ElaboratedType.
// NOTE: in particular, no wrap occurs if ClsType already is an
// Elaborated, DependentName, or DependentTemplateSpecialization.
if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
break;
}
} else {
S.Diag(DeclType.Mem.Scope().getBeginLoc(),
diag::err_illegal_decl_mempointer_in_nonclass)
<< (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
<< DeclType.Mem.Scope().getRange();
D.setInvalidType(true);
}
if (!ClsType.isNull())
T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
if (T.isNull()) {
T = Context.IntTy;
D.setInvalidType(true);
} else if (DeclType.Mem.TypeQuals) {
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
}
break;
}
if (T.isNull()) {
D.setInvalidType(true);
T = Context.IntTy;
}
// See if there are any attributes on this declarator chunk.
if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
processTypeAttrs(state, T, false, attrs);
}
if (LangOpts.CPlusPlus && T->isFunctionType()) {
const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
// C++ 8.3.5p4:
// A cv-qualifier-seq shall only be part of the function type
// for a nonstatic member function, the function type to which a pointer
// to member refers, or the top-level function type of a function typedef
// declaration.
//
// Core issue 547 also allows cv-qualifiers on function types that are
// top-level template type arguments.
bool FreeFunction;
if (!D.getCXXScopeSpec().isSet()) {
FreeFunction = ((D.getContext() != Declarator::MemberContext &&
D.getContext() != Declarator::LambdaExprContext) ||
D.getDeclSpec().isFriendSpecified());
} else {
DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
FreeFunction = (DC && !DC->isRecord());
}
// C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
// function that is not a constructor declares that function to be const.
// FIXME: This should be deferred until we know whether this is a static
// member function (for an out-of-class definition, we don't know
// this until we perform redeclaration lookup).
if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
!(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
// Rebuild function type adding a 'const' qualifier.
FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
EPI.TypeQuals |= DeclSpec::TQ_const;
T = Context.getFunctionType(FnTy->getResultType(),
FnTy->arg_type_begin(),
FnTy->getNumArgs(), EPI);
// Rebuild any parens around the identifier in the function type.
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
break;
T = S.BuildParenType(T);
}
}
// C++11 [dcl.fct]p6 (w/DR1417):
// An attempt to specify a function type with a cv-qualifier-seq or a
// ref-qualifier (including by typedef-name) is ill-formed unless it is:
// - the function type for a non-static member function,
// - the function type to which a pointer to member refers,
// - the top-level function type of a function typedef declaration or
// alias-declaration,
// - the type-id in the default argument of a type-parameter, or
// - the type-id of a template-argument for a type-parameter
if (IsQualifiedFunction &&
!(!FreeFunction &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
!IsTypedefName &&
D.getContext() != Declarator::TemplateTypeArgContext) {
SourceLocation Loc = D.getLocStart();
SourceRange RemovalRange;
unsigned I;
if (D.isFunctionDeclarator(I)) {
SmallVector<SourceLocation, 4> RemovalLocs;
const DeclaratorChunk &Chunk = D.getTypeObject(I);
assert(Chunk.Kind == DeclaratorChunk::Function);
if (Chunk.Fun.hasRefQualifier())
RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
if (Chunk.Fun.TypeQuals & Qualifiers::Const)
RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
// FIXME: We do not track the location of the __restrict qualifier.
//if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
// RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
if (!RemovalLocs.empty()) {
std::sort(RemovalLocs.begin(), RemovalLocs.end(),
BeforeThanCompare<SourceLocation>(S.getSourceManager()));
RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
Loc = RemovalLocs.front();
}
}
S.Diag(Loc, diag::err_invalid_qualified_function_type)
<< FreeFunction << D.isFunctionDeclarator() << T
<< getFunctionQualifiersAsString(FnTy)
<< FixItHint::CreateRemoval(RemovalRange);
// Strip the cv-qualifiers and ref-qualifiers from the type.
FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
EPI.TypeQuals = 0;
EPI.RefQualifier = RQ_None;
T = Context.getFunctionType(FnTy->getResultType(),
FnTy->arg_type_begin(),
FnTy->getNumArgs(), EPI);
// Rebuild any parens around the identifier in the function type.
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
break;
T = S.BuildParenType(T);
}
}
}
// Apply any undistributed attributes from the declarator.
if (!T.isNull())
if (AttributeList *attrs = D.getAttributes())
processTypeAttrs(state, T, false, attrs);
// Diagnose any ignored type attributes.
if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
// C++0x [dcl.constexpr]p9:
// A constexpr specifier used in an object declaration declares the object
// as const.
if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
T.addConst();
}
// If there was an ellipsis in the declarator, the declaration declares a
// parameter pack whose type may be a pack expansion type.
if (D.hasEllipsis() && !T.isNull()) {
// C++0x [dcl.fct]p13:
// A declarator-id or abstract-declarator containing an ellipsis shall
// only be used in a parameter-declaration. Such a parameter-declaration
// is a parameter pack (14.5.3). [...]
switch (D.getContext()) {
case Declarator::PrototypeContext:
// C++0x [dcl.fct]p13:
// [...] When it is part of a parameter-declaration-clause, the
// parameter pack is a function parameter pack (14.5.3). The type T
// of the declarator-id of the function parameter pack shall contain
// a template parameter pack; each template parameter pack in T is
// expanded by the function parameter pack.
//
// We represent function parameter packs as function parameters whose
// type is a pack expansion.
if (!T->containsUnexpandedParameterPack()) {
S.Diag(D.getEllipsisLoc(),
diag::err_function_parameter_pack_without_parameter_packs)
<< T << D.getSourceRange();
D.setEllipsisLoc(SourceLocation());
} else {
T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
}
break;
case Declarator::TemplateParamContext:
// C++0x [temp.param]p15:
// If a template-parameter is a [...] is a parameter-declaration that
// declares a parameter pack (8.3.5), then the template-parameter is a
// template parameter pack (14.5.3).
//
// Note: core issue 778 clarifies that, if there are any unexpanded
// parameter packs in the type of the non-type template parameter, then
// it expands those parameter packs.
if (T->containsUnexpandedParameterPack())
T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
else
S.Diag(D.getEllipsisLoc(),
LangOpts.CPlusPlus0x
? diag::warn_cxx98_compat_variadic_templates
: diag::ext_variadic_templates);
break;
case Declarator::FileContext:
case Declarator::KNRTypeListContext:
case Declarator::ObjCParameterContext: // FIXME: special diagnostic here?
case Declarator::ObjCResultContext: // FIXME: special diagnostic here?
case Declarator::TypeNameContext:
case Declarator::CXXNewContext:
case Declarator::AliasDeclContext:
case Declarator::AliasTemplateContext:
case Declarator::MemberContext:
case Declarator::BlockContext:
case Declarator::ForContext:
case Declarator::ConditionContext:
case Declarator::CXXCatchContext:
case Declarator::ObjCCatchContext:
case Declarator::BlockLiteralContext:
case Declarator::LambdaExprContext:
case Declarator::TrailingReturnContext:
case Declarator::TemplateTypeArgContext:
// FIXME: We may want to allow parameter packs in block-literal contexts
// in the future.
S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
D.setEllipsisLoc(SourceLocation());
break;
}
}
if (T.isNull())
return Context.getNullTypeSourceInfo();
else if (D.isInvalidType())
return Context.getTrivialTypeSourceInfo(T);
return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
}
/// GetTypeForDeclarator - Convert the type for the specified
/// declarator to Type instances.
///
/// The result of this call will never be null, but the associated
/// type may be a null type if there's an unrecoverable error.
TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
// Determine the type of the declarator. Not all forms of declarator
// have a type.
TypeProcessingState state(*this, D);
TypeSourceInfo *ReturnTypeInfo = 0;
QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
if (T.isNull())
return Context.getNullTypeSourceInfo();
if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
inferARCWriteback(state, T);
return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
}
static void transferARCOwnershipToDeclSpec(Sema &S,
QualType &declSpecTy,
Qualifiers::ObjCLifetime ownership) {
if (declSpecTy->isObjCRetainableType() &&
declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
Qualifiers qs;
qs.addObjCLifetime(ownership);
declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
}
}
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
Qualifiers::ObjCLifetime ownership,
unsigned chunkIndex) {
Sema &S = state.getSema();
Declarator &D = state.getDeclarator();
// Look for an explicit lifetime attribute.
DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
for (const AttributeList *attr = chunk.getAttrs(); attr;
attr = attr->getNext())
if (attr->getKind() == AttributeList::AT_ObjCOwnership)
return;
const char *attrStr = 0;
switch (ownership) {
case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
case Qualifiers::OCL_Strong: attrStr = "strong"; break;
case Qualifiers::OCL_Weak: attrStr = "weak"; break;
case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
}
// If there wasn't one, add one (with an invalid source location
// so that we don't make an AttributedType for it).
AttributeList *attr = D.getAttributePool()
.create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
/*scope*/ 0, SourceLocation(),
&S.Context.Idents.get(attrStr), SourceLocation(),
/*args*/ 0, 0, AttributeList::AS_GNU);
spliceAttrIntoList(*attr, chunk.getAttrListRef());
// TODO: mark whether we did this inference?
}
/// \brief Used for transferring ownership in casts resulting in l-values.
static void transferARCOwnership(TypeProcessingState &state,
QualType &declSpecTy,
Qualifiers::ObjCLifetime ownership) {
Sema &S = state.getSema();
Declarator &D = state.getDeclarator();
int inner = -1;
bool hasIndirection = false;
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = D.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Paren:
// Ignore parens.
break;
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pointer:
if (inner != -1)
hasIndirection = true;
inner = i;
break;
case DeclaratorChunk::BlockPointer:
if (inner != -1)
transferARCOwnershipToDeclaratorChunk(state, ownership, i);
return;
case DeclaratorChunk::Function:
case DeclaratorChunk::MemberPointer:
return;
}
}
if (inner == -1)
return;
DeclaratorChunk &chunk = D.getTypeObject(inner);
if (chunk.Kind == DeclaratorChunk::Pointer) {
if (declSpecTy->isObjCRetainableType())
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
if (declSpecTy->isObjCObjectType() && hasIndirection)
return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
} else {
assert(chunk.Kind == DeclaratorChunk::Array ||
chunk.Kind == DeclaratorChunk::Reference);
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
}
}
TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
TypeProcessingState state(*this, D);
TypeSourceInfo *ReturnTypeInfo = 0;
QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
if (declSpecTy.isNull())
return Context.getNullTypeSourceInfo();
if (getLangOpts().ObjCAutoRefCount) {
Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
if (ownership != Qualifiers::OCL_None)
transferARCOwnership(state, declSpecTy, ownership);
}
return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
}
/// Map an AttributedType::Kind to an AttributeList::Kind.
static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
switch (kind) {
case AttributedType::attr_address_space:
return AttributeList::AT_AddressSpace;
case AttributedType::attr_regparm:
return AttributeList::AT_Regparm;
case AttributedType::attr_vector_size:
return AttributeList::AT_VectorSize;
case AttributedType::attr_neon_vector_type:
return AttributeList::AT_NeonVectorType;
case AttributedType::attr_neon_polyvector_type:
return AttributeList::AT_NeonPolyVectorType;
case AttributedType::attr_objc_gc:
return AttributeList::AT_ObjCGC;
case AttributedType::attr_objc_ownership:
return AttributeList::AT_ObjCOwnership;
case AttributedType::attr_noreturn:
return AttributeList::AT_NoReturn;
case AttributedType::attr_cdecl:
return AttributeList::AT_CDecl;
case AttributedType::attr_fastcall:
return AttributeList::AT_FastCall;
case AttributedType::attr_stdcall:
return AttributeList::AT_StdCall;
case AttributedType::attr_thiscall:
return AttributeList::AT_ThisCall;
case AttributedType::attr_pascal:
return AttributeList::AT_Pascal;
case AttributedType::attr_pcs:
return AttributeList::AT_Pcs;
case AttributedType::attr_pnaclcall:
return AttributeList::AT_PnaclCall;
}
llvm_unreachable("unexpected attribute kind!");
}
static void fillAttributedTypeLoc(AttributedTypeLoc TL,
const AttributeList *attrs) {
AttributedType::Kind kind = TL.getAttrKind();
assert(attrs && "no type attributes in the expected location!");
AttributeList::Kind parsedKind = getAttrListKind(kind);
while (attrs->getKind() != parsedKind) {
attrs = attrs->getNext();
assert(attrs && "no matching attribute in expected location!");
}
TL.setAttrNameLoc(attrs->getLoc());
if (TL.hasAttrExprOperand())
TL.setAttrExprOperand(attrs->getArg(0));
else if (TL.hasAttrEnumOperand())
TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
// FIXME: preserve this information to here.
if (TL.hasAttrOperand())
TL.setAttrOperandParensRange(SourceRange());
}
namespace {
class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
ASTContext &Context;
const DeclSpec &DS;
public:
TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
: Context(Context), DS(DS) {}
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
fillAttributedTypeLoc(TL, DS.getAttributes().getList());
Visit(TL.getModifiedLoc());
}
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
Visit(TL.getUnqualifiedLoc());
}
void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeLoc());
}
void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeLoc());
// FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
// addition field. What we have is good enough for dispay of location
// of 'fixit' on interface name.
TL.setNameEndLoc(DS.getLocEnd());
}
void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
// Handle the base type, which might not have been written explicitly.
if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
TL.setHasBaseTypeAsWritten(false);
TL.getBaseLoc().initialize(Context, SourceLocation());
} else {
TL.setHasBaseTypeAsWritten(true);
Visit(TL.getBaseLoc());
}
// Protocol qualifiers.
if (DS.getProtocolQualifiers()) {
assert(TL.getNumProtocols() > 0);
assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
TL.setLAngleLoc(DS.getProtocolLAngleLoc());
TL.setRAngleLoc(DS.getSourceRange().getEnd());
for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
} else {
assert(TL.getNumProtocols() == 0);
TL.setLAngleLoc(SourceLocation());
TL.setRAngleLoc(SourceLocation());
}
}
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
TL.setStarLoc(SourceLocation());
Visit(TL.getPointeeLoc());
}
void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
TypeSourceInfo *TInfo = 0;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
// If we got no declarator info from previous Sema routines,
// just fill with the typespec loc.
if (!TInfo) {
TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
return;
}
TypeLoc OldTL = TInfo->getTypeLoc();
if (TInfo->getType()->getAs<ElaboratedType>()) {
ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
TemplateSpecializationTypeLoc NamedTL =
cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
TL.copy(NamedTL);
}
else
TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
}
void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
}
void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
assert(DS.getRepAsType());
TypeSourceInfo *TInfo = 0;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.setUnderlyingTInfo(TInfo);
}
void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
// FIXME: This holds only because we only have one unary transform.
assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
TL.setKWLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
assert(DS.getRepAsType());
TypeSourceInfo *TInfo = 0;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.setUnderlyingTInfo(TInfo);
}
void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
// By default, use the source location of the type specifier.
TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
if (TL.needsExtraLocalData()) {
// Set info for the written builtin specifiers.
TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
// Try to have a meaningful source location.
if (TL.getWrittenSignSpec() != TSS_unspecified)
// Sign spec loc overrides the others (e.g., 'unsigned long').
TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
else if (TL.getWrittenWidthSpec() != TSW_unspecified)
// Width spec loc overrides type spec loc (e.g., 'short int').
TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
}
}
void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
ElaboratedTypeKeyword Keyword
= TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
if (DS.getTypeSpecType() == TST_typename) {
TypeSourceInfo *TInfo = 0;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
if (TInfo) {
TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
return;
}
}
TL.setElaboratedKeywordLoc(Keyword != ETK_None
? DS.getTypeSpecTypeLoc()
: SourceLocation());
const CXXScopeSpec& SS = DS.getTypeSpecScope();
TL.setQualifierLoc(SS.getWithLocInContext(Context));
Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
}
void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
assert(DS.getTypeSpecType() == TST_typename);
TypeSourceInfo *TInfo = 0;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
}
void VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
assert(DS.getTypeSpecType() == TST_typename);
TypeSourceInfo *TInfo = 0;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
TInfo->getTypeLoc()));
}
void VisitTagTypeLoc(TagTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
}
void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
TL.setKWLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
TypeSourceInfo *TInfo = 0;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
}
void VisitTypeLoc(TypeLoc TL) {
// FIXME: add other typespec types and change this to an assert.
TL.initialize(Context, DS.getTypeSpecTypeLoc());
}
};
class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
ASTContext &Context;
const DeclaratorChunk &Chunk;
public:
DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
: Context(Context), Chunk(Chunk) {}
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
llvm_unreachable("qualified type locs not expected here!");
}
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
fillAttributedTypeLoc(TL, Chunk.getAttrs());
}
void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
TL.setCaretLoc(Chunk.Loc);
}
void VisitPointerTypeLoc(PointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Pointer);
TL.setStarLoc(Chunk.Loc);
}
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Pointer);
TL.setStarLoc(Chunk.Loc);
}
void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
const CXXScopeSpec& SS = Chunk.Mem.Scope();
NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
const Type* ClsTy = TL.getClass();
QualType ClsQT = QualType(ClsTy, 0);
TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
// Now copy source location info into the type loc component.
TypeLoc ClsTL = ClsTInfo->getTypeLoc();
switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
case NestedNameSpecifier::Identifier:
assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
{
DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
DNTLoc.setElaboratedKeywordLoc(SourceLocation());
DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
}
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
if (isa<ElaboratedType>(ClsTy)) {
ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
ETLoc.setElaboratedKeywordLoc(SourceLocation());
ETLoc.setQualifierLoc(NNSLoc.getPrefix());
TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
} else {
ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
}
break;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
llvm_unreachable("Nested-name-specifier must name a type");
}
// Finally fill in MemberPointerLocInfo fields.
TL.setStarLoc(Chunk.Loc);
TL.setClassTInfo(ClsTInfo);
}
void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Reference);
// 'Amp' is misleading: this might have been originally
/// spelled with AmpAmp.
TL.setAmpLoc(Chunk.Loc);
}
void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Reference);
assert(!Chunk.Ref.LValueRef);
TL.setAmpAmpLoc(Chunk.Loc);
}
void VisitArrayTypeLoc(ArrayTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Array);
TL.setLBracketLoc(Chunk.Loc);
TL.setRBracketLoc(Chunk.EndLoc);
TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
}
void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Function);
TL.setLocalRangeBegin(Chunk.Loc);
TL.setLocalRangeEnd(Chunk.EndLoc);
const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
TL.setLParenLoc(FTI.getLParenLoc());
TL.setRParenLoc(FTI.getRParenLoc());
for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
TL.setArg(tpi++, Param);
}
// FIXME: exception specs
}
void VisitParenTypeLoc(ParenTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Paren);
TL.setLParenLoc(Chunk.Loc);
TL.setRParenLoc(Chunk.EndLoc);
}
void VisitTypeLoc(TypeLoc TL) {
llvm_unreachable("unsupported TypeLoc kind in declarator!");
}
};
}
/// \brief Create and instantiate a TypeSourceInfo with type source information.
///
/// \param T QualType referring to the type as written in source code.
///
/// \param ReturnTypeInfo For declarators whose return type does not show
/// up in the normal place in the declaration specifiers (such as a C++
/// conversion function), this pointer will refer to a type source information
/// for that return type.
TypeSourceInfo *
Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
TypeSourceInfo *ReturnTypeInfo) {
TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
// Handle parameter packs whose type is a pack expansion.
if (isa<PackExpansionType>(T)) {
cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
}
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
while (isa<AttributedTypeLoc>(CurrTL)) {
AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
}
DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
}
// If we have different source information for the return type, use
// that. This really only applies to C++ conversion functions.
if (ReturnTypeInfo) {
TypeLoc TL = ReturnTypeInfo->getTypeLoc();
assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
} else {
TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
}
return TInfo;
}
/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
// FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
// and Sema during declaration parsing. Try deallocating/caching them when
// it's appropriate, instead of allocating them and keeping them around.
LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
TypeAlignment);
new (LocT) LocInfoType(T, TInfo);
assert(LocT->getTypeClass() != T->getTypeClass() &&
"LocInfoType's TypeClass conflicts with an existing Type class");
return ParsedType::make(QualType(LocT, 0));
}
void LocInfoType::getAsStringInternal(std::string &Str,
const PrintingPolicy &Policy) const {
llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser");
}
TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
// C99 6.7.6: Type names have no identifier. This is already validated by
// the parser.
assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
QualType T = TInfo->getType();
if (D.isInvalidType())
return true;
// Make sure there are no unused decl attributes on the declarator.
// We don't want to do this for ObjC parameters because we're going
// to apply them to the actual parameter declaration.
if (D.getContext() != Declarator::ObjCParameterContext)
checkUnusedDeclAttributes(D);
if (getLangOpts().CPlusPlus) {
// Check that there are no default arguments (C++ only).
CheckExtraCXXDefaultArguments(D);
}
return CreateParsedType(T, TInfo);
}
ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
QualType T = Context.getObjCInstanceType();
TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
return CreateParsedType(T, TInfo);
}
//===----------------------------------------------------------------------===//
// Type Attribute Processing
//===----------------------------------------------------------------------===//
/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
/// specified type. The attribute contains 1 argument, the id of the address
/// space for the type.
static void HandleAddressSpaceTypeAttribute(QualType &Type,
const AttributeList &Attr, Sema &S){
// If this type is already address space qualified, reject it.
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
// qualifiers for two or more different address spaces."
if (Type.getAddressSpace()) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
Attr.setInvalid();
return;
}
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
// qualified by an address-space qualifier."
if (Type->isFunctionType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
Attr.setInvalid();
return;
}
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
Attr.setInvalid();
return;
}
Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt addrSpace(32);
if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
<< ASArgExpr->getSourceRange();
Attr.setInvalid();
return;
}
// Bounds checking.
if (addrSpace.isSigned()) {
if (addrSpace.isNegative()) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
<< ASArgExpr->getSourceRange();
Attr.setInvalid();
return;
}
addrSpace.setIsSigned(false);
}
llvm::APSInt max(addrSpace.getBitWidth());
max = Qualifiers::MaxAddressSpace;
if (addrSpace > max) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
<< Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
Attr.setInvalid();
return;
}
unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
}
/// Does this type have a "direct" ownership qualifier? That is,
/// is it written like "__strong id", as opposed to something like
/// "typeof(foo)", where that happens to be strong?
static bool hasDirectOwnershipQualifier(QualType type) {
// Fast path: no qualifier at all.
assert(type.getQualifiers().hasObjCLifetime());
while (true) {
// __strong id
if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
return true;
type = attr->getModifiedType();
// X *__strong (...)
} else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
type = paren->getInnerType();
// That's it for things we want to complain about. In particular,
// we do not want to look through typedefs, typeof(expr),
// typeof(type), or any other way that the type is somehow
// abstracted.
} else {
return false;
}
}
}
/// handleObjCOwnershipTypeAttr - Process an objc_ownership
/// attribute on the specified type.
///
/// Returns 'true' if the attribute was handled.
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type) {
bool NonObjCPointer = false;
if (!type->isDependentType()) {
if (const PointerType *ptr = type->getAs<PointerType>()) {
QualType pointee = ptr->getPointeeType();
if (pointee->isObjCRetainableType() || pointee->isPointerType())
return false;
// It is important not to lose the source info that there was an attribute
// applied to non-objc pointer. We will create an attributed type but
// its type will be the same as the original type.
NonObjCPointer = true;
} else if (!type->isObjCRetainableType()) {
return false;
}
}
Sema &S = state.getSema();
SourceLocation AttrLoc = attr.getLoc();
if (AttrLoc.isMacroID())
AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
if (!attr.getParameterName()) {
S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
<< "objc_ownership" << 1;
attr.setInvalid();
return true;
}
// Consume lifetime attributes without further comment outside of
// ARC mode.
if (!S.getLangOpts().ObjCAutoRefCount)
return true;
Qualifiers::ObjCLifetime lifetime;
if (attr.getParameterName()->isStr("none"))
lifetime = Qualifiers::OCL_ExplicitNone;
else if (attr.getParameterName()->isStr("strong"))
lifetime = Qualifiers::OCL_Strong;
else if (attr.getParameterName()->isStr("weak"))
lifetime = Qualifiers::OCL_Weak;
else if (attr.getParameterName()->isStr("autoreleasing"))
lifetime = Qualifiers::OCL_Autoreleasing;
else {
S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
<< "objc_ownership" << attr.getParameterName();
attr.setInvalid();
return true;
}
SplitQualType underlyingType = type.split();
// Check for redundant/conflicting ownership qualifiers.
if (Qualifiers::ObjCLifetime previousLifetime
= type.getQualifiers().getObjCLifetime()) {
// If it's written directly, that's an error.
if (hasDirectOwnershipQualifier(type)) {
S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
<< type;
return true;
}
// Otherwise, if the qualifiers actually conflict, pull sugar off
// until we reach a type that is directly qualified.
if (previousLifetime != lifetime) {
// This should always terminate: the canonical type is
// qualified, so some bit of sugar must be hiding it.
while (!underlyingType.Quals.hasObjCLifetime()) {
underlyingType = underlyingType.getSingleStepDesugaredType();
}
underlyingType.Quals.removeObjCLifetime();
}
}
underlyingType.Quals.addObjCLifetime(lifetime);
if (NonObjCPointer) {
StringRef name = attr.getName()->getName();
switch (lifetime) {
case Qualifiers::OCL_None:
case Qualifiers::OCL_ExplicitNone:
break;
case Qualifiers::OCL_Strong: name = "__strong"; break;
case Qualifiers::OCL_Weak: name = "__weak"; break;
case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
}
S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
<< name << type;
}
QualType origType = type;
if (!NonObjCPointer)
type = S.Context.getQualifiedType(underlyingType);
// If we have a valid source location for the attribute, use an
// AttributedType instead.
if (AttrLoc.isValid())
type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
origType, type);
// Forbid __weak if the runtime doesn't support it.
if (lifetime == Qualifiers::OCL_Weak &&
!S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
// Actually, delay this until we know what we're parsing.
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
S.DelayedDiagnostics.add(
sema::DelayedDiagnostic::makeForbiddenType(
S.getSourceManager().getExpansionLoc(AttrLoc),
diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
} else {
S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
}
attr.setInvalid();
return true;
}
// Forbid __weak for class objects marked as
// objc_arc_weak_reference_unavailable
if (lifetime == Qualifiers::OCL_Weak) {
QualType T = type;
while (const PointerType *ptr = T->getAs<PointerType>())
T = ptr->getPointeeType();
if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
if (Class->isArcWeakrefUnavailable()) {
S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
S.Diag(ObjT->getInterfaceDecl()->getLocation(),
diag::note_class_declared);
}
}
}
}
return true;
}
/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
/// attribute on the specified type. Returns true to indicate that
/// the attribute was handled, false to indicate that the type does
/// not permit the attribute.
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type) {
Sema &S = state.getSema();
// Delay if this isn't some kind of pointer.
if (!type->isPointerType() &&
!type->isObjCObjectPointerType() &&
!type->isBlockPointerType())
return false;
if (type.getObjCGCAttr() != Qualifiers::GCNone) {
S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
attr.setInvalid();
return true;
}
// Check the attribute arguments.
if (!attr.getParameterName()) {
S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "objc_gc" << 1;
attr.setInvalid();
return true;
}
Qualifiers::GC GCAttr;
if (attr.getNumArgs() != 0) {
S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
attr.setInvalid();
return true;
}
if (attr.getParameterName()->isStr("weak"))
GCAttr = Qualifiers::Weak;
else if (attr.getParameterName()->isStr("strong"))
GCAttr = Qualifiers::Strong;
else {
S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
<< "objc_gc" << attr.getParameterName();
attr.setInvalid();
return true;
}
QualType origType = type;
type = S.Context.getObjCGCQualType(origType, GCAttr);
// Make an attributed type to preserve the source information.
if (attr.getLoc().isValid())
type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
origType, type);
return true;
}
namespace {
/// A helper class to unwrap a type down to a function for the
/// purposes of applying attributes there.
///
/// Use:
/// FunctionTypeUnwrapper unwrapped(SemaRef, T);
/// if (unwrapped.isFunctionType()) {
/// const FunctionType *fn = unwrapped.get();
/// // change fn somehow
/// T = unwrapped.wrap(fn);
/// }
struct FunctionTypeUnwrapper {
enum WrapKind {
Desugar,
Parens,
Pointer,
BlockPointer,
Reference,
MemberPointer
};
QualType Original;
const FunctionType *Fn;
SmallVector<unsigned char /*WrapKind*/, 8> Stack;
FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
while (true) {
const Type *Ty = T.getTypePtr();
if (isa<FunctionType>(Ty)) {
Fn = cast<FunctionType>(Ty);
return;
} else if (isa<ParenType>(Ty)) {
T = cast<ParenType>(Ty)->getInnerType();
Stack.push_back(Parens);
} else if (isa<PointerType>(Ty)) {
T = cast<PointerType>(Ty)->getPointeeType();
Stack.push_back(Pointer);
} else if (isa<BlockPointerType>(Ty)) {
T = cast<BlockPointerType>(Ty)->getPointeeType();
Stack.push_back(BlockPointer);
} else if (isa<MemberPointerType>(Ty)) {
T = cast<MemberPointerType>(Ty)->getPointeeType();
Stack.push_back(MemberPointer);
} else if (isa<ReferenceType>(Ty)) {
T = cast<ReferenceType>(Ty)->getPointeeType();
Stack.push_back(Reference);
} else {
const Type *DTy = Ty->getUnqualifiedDesugaredType();
if (Ty == DTy) {
Fn = 0;
return;
}
T = QualType(DTy, 0);
Stack.push_back(Desugar);
}
}
}
bool isFunctionType() const { return (Fn != 0); }
const FunctionType *get() const { return Fn; }
QualType wrap(Sema &S, const FunctionType *New) {
// If T wasn't modified from the unwrapped type, do nothing.
if (New == get()) return Original;
Fn = New;
return wrap(S.Context, Original, 0);
}
private:
QualType wrap(ASTContext &C, QualType Old, unsigned I) {
if (I == Stack.size())
return C.getQualifiedType(Fn, Old.getQualifiers());
// Build up the inner type, applying the qualifiers from the old
// type to the new type.
SplitQualType SplitOld = Old.split();
// As a special case, tail-recurse if there are no qualifiers.
if (SplitOld.Quals.empty())
return wrap(C, SplitOld.Ty, I);
return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
}
QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
if (I == Stack.size()) return QualType(Fn, 0);
switch (static_cast<WrapKind>(Stack[I++])) {
case Desugar:
// This is the point at which we potentially lose source
// information.
return wrap(C, Old->getUnqualifiedDesugaredType(), I);
case Parens: {
QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
return C.getParenType(New);
}
case Pointer: {
QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
return C.getPointerType(New);
}
case BlockPointer: {
QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
return C.getBlockPointerType(New);
}
case MemberPointer: {
const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
QualType New = wrap(C, OldMPT->getPointeeType(), I);
return C.getMemberPointerType(New, OldMPT->getClass());
}
case Reference: {
const ReferenceType *OldRef = cast<ReferenceType>(Old);
QualType New = wrap(C, OldRef->getPointeeType(), I);
if (isa<LValueReferenceType>(OldRef))
return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
else
return C.getRValueReferenceType(New);
}
}
llvm_unreachable("unknown wrapping kind");
}
};
}
/// Process an individual function attribute. Returns true to
/// indicate that the attribute was handled, false if it wasn't.
static bool handleFunctionTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type) {
Sema &S = state.getSema();
FunctionTypeUnwrapper unwrapped(S, type);
if (attr.getKind() == AttributeList::AT_NoReturn) {
if (S.CheckNoReturnAttr(attr))
return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
// Otherwise we can process right away.
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
// ns_returns_retained is not always a type attribute, but if we got
// here, we're treating it as one right now.
if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
assert(S.getLangOpts().ObjCAutoRefCount &&
"ns_returns_retained treated as type attribute in non-ARC");
if (attr.getNumArgs()) return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
FunctionType::ExtInfo EI
= unwrapped.get()->getExtInfo().withProducesResult(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
if (attr.getKind() == AttributeList::AT_Regparm) {
unsigned value;
if (S.CheckRegparmAttr(attr, value))
return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
// Diagnose regparm with fastcall.
const FunctionType *fn = unwrapped.get();
CallingConv CC = fn->getCallConv();
if (CC == CC_X86FastCall) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< FunctionType::getNameForCallConv(CC)
<< "regparm";
attr.setInvalid();
return true;
}
FunctionType::ExtInfo EI =
unwrapped.get()->getExtInfo().withRegParm(value);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
// Delay if the type didn't work out to a function.
if (!unwrapped.isFunctionType()) return false;
// Otherwise, a calling convention.
CallingConv CC;
if (S.CheckCallingConvAttr(attr, CC))
return true;
const FunctionType *fn = unwrapped.get();
CallingConv CCOld = fn->getCallConv();
if (S.Context.getCanonicalCallConv(CC) ==
S.Context.getCanonicalCallConv(CCOld)) {
FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
// Should we diagnose reapplications of the same convention?
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< FunctionType::getNameForCallConv(CC)
<< FunctionType::getNameForCallConv(CCOld);
attr.setInvalid();
return true;
}
// Diagnose the use of X86 fastcall on varargs or unprototyped functions.
if (CC == CC_X86FastCall) {
if (isa<FunctionNoProtoType>(fn)) {
S.Diag(attr.getLoc(), diag::err_cconv_knr)
<< FunctionType::getNameForCallConv(CC);
attr.setInvalid();
return true;
}
const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
if (FnP->isVariadic()) {
S.Diag(attr.getLoc(), diag::err_cconv_varargs)
<< FunctionType::getNameForCallConv(CC);
attr.setInvalid();
return true;
}
// Also diagnose fastcall with regparm.
if (fn->getHasRegParm()) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "regparm"
<< FunctionType::getNameForCallConv(CC);
attr.setInvalid();
return true;
}
}
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
static void HandleOpenCLImageAccessAttribute(QualType& CurType,
const AttributeList &Attr,
Sema &S) {
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
Attr.setInvalid();
return;
}
Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt arg(32);
if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
!sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "opencl_image_access" << sizeExpr->getSourceRange();
Attr.setInvalid();
return;
}
unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
switch (iarg) {
case CLIA_read_only:
case CLIA_write_only:
case CLIA_read_write:
// Implemented in a separate patch
break;
default:
// Implemented in a separate patch
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
<< sizeExpr->getSourceRange();
Attr.setInvalid();
break;
}
}
/// HandleVectorSizeAttribute - this attribute is only applicable to integral
/// and float scalars, although arrays, pointers, and function return values are
/// allowed in conjunction with this construct. Aggregates with this attribute
/// are invalid, even if they are of the same size as a corresponding scalar.
/// The raw attribute should contain precisely 1 argument, the vector size for
/// the variable, measured in bytes. If curType and rawAttr are well formed,
/// this routine will return a new vector type.
static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
Sema &S) {
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
Attr.setInvalid();
return;
}
Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt vecSize(32);
if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "vector_size" << sizeExpr->getSourceRange();
Attr.setInvalid();
return;
}
// the base type must be integer or float, and can't already be a vector.
if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
Attr.setInvalid();
return;
}
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
// vecSize is specified in bytes - convert to bits.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
// the vector size needs to be an integral multiple of the type size.
if (vectorSize % typeSize) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
<< sizeExpr->getSourceRange();
Attr.setInvalid();
return;
}
if (vectorSize == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
<< sizeExpr->getSourceRange();
Attr.setInvalid();
return;
}
// Success! Instantiate the vector type, the number of elements is > 0, and
// not required to be a power of 2, unlike GCC.
CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
VectorType::GenericVector);
}
/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
/// a type.
static void HandleExtVectorTypeAttr(QualType &CurType,
const AttributeList &Attr,
Sema &S) {
Expr *sizeExpr;
// Special case where the argument is a template id.
if (Attr.getParameterName()) {
CXXScopeSpec SS;
SourceLocation TemplateKWLoc;
UnqualifiedId id;
id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
id, false, false);
if (Size.isInvalid())
return;
sizeExpr = Size.get();
} else {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
sizeExpr = Attr.getArg(0);
}
// Create the vector type.
QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
if (!T.isNull())
CurType = T;
}
/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
/// "neon_polyvector_type" attributes are used to create vector types that
/// are mangled according to ARM's ABI. Otherwise, these types are identical
/// to those created with the "vector_size" attribute. Unlike "vector_size"
/// the argument to these Neon attributes is the number of vector elements,
/// not the vector size in bytes. The vector width and element type must
/// match one of the standard Neon vector types.
static void HandleNeonVectorTypeAttr(QualType& CurType,
const AttributeList &Attr, Sema &S,
VectorType::VectorKind VecKind,
const char *AttrName) {
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
Attr.setInvalid();
return;
}
// The number of elements must be an ICE.
Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt numEltsInt(32);
if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
!numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< AttrName << numEltsExpr->getSourceRange();
Attr.setInvalid();
return;
}
// Only certain element types are supported for Neon vectors.
const BuiltinType* BTy = CurType->getAs<BuiltinType>();
if (!BTy ||
(VecKind == VectorType::NeonPolyVector &&
BTy->getKind() != BuiltinType::SChar &&
BTy->getKind() != BuiltinType::Short) ||
(BTy->getKind() != BuiltinType::SChar &&
BTy->getKind() != BuiltinType::UChar &&
BTy->getKind() != BuiltinType::Short &&
BTy->getKind() != BuiltinType::UShort &&
BTy->getKind() != BuiltinType::Int &&
BTy->getKind() != BuiltinType::UInt &&
BTy->getKind() != BuiltinType::LongLong &&
BTy->getKind() != BuiltinType::ULongLong &&
BTy->getKind() != BuiltinType::Float)) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
Attr.setInvalid();
return;
}
// The total size of the vector must be 64 or 128 bits.
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
unsigned vecSize = typeSize * numElts;
if (vecSize != 64 && vecSize != 128) {
S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
Attr.setInvalid();
return;
}
CurType = S.Context.getVectorType(CurType, numElts, VecKind);
}
static void processTypeAttrs(TypeProcessingState &state, QualType &type,
bool isDeclSpec, AttributeList *attrs) {
// Scan through and apply attributes to this type where it makes sense. Some
// attributes (such as __address_space__, __vector_size__, etc) apply to the
// type, but others can be present in the type specifiers even though they
// apply to the decl. Here we apply type attributes and ignore the rest.
AttributeList *next;
do {
AttributeList &attr = *attrs;
next = attr.getNext();
// Skip attributes that were marked to be invalid.
if (attr.isInvalid())
continue;
// If this is an attribute we can handle, do so now,
// otherwise, add it to the FnAttrs list for rechaining.
switch (attr.getKind()) {
default: break;
case AttributeList::AT_MayAlias:
// FIXME: This attribute needs to actually be handled, but if we ignore
// it it breaks large amounts of Linux software.
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_AddressSpace:
HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
OBJC_POINTER_TYPE_ATTRS_CASELIST:
if (!handleObjCPointerTypeAttr(state, attr, type))
distributeObjCPointerTypeAttr(state, attr, type);
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_VectorSize:
HandleVectorSizeAttr(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_ExtVectorType:
if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
!= DeclSpec::SCS_typedef)
HandleExtVectorTypeAttr(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_NeonVectorType:
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
VectorType::NeonVector, "neon_vector_type");
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_NeonPolyVectorType:
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
VectorType::NeonPolyVector,
"neon_polyvector_type");
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_OpenCLImageAccess:
HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_Win64:
case AttributeList::AT_Ptr32:
case AttributeList::AT_Ptr64:
// FIXME: don't ignore these
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_NSReturnsRetained:
if (!state.getSema().getLangOpts().ObjCAutoRefCount)
break;
// fallthrough into the function attrs
FUNCTION_TYPE_ATTRS_CASELIST:
attr.setUsedAsTypeAttr();
// Never process function type attributes as part of the
// declaration-specifiers.
if (isDeclSpec)
distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
// Otherwise, handle the possible delays.
else if (!handleFunctionTypeAttr(state, attr, type))
distributeFunctionTypeAttr(state, attr, type);
break;
}
} while ((attrs = next));
}
/// \brief Ensure that the type of the given expression is complete.
///
/// This routine checks whether the expression \p E has a complete type. If the
/// expression refers to an instantiable construct, that instantiation is
/// performed as needed to complete its type. Furthermore
/// Sema::RequireCompleteType is called for the expression's type (or in the
/// case of a reference type, the referred-to type).
///
/// \param E The expression whose type is required to be complete.
/// \param Diagnoser The object that will emit a diagnostic if the type is
/// incomplete.
///
/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
/// otherwise.
bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
QualType T = E->getType();
// Fast path the case where the type is already complete.
if (!T->isIncompleteType())
return false;
// Incomplete array types may be completed by the initializer attached to
// their definitions. For static data members of class templates we need to
// instantiate the definition to get this initializer and complete the type.
if (T->isIncompleteArrayType()) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
if (Var->isStaticDataMember() &&
Var->getInstantiatedFromStaticDataMember()) {
MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
assert(MSInfo && "Missing member specialization information?");
if (MSInfo->getTemplateSpecializationKind()
!= TSK_ExplicitSpecialization) {
// If we don't already have a point of instantiation, this is it.
if (MSInfo->getPointOfInstantiation().isInvalid()) {
MSInfo->setPointOfInstantiation(E->getLocStart());
// This is a modification of an existing AST node. Notify
// listeners.
if (ASTMutationListener *L = getASTMutationListener())
L->StaticDataMemberInstantiated(Var);
}
InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
// Update the type to the newly instantiated definition's type both
// here and within the expression.
if (VarDecl *Def = Var->getDefinition()) {
DRE->setDecl(Def);
T = Def->getType();
DRE->setType(T);
E->setType(T);
}
}
// We still go on to try to complete the type independently, as it
// may also require instantiations or diagnostics if it remains
// incomplete.
}
}
}
}
// FIXME: Are there other cases which require instantiating something other
// than the type to complete the type of an expression?
// Look through reference types and complete the referred type.
if (const ReferenceType *Ref = T->getAs<ReferenceType>())
T = Ref->getPointeeType();
return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
}
namespace {
struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
unsigned DiagID;
TypeDiagnoserDiag(unsigned DiagID)
: Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
if (Suppressed) return;
S.Diag(Loc, DiagID) << T;
}
};
}
bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
TypeDiagnoserDiag Diagnoser(DiagID);
return RequireCompleteExprType(E, Diagnoser);
}
/// @brief Ensure that the type T is a complete type.
///
/// This routine checks whether the type @p T is complete in any
/// context where a complete type is required. If @p T is a complete
/// type, returns false. If @p T is a class template specialization,
/// this routine then attempts to perform class template
/// instantiation. If instantiation fails, or if @p T is incomplete
/// and cannot be completed, issues the diagnostic @p diag (giving it
/// the type @p T) and returns true.
///
/// @param Loc The location in the source that the incomplete type
/// diagnostic should refer to.
///
/// @param T The type that this routine is examining for completeness.
///
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
// FIXME: Add this assertion to make sure we always get instantiation points.
// assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
// FIXME: Add this assertion to help us flush out problems with
// checking for dependent types and type-dependent expressions.
//
// assert(!T->isDependentType() &&
// "Can't ask whether a dependent type is complete");
// If we have a complete type, we're done.
NamedDecl *Def = 0;
if (!T->isIncompleteType(&Def)) {
// If we know about the definition but it is not visible, complain.
if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(Def)) {
// Suppress this error outside of a SFINAE context if we've already
// emitted the error once for this type. There's no usefulness in
// repeating the diagnostic.
// FIXME: Add a Fix-It that imports the corresponding module or includes
// the header.
if (isSFINAEContext() || HiddenDefinitions.insert(Def)) {
Diag(Loc, diag::err_module_private_definition) << T;
Diag(Def->getLocation(), diag::note_previous_definition);
}
}
return false;
}
const TagType *Tag = T->getAs<TagType>();
const ObjCInterfaceType *IFace = 0;
if (Tag) {
// Avoid diagnosing invalid decls as incomplete.
if (Tag->getDecl()->isInvalidDecl())
return true;
// Give the external AST source a chance to complete the type.
if (Tag->getDecl()->hasExternalLexicalStorage()) {
Context.getExternalSource()->CompleteType(Tag->getDecl());
if (!Tag->isIncompleteType())
return false;
}
}
else if ((IFace = T->getAs<ObjCInterfaceType>())) {
// Avoid diagnosing invalid decls as incomplete.
if (IFace->getDecl()->isInvalidDecl())
return true;
// Give the external AST source a chance to complete the type.
if (IFace->getDecl()->hasExternalLexicalStorage()) {
Context.getExternalSource()->CompleteType(IFace->getDecl());
if (!IFace->isIncompleteType())
return false;
}
}
// If we have a class template specialization or a class member of a
// class template specialization, or an array with known size of such,
// try to instantiate it.
QualType MaybeTemplate = T;
while (const ConstantArrayType *Array
= Context.getAsConstantArrayType(MaybeTemplate))
MaybeTemplate = Array->getElementType();
if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
if (ClassTemplateSpecializationDecl *ClassTemplateSpec
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
TSK_ImplicitInstantiation,
/*Complain=*/!Diagnoser.Suppressed);
} else if (CXXRecordDecl *Rec
= dyn_cast<CXXRecordDecl>(Record->getDecl())) {
CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
if (!Rec->isBeingDefined() && Pattern) {
MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
assert(MSI && "Missing member specialization information?");
// This record was instantiated from a class within a template.
if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
return InstantiateClass(Loc, Rec, Pattern,
getTemplateInstantiationArgs(Rec),
TSK_ImplicitInstantiation,
/*Complain=*/!Diagnoser.Suppressed);
}
}
}
if (Diagnoser.Suppressed)
return true;
// We have an incomplete type. Produce a diagnostic.
Diagnoser.diagnose(*this, Loc, T);
// If the type was a forward declaration of a class/struct/union
// type, produce a note.
if (Tag && !Tag->getDecl()->isInvalidDecl())
Diag(Tag->getDecl()->getLocation(),
Tag->isBeingDefined() ? diag::note_type_being_defined
: diag::note_forward_declaration)
<< QualType(Tag, 0);
// If the Objective-C class was a forward declaration, produce a note.
if (IFace && !IFace->getDecl()->isInvalidDecl())
Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
return true;
}
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
unsigned DiagID) {
TypeDiagnoserDiag Diagnoser(DiagID);
return RequireCompleteType(Loc, T, Diagnoser);
}
/// \brief Get diagnostic %select index for tag kind for
/// literal type diagnostic message.
/// WARNING: Indexes apply to particular diagnostics only!
///
/// \returns diagnostic %select index.
static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
switch (Tag) {
case TTK_Struct: return 0;
case TTK_Interface: return 1;
case TTK_Class: return 2;
default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
}
}
/// @brief Ensure that the type T is a literal type.
///
/// This routine checks whether the type @p T is a literal type. If @p T is an
/// incomplete type, an attempt is made to complete it. If @p T is a literal
/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
/// it the type @p T), along with notes explaining why the type is not a
/// literal type, and returns true.
///
/// @param Loc The location in the source that the non-literal type
/// diagnostic should refer to.
///
/// @param T The type that this routine is examining for literalness.
///
/// @param Diagnoser Emits a diagnostic if T is not a literal type.
///
/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
assert(!T->isDependentType() && "type should not be dependent");
QualType ElemType = Context.getBaseElementType(T);
RequireCompleteType(Loc, ElemType, 0);
if (T->isLiteralType())
return false;
if (Diagnoser.Suppressed)
return true;
Diagnoser.diagnose(*this, Loc, T);
if (T->isVariableArrayType())
return true;
const RecordType *RT = ElemType->getAs<RecordType>();
if (!RT)
return true;
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
// A partially-defined class type can't be a literal type, because a literal
// class type must have a trivial destructor (which can't be checked until
// the class definition is complete).
if (!RD->isCompleteDefinition()) {
RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
return true;
}
// If the class has virtual base classes, then it's not an aggregate, and
// cannot have any constexpr constructors or a trivial default constructor,
// so is non-literal. This is better to diagnose than the resulting absence
// of constexpr constructors.
if (RD->getNumVBases()) {
Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
<< getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
E = RD->vbases_end(); I != E; ++I)
Diag(I->getLocStart(),
diag::note_constexpr_virtual_base_here) << I->getSourceRange();
} else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
!RD->hasTrivialDefaultConstructor()) {
Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
} else if (RD->hasNonLiteralTypeFieldsOrBases()) {
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
if (!I->getType()->isLiteralType()) {
Diag(I->getLocStart(),
diag::note_non_literal_base_class)
<< RD << I->getType() << I->getSourceRange();
return true;
}
}
for (CXXRecordDecl::field_iterator I = RD->field_begin(),
E = RD->field_end(); I != E; ++I) {
if (!I->getType()->isLiteralType() ||
I->getType().isVolatileQualified()) {
Diag(I->getLocation(), diag::note_non_literal_field)
<< RD << *I << I->getType()
<< I->getType().isVolatileQualified();
return true;
}
}
} else if (!RD->hasTrivialDestructor()) {
// All fields and bases are of literal types, so have trivial destructors.
// If this class's destructor is non-trivial it must be user-declared.
CXXDestructorDecl *Dtor = RD->getDestructor();
assert(Dtor && "class has literal fields and bases but no dtor?");
if (!Dtor)
return true;
Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
diag::note_non_literal_user_provided_dtor :
diag::note_non_literal_nontrivial_dtor) << RD;
}
return true;
}
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
TypeDiagnoserDiag Diagnoser(DiagID);
return RequireLiteralType(Loc, T, Diagnoser);
}
/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
/// and qualified by the nested-name-specifier contained in SS.
QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
const CXXScopeSpec &SS, QualType T) {
if (T.isNull())
return T;
NestedNameSpecifier *NNS;
if (SS.isValid())
NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
else {
if (Keyword == ETK_None)
return T;
NNS = 0;
}
return Context.getElaboratedType(Keyword, NNS, T);
}
QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
ExprResult ER = CheckPlaceholderExpr(E);
if (ER.isInvalid()) return QualType();
E = ER.take();
if (!E->isTypeDependent()) {
QualType T = E->getType();
if (const TagType *TT = T->getAs<TagType>())
DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
}
return Context.getTypeOfExprType(E);
}
/// getDecltypeForExpr - Given an expr, will return the decltype for
/// that expression, according to the rules in C++11
/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
static QualType getDecltypeForExpr(Sema &S, Expr *E) {
if (E->isTypeDependent())
return S.Context.DependentTy;
// C++11 [dcl.type.simple]p4:
// The type denoted by decltype(e) is defined as follows:
//
// - if e is an unparenthesized id-expression or an unparenthesized class
// member access (5.2.5), decltype(e) is the type of the entity named
// by e. If there is no such entity, or if e names a set of overloaded
// functions, the program is ill-formed;
//
// We apply the same rules for Objective-C ivar and property references.
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
return VD->getType();
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
return FD->getType();
} else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
return IR->getDecl()->getType();
} else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
if (PR->isExplicitProperty())
return PR->getExplicitProperty()->getType();
}
// C++11 [expr.lambda.prim]p18:
// Every occurrence of decltype((x)) where x is a possibly
// parenthesized id-expression that names an entity of automatic
// storage duration is treated as if x were transformed into an
// access to a corresponding data member of the closure type that
// would have been declared if x were an odr-use of the denoted
// entity.
using namespace sema;
if (S.getCurLambda()) {
if (isa<ParenExpr>(E)) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
if (!T.isNull())
return S.Context.getLValueReferenceType(T);
}
}
}
}
// C++11 [dcl.type.simple]p4:
// [...]
QualType T = E->getType();
switch (E->getValueKind()) {
// - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
// type of e;
case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
// - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
// type of e;
case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
// - otherwise, decltype(e) is the type of e.
case VK_RValue: break;
}
return T;
}
QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
ExprResult ER = CheckPlaceholderExpr(E);
if (ER.isInvalid()) return QualType();
E = ER.take();
return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
}
QualType Sema::BuildUnaryTransformType(QualType BaseType,
UnaryTransformType::UTTKind UKind,
SourceLocation Loc) {
switch (UKind) {
case UnaryTransformType::EnumUnderlyingType:
if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
Diag(Loc, diag::err_only_enums_have_underlying_types);
return QualType();
} else {
QualType Underlying = BaseType;
if (!BaseType->isDependentType()) {
EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
assert(ED && "EnumType has no EnumDecl");
DiagnoseUseOfDecl(ED, Loc);
Underlying = ED->getIntegerType();
}
assert(!Underlying.isNull());
return Context.getUnaryTransformType(BaseType, Underlying,
UnaryTransformType::EnumUnderlyingType);
}
}
llvm_unreachable("unknown unary transform type");
}
QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
if (!T->isDependentType()) {
// FIXME: It isn't entirely clear whether incomplete atomic types
// are allowed or not; for simplicity, ban them for the moment.
if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
return QualType();
int DisallowedKind = -1;
if (T->isArrayType())
DisallowedKind = 1;
else if (T->isFunctionType())
DisallowedKind = 2;
else if (T->isReferenceType())
DisallowedKind = 3;
else if (T->isAtomicType())
DisallowedKind = 4;
else if (T.hasQualifiers())
DisallowedKind = 5;
else if (!T.isTriviallyCopyableType(Context))
// Some other non-trivially-copyable type (probably a C++ class)
DisallowedKind = 6;
if (DisallowedKind != -1) {
Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
return QualType();
}
// FIXME: Do we need any handling for ARC here?
}
// Build the pointer type.
return Context.getAtomicType(T);
}